
Solving 2-Player Games
Specialized data structure for Büchi game solving

Quentin Rataud, under the supervision of Philipp Schlehuber-Caissier

Seminar — July 2024

ltlsynt battle plan
General outline

Figure: General outline of the process used by ltlsynt to solve the reactive synthesis problem. [2]

2 / 22

A smart traffic light
Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

If no car is detected, the traffic light must be red
The traffic light cannot be green twice in a row
If a car is detected, the traffic light must eventually turn green

3 / 22

A smart traffic light
Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

If no car is detected, the traffic light must be red

The traffic light cannot be green twice in a row
If a car is detected, the traffic light must eventually turn green

3 / 22

A smart traffic light
Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

If no car is detected, the traffic light must be red
The traffic light cannot be green twice in a row

If a car is detected, the traffic light must eventually turn green

3 / 22

A smart traffic light
Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

If no car is detected, the traffic light must be red
The traffic light cannot be green twice in a row
If a car is detected, the traffic light must eventually turn green

3 / 22

A smart traffic light
ltlsynt outline

Figure: General outline of the process used by ltlsynt to solve the reactive synthesis problem. [2]

4 / 22

A smart traffic light
LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

If no car is detected, the traffic light must be red
The traffic light cannot be green twice in a row
If a car is detected, the traffic light must eventually turn green

5 / 22

A smart traffic light
LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

G(!C =⇒ R)
The traffic light cannot be green twice in a row
If a car is detected, the traffic light must eventually turn green

5 / 22

A smart traffic light
LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

G(!C =⇒ R)
G(G =⇒ X(R))
If a car is detected, the traffic light must eventually turn green

5 / 22

A smart traffic light
LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

G(!C =⇒ R)
G(G =⇒ X(R))
G(C =⇒ F(G))

5 / 22

A smart traffic light
ltlsynt outline

Figure: General outline of the process used by ltlsynt to solve the reactive synthesis problem. [2]

6 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

!C

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

G

R !C

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

G

R !C

C

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

G

R !C

C

G

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

!C

G

R !C

C

G

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

C

!C

G

R !C

C

G

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

C

!C

G

R

G

R !C

C

G

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

C

!C

G

R

G

R C!C

C

G

R

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

No car Car awaiting

Previous green

Previous red

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
Turning LTL into a 2-Player Game

Traffic Light Output
Sensor Input

Inf()

No car Car awaiting

Previous green

Previous red

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: G(!C =⇒ R) & G(G =⇒ X(R)) & G(C =⇒ F(G))
7 / 22

A smart traffic light
ltlsynt outline

Figure: General outline of the process used by ltlsynt to solve the reactive synthesis problem. [2]

8 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
Solving a 2-Player game

Controller
Environment

Inf()

C

!C

G

R

G

R C

!C

G

R

!C

C

G

R

Figure: Solving a Büchi game

9 / 22

A smart traffic light
ltlsynt outline

Figure: General outline of the process used by ltlsynt to solve the reactive synthesis problem. [2]

10 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)
3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)

2 L = Attr0(R̄)
3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)

3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)

3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)
3 G = G/L

4 Repeat until fixed
point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)
3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)
3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)
3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Solving Büchi Games
Complete Algorithm

1 R = Attr1(B)
2 L = Attr0(R̄)
3 G = G/L
4 Repeat until fixed

point is reached

Controller
Environment

Inf()

Figure: Solving a Büchi game

11 / 22

Customized Data Structure for Büchi Solving
The needs for an appropriate Data Structure

The data structure used to represent an arena needs to support:
Deletion of arbitrary states and edges;
Access to the data associated with any arbitrary state/edge;
Traversal of all states/edges that are not yet removed.

12 / 22

Customized Data Structure for Büchi Solving
The needs for an appropriate Data Structure

The data structure used to represent an arena needs to support:
Deletion of arbitrary states and edges;
Access to the data associated with any arbitrary state/edge;
Traversal of all states/edges that are not yet removed.

set unordered_set
Deletion O(log(|A|)) O(1)

Access O(log(|A|)) O(1)
Traversal O(|A|) O(|A|)

Where |A| is the size of the active arena, and n is the total number of states.

12 / 22

Customized Data Structure for Büchi Solving
set vs. unordered_set

Figure: Using a set to represent an arena Figure: Using an unordered_set to
represent an arena

13 / 22

Customized Data Structure for Büchi Solving
The hidden constant behind unordered_set

unordered_set have an ideal time complexity. However, they hide a strong hidden
constant.

