Solving 2-Player Games

Specialized data structure for Biichi game solving
Quentin Rataud, under the supervision of Philipp Schlehuber-Caissier

Seminar — July 2024

1tlsynt battle plan

General outline

Figure: General outline of the process used by 1t1synt to solve the reactive synthesis problem. [2]

2/22

LTL formula ¢,
@

The user supplies the specification of a reac-
tive system using an LTL formula tying some

FEERN

does @; match
G(b1) A ¢ GFb2)?
yes no

solve game

YN
output

translate ¢; extract

o IGMM

simplify IGMM

\

Fig. 6

I 2

input signals to some control-
lable output signals.

Optionally decompose ¢ = A, ¢; as a conjunc-
tion of subspecifications @; with independent
outputs. (Finkbeiner et al, 2021)

For this subclass of formulas, we can bypass the
‘game-theoretical framework. (Section 6)

@ is converted to a parity game where player 0
plays the input signals, and player 1 plays the
output signals. (Section 3)

The game is solved using a variant of Zielonka’s
algorithm (van Dijk, 2018). A controller is real-
izable if player 1 has a winning strategy for the
initial state.

When 1tlsynt is calld with option
--realizability, the process can stop here
by combining the results of all ¢;s.

Otherwise, an Incompletely specified General-
ized Mealy Machine (IGMM) is created from
the winning strategy, or from ;.

Simplifying the IGMM helps to reduce the size
of the controller. (Section 4)

Encoding as an And-Tnverter Graph can be done
in a number of ways. Combining the different
“sub- 7 for the @;s is done in this step.

AIGER file

(Section 5)

A smart traffic light

Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

3/22

A smart traffic light

Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

m If no car is detected, the traffic light must be red

3/22

A smart traffic light

Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

m If no car is detected, the traffic light must be red
m The traffic light cannot be green twice in a row

3/22

A smart traffic light

Constraints

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

m If no car is detected, the traffic light must be red
m The traffic light cannot be green twice in a row
m If a caris detected, the traffic light must eventually turn green

3/22

A smart traffic ligh

1tlsynt outline

Figure: General outline of the process used by 1t1synt to solve the reactive synthesis problem. [2]

4/22

LTL formula ¢,
@

The user supplies the specification of a reac-
tive system using an LTL formula tying some

decompose ¢

23RN

does @; match
G(b1) A ¢ GFb2)?
yes no

solve game

YN
output

translate ¢; extract
to IGMM IGMM

Fig. 5

simplify IGMM

\|// Fes

Fig. 2

input signals to some control-
lable output signals.

Optionally decompose ¢ = A, ¢; as a conjunc-
tion of subspecifications @; with independent
outputs. (Finkbeiner et al, 2021)

For this subclass of formulas, we can bypass the
‘game-theoretical framework. (Section 6)

@ is converted to a parity game where player 0
plays the input signals, and player 1 plays the
output signals. (Section 3)

The game is solved using a variant of Zielonka’s
algorithm (van Dijk, 2018). A controller is real-
izable if player 1 has a winning strategy for the
initial state.

When 1tlsynt is calld with option
--realizability, the process can stop here
by combining the results of all ¢;s.

Otherwise, an Incompletely specified General-
ized Mealy Machine (IGMM) is created from
the winning strategy, or from ;.

Simplifying the IGMM helps to reduce the size
of the controller. (Section 4)

Encoding as an And-Tnverter Graph can be done
in a number of ways. Combining the different
“sub 7 for the @;s is done in this step.

AIGER file

(Section 5)

A smart traffic light

LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

m If no car is detected, the traffic light must be red
m The traffic light cannot be green twice in a row
m If a caris detected, the traffic light must eventually turn green

5/22

A smart traffic light

LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

m G(IC = R)
m The traffic light cannot be green twice in a row
m If a caris detected, the traffic light must eventually turn green

5/22

A smart traffic light

LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

m G(IC = R)
® G(G = X(R))
m If a caris detected, the traffic light must eventually turn green

5/22

A smart traffic light

LTL syntax

Input A sensor detects if a car is waiting right next to the traffic light (C) or not (!C)
Output The traffic light can either turn green (G) or turn red (R)

m G(IC = R)
® G(G = X(R))
® G(C = F(G))

5/22

A smart traffic ligh

1tlsynt outline

Figure: General outline of the process used by 1t1synt to solve the reactive synthesis problem. [2]

LTL formula ¢,
@

The user supplies the specification of a reac-
tive system using an LTL formula tying some

decompose ¢

23RN

does @; match
G(b1) A ¢ GFb2)?
yes no

output

translate ¢; extract

o IGMM

Fig. 5

simplify IGMM

Fig. 2

input signals to some control-
lable output signals.

Optionally decompose ¢ = A, ¢; as a conjunc-
tion of subspecifications @; with independent
outputs. (Finkbeiner et al, 2021)

For this subclass of formulas, we can bypass the
‘game-theoretical framework. (Section 6)

@ is converted to a parity game where player 0
plays the input signals, and player 1 plays the
output signals. (Section 3)

The game is solved using a variant of Zielonka’s
algorithm (van Dijk, 2018). A controller is real-
izable if player 1 has a winning strategy for the
initial state.

When 1tlsynt is calld with option
--realizability, the process can stop here
by combining the results of all ¢;s.

Otherwise, an Incompletely specified General-
ized Mealy Machine (IGMM) is created from
the winning strategy, or from ;.

Simplifying the IGMM helps to reduce the size
of the controller. (Section 4)

Encoding as an And-Tnverter Graph can be done
in a number of ways. Combining the different
“sub 7 for the @;s is done in this step.

AIGER file

(Section 5)

/22

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green

Sensor Input O
Traffic Light Output >

Previous red Q

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green

Sensor Input O
Traffic Light Output > ?

IC
Previous red b

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green

Sensor Input O

Traffic Light Outputo O(— G —%
R IC

Previous red 5

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car

Previous green

Car awaiting

Sensor Input O

Traffic Light Outputo O(— G —%
R IC

Previous red 5_ C —><>

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green C%

Sensor Input O

Traffic Light Outputo O<— _%

Previous red 5_ C

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

m

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green

Traffic Light Outputo O(—

Previous red 5_ C

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

(4]

IC =\
Sensor Input O \
G ?
R IC

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green g%— C —>O
Ic \
R IC

Sensor Input O

Traffic Light Outputo O(— G

Previous red 5_ C

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

(4]

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green g%— C —)?— G —>O
IC R
Sensor Input O \
R IC

Traffic Light Outputo O(— G G é

Previous red 5_ C

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green g%— C —)?— G —>O
IC \ R
R IC

Sensor Input O

Traffic Light Outputo O(— G

Previous red 5_ C

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

G

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green %— C —)?— G —>CP
IC R G
Sensor Input O \
Traffic Light Output > (D G ?‘i .)é
R IC CR

Previous red 5_ C

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

7122

A smart traffic light

Turning LTL into a 2-Player Game

No car Car awaiting

Previous green (&— C —)?— G —>CP
IC \ R G
R
< ?‘i <)é
R IC CR
Previous red 5— c

Figure: G(!C = R)& G(G = X(R)) & G(C = F(G))

Sensor Input O

Traffic Light Outputo O(— G

Inf(®)

7122

A smart traffic ligh

1tlsynt outline

Figure: General outline of the process used by 1t1synt to solve the reactive synthesis problem. [2]

LTL formula ¢,
@

The user supplies the specification of a reac-
tive system using an LTL formula tying some

decompose ¢

23RN

does @; match
G(b1) A ¢ GFb2)?
yes no

output

translate ¢; extract

o IGMM

Fig. 5

simplify IGMM

Fig. 2

input signals to some control-
lable output signals.

Optionally decompose ¢ = A, ¢; as a conjunc-
tion of subspecifications @; with independent
outputs. (Finkbeiner et al, 2021)

For this subclass of formulas, we can bypass the
‘game-theoretical framework. (Section 6)

@ is converted to a parity game where player 0
plays the input signals, and player 1 plays the
output signals. (Section 3)

The game is solved using a variant of Zielonka’s
algorithm (van Dijk, 2018). A controller is real-
izable if player 1 has a winning strategy for the
initial state.

When 1tlsynt is calld with option
--realizability, the process can stop here
by combining the results of all ¢;s.

Otherwise, an Incompletely specified General-
ized Mealy Machine (IGMM) is created from
the winning strategy, or from ;.

Simplifying the IGMM helps to reduce the size
of the controller. (Section 4)

Encoding as an And-Tnverter Graph can be done
in a number of ways. Combining the different
“sub 7 for the @;s is done in this step.

AIGER file

(Section 5)

/22

A smart traffic light

Solving a 2-Player game

Environment O
Controller<>

Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic light

Solving a 2-Player game

Environment O
ontroller<>

Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic light

Solving a 2-Player game

Environment O
ontroller<>

Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic light

Solving a 2-Player game

Ic
Environment O

Controller<> < G
Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic light

Solving a 2-Player game

iIc
Environment O

Controller<> < G
Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic light

Solving a 2-Player game

iIc
Environment O

Controller<> < G
Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic light

Solving a 2-Player game

IC
Environment O

Controller<> < G
Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic light

Solving a 2-Player game

IC
Environment O

Controller<> < G
Inf(®)

Figure: Solving a Biichi game

9/22

A smart traffic ligh

1tlsynt outline

Figure: General outline of the process used by 1t1synt to solve the reactive synthesis problem. [2]

10/22

LTL formula ¢,
@

The user supplies the specification of a reac-
tive system using an LTL formula tying some

decompose ¢

23RN

does @; match
G(b1) A ¢ GFb2)?
yes no

output

extract
IGMM

translate ¢;
to IGMM

Fig. 5

simplify IGMM

\|// Fes

Fig. 2

input signals to some control-
lable output signals.

Optionally decompose ¢ = A, ¢; as a conjunc-
tion of subspecifications @; with independent
outputs. (Finkbeiner et al, 2021)

For this subclass of formulas, we can bypass the
‘game-theoretical framework. (Section 6)

@ is converted to a parity game where player 0
plays the input signals, and player 1 plays the
output signals. (Section 3)

The game is solved using a variant of Zielonka’s
algorithm (van Dijk, 2018). A controller is real-
izable if player 1 has a winning strategy for the
initial state.

When 1tlsynt is calld with option
--realizability, the process can stop here
by combining the results of all ¢;s.

Otherwise, an Incompletely specified General-
ized Mealy Machine (IGMM) is created from
the winning strategy, or from ;.

Simplifying the IGMM helps to reduce the size
of the controller. (Section 4)

Encoding as an And-Tnverter Graph can be done
in a number of ways. Combining the different
“sub 7 for the @;s is done in this step.

AIGER file

(Section 5)

Solving Biichi Games

Complete Algorithm

Environment O

Controller <>

Inf(®)

Figure: Solving a Biichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller <>

El R = Attry(B) Inf(®)

Figure: Solving a Biichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller<>

El R = Attry(B) Inf(®)

L = Attro(R)

Figure: Solving a Biichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller<>

El R = Attry(B) Inf(®)

L = Attro(R)

Figure: Solving a Biichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller <>

El R = Attry(B) Inf(®)
L = Attro(R)
G=G/L

Figure: Solving a Biichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller <>

El R = Attry(B) Inf(®)
L = Attro(R)
G=G/L

Repeat until fixed
point is reached

Figure: Solving a Blichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller <>

El R = Attry(B) Inf(®)
L = Attro(R)
G=G/L

Repeat until fixed
point is reached

Figure: Solving a Blichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller <>

El R = Attry(B) Inf(®)
L = Attro(R)
G=G/L

Repeat until fixed
point is reached

Figure: Solving a Biichi game

1/22

Solving Biichi Games

Complete Algorithm

Environment O

Controller <>

El R = Attry(B) Inf(®)
L = Attro(R)
G=G/L

Repeat until fixed
point is reached

Figure: Solving a Blichi game

1/22

Customized Data Structure for Biichi Solving

The needs for an appropriate Data Structure

The data structure used to represent an arena needs to support:
m Deletion of arbitrary states and edges;
m Access to the data associated with any arbitrary state/edge;
m Traversal of all states/edges that are not yet removed.

12 /22

Customized Data Structure for Biichi Solving

The needs for an appropriate Data Structure

The data structure used to represent an arena needs to support:
m Deletion of arbitrary states and edges;
m Access to the data associated with any arbitrary state/edge;
m Traversal of all states/edges that are not yet removed.

set unordered_set
Deletion | O(log(]A])) o(1)
Access | O(log(]A])) o(1)
Traversal O(|A]) O(|A])

Where |A| is the size of the active arena, and n is the total number of states.

12 /22

Customized Data Structure for

set VS. unordered_set

buchi solver v1, using set

1071 4

1072 3

10733

solve time

10744

1054

10-5 4

—— solve_game
—— solve_buchi_game

automata size

Figure: Using a set to represent an arena

buchi solver v1, using unordered set

1071 § — solve_game
—— solve_buchi_game

1073 3

solve time

107% 5

107° 3

106 5

T T T T T
10t 10? 10° 104 10°
automata size

Figure: Using an unordered_set to
represent an arena

13/22

Customized Data Structure for Biichi Solving

The hidden constant behind unordered_set

unordered_set have an ideal time complexity. However, they hide a strong hidden
constant.

14/22

Customized Data Structure for Biichi Solving

The hidden constant behind unordered_set

unordered_set have an ideal time complexity. However, they hide a strong hidden

constant.
set unordered_set | vector<bool>
Deletion | O(log(|A])) o(1) o(1)
Access | O(log(|A])) o(1) o(1)
Traversal O(|A]) O(|A]) O(n)

Where |A| is the size of the active arena, and n is the total number of states.

14/22

Customized Data Structure for Biichi Solving

unordered_set VS. vector<bool>

buchi solver v1, using unordered set running time to solve a random Buchi game
10-1 { — solve_game 100 { — solve_game
—— solve_buchi_game —— solve_buchi_game
0 | 10-!
1072
1073 3
E é 1073
g @
g oy s
" o10-4
10755 10°°
1076 5 107
10t 102 10 104 105 1ot 102 109 10t 108
automata size automata size
Figure: Using an unordered_set to Figure: Using a vector<bool> to represent
represent an arena an arena

15/22

Customized Data Structure for Biichi Solving

Introducing partitioned_dlist

m We know in advance all the states we need to store, so we can store them
statically.

16 /22

Customized Data Structure for Biichi Solving

Introducing partitioned_dlist

m We know in advance all the states we need to store, so we can store them
statically.

m We can mark a state if it is deleted using a single boolean

16 /22

Customized Data Structure for Biichi Solving

Introducing partitioned_dlist

m We know in advance all the states we need to store, so we can store them
statically.

m We can mark a state if it is deleted using a single boolean

m To allow fast iteration over active elements, we use a pointer next to the next
active element.

16 /22

Customized Data Structure for Biichi Solving

Introducing partitioned_dlist

m We know in advance all the states we need to store, so we can store them
statically.

m We can mark a state if it is deleted using a single boolean

m To allow fast iteration over active elements, we use a pointer next to the next
active element.

m Deleting an element means the next of our previous becomes our next (we skip
the element), so we also need a pointer prev.

—_—~— T N
A B D E
—_— 0 —

16 /22

Customized Data Structure for Biichi Solving

Complexity of partitioned_dlist

set unordered_set | vector<bool> | partitioned_dlist
Deletion | O(log([A])) o(1) o(1) o(1)
Access | O(log(]A])) o(1) o(1) o(1)
Traversal O(|A]) O(|A]) O(n) O(|A])

Where |A| is the size of the active arena, and n is the total number of states.

17 /22

tomized Data Structure for Biichi Solving

vector<bool>vs. partitioned_dlist

running time to solve a random Biichi game running time to solve a random Biichi game
0
10% 3 — solve_game 0y — solve_game
—— solve_buchi_game —— solve_buchi_game -

10-1 10-1

102 10-2
© o

E 1034 £ 1073
H 2
]

7 107 § 1074

107° 4 10-%

1075 4 10-6

"
T T T T - T T - T .
10! 102 10? 104 105 10! 102 10° 10° 10°

automata size automata size

Figure: Using a vector<bool> to represent Figure: Using a partitioned_dlist to
an arena represent an arena

18 /22

Customized Data Structure for Biichi Solving

Actual state of the Bichi Solver

running time to solve a random Bichi game

running time to solve a random Buchi game

10° § 0.25
su\veigam(-_z —— solve_game
—_ -
solve_buchi_game —— solve buchi_game
1071 4
0.20
10723
v 0.15 4
£ 1075 g
2 H
& 10-4 2 010
s]
1 0.05
o M 5’{\/
0.00
10! 10? 10° 104 105 0 20000 40000 60000 80000 100000
automata size automata size
Figure: In double-log scale Figure: In linear scale

19/22

Further Improvements

Strongly Connected Component Decomposition

Environment O
Controller<>
Inf(®)

Figure: Decomposing an arena into strongly connected
components

20/22

Further Improvements

Strongly Connected Component Decomposition

Environment O
Controller<>
F The solvipg time Inf(®)
complexity may
degenerate to O(n?)

Figure: Decomposing an arena into strongly connected
components

20/22

Further Improvements

Strongly Connected Component Decomposition

Environment O

Controller<>

ll The solving time Inf(®)

complexity may

degenerate to O(n?)
Decomposing into

strongly connected

components may

help

Figure: Decomposing an arena into strongly connected
components

20/22

Further