14 / 22

Customized Data Structure for Büchi Solving
The hidden constant behind unordered_set

unordered_set have an ideal time complexity. However, they hide a strong hidden
constant.

set unordered_set vector<bool>
Deletion O(log(|A|)) O(1) O(1)

Access O(log(|A|)) O(1) O(1)
Traversal O(|A|) O(|A|) O(n)

Where |A| is the size of the active arena, and n is the total number of states.

14 / 22

Customized Data Structure for Büchi Solving
unordered_set vs. vector<bool>

Figure: Using an unordered_set to
represent an arena

Figure: Using a vector<bool> to represent
an arena

15 / 22

Customized Data Structure for Büchi Solving
Introducing partitioned_dlist

We know in advance all the states we need to store, so we can store them
statically.

We can mark a state if it is deleted using a single boolean

To allow fast iteration over active elements, we use a pointer next to the next
active element.
Deleting an element means the next of our previous becomes our next (we skip
the element), so we also need a pointer prev.

A B C D E

16 / 22

Customized Data Structure for Büchi Solving
Introducing partitioned_dlist

We know in advance all the states we need to store, so we can store them
statically.
We can mark a state if it is deleted using a single boolean

To allow fast iteration over active elements, we use a pointer next to the next
active element.
Deleting an element means the next of our previous becomes our next (we skip
the element), so we also need a pointer prev.

A B C D E

16 / 22

Customized Data Structure for Büchi Solving
Introducing partitioned_dlist

We know in advance all the states we need to store, so we can store them
statically.
We can mark a state if it is deleted using a single boolean

To allow fast iteration over active elements, we use a pointer next to the next
active element.

Deleting an element means the next of our previous becomes our next (we skip
the element), so we also need a pointer prev.

A B C D E

16 / 22

Customized Data Structure for Büchi Solving
Introducing partitioned_dlist

We know in advance all the states we need to store, so we can store them
statically.
We can mark a state if it is deleted using a single boolean

To allow fast iteration over active elements, we use a pointer next to the next
active element.
Deleting an element means the next of our previous becomes our next (we skip
the element), so we also need a pointer prev.

A B C D E

16 / 22

Customized Data Structure for Büchi Solving
Complexity of partitioned_dlist

set unordered_set vector<bool> partitioned_dlist
Deletion O(log(|A|)) O(1) O(1) O(1)

Access O(log(|A|)) O(1) O(1) O(1)
Traversal O(|A|) O(|A|) O(n) O(|A|)

Where |A| is the size of the active arena, and n is the total number of states.

17 / 22

Customized Data Structure for Büchi Solving
vector<bool> vs. partitioned_dlist

Figure: Using a vector<bool> to represent
an arena

Figure: Using a partitioned_dlist to
represent an arena

18 / 22

Customized Data Structure for Büchi Solving
Actual state of the Büchi Solver

Figure: In double-log scale Figure: In linear scale

19 / 22

Further Improvements
Strongly Connected Component Decomposition

1 The solving time
complexity may
degenerate to O(n2)

2 Decomposing into
strongly connected
components may
help

Controller
Environment

Inf()

Figure: Decomposing an arena into strongly connected
components

20 / 22

Further Improvements
Strongly Connected Component Decomposition

1 The solving time
complexity may
degenerate to O(n2)

2 Decomposing into
strongly connected
components may
help

Controller
Environment

Inf()

Figure: Decomposing an arena into strongly connected
components

20 / 22

Further Improvements
Strongly Connected Component Decomposition

1 The solving time
complexity may
degenerate to O(n2)

2 Decomposing into
strongly connected
components may
help

Controller
Environment

Inf()

Figure: Decomposing an arena into strongly connected
components

20 / 22

Further Improvements
Adapting partitioned_dlist

How to adapt our data structure to efficiently work only on some components?

A B C D E F G H

Controller
Environment

Inf() A B C

D E

F G H

21 / 22

Further Improvements
Adapting partitioned_dlist

How to adapt our data structure to efficiently work only on some components?

A B C D E F G H

Controller
Environment

Inf() A B C

D E

F G H

21 / 22

Further Improvements
Adapting partitioned_dlist

How to adapt our data structure to efficiently work only on some components?

A B C D E F G H

Multiple heads!

Controller
Environment

Inf() A B C

D E

F G H

21 / 22

References
—

Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman.
Algorithms for büchi games.
2008.
Florian Renkin, Philipp Schlehuber-Caissier, Alexandre Duret-Lutz, and Adrien
Pommellet.
Dissecting ltlsynt.
Formal Methods in System Design, 61(2):248–289, 2022.

Martin Zimmermann, Felix Klein, and Alexander Weinert.
Infinite games.
2016.

22 / 22

	ltlsynt battle plan
	A smart traffic light
	Solving Büchi Games
	Customized Data Structure for Büchi Solving
	Further Improvements
	References

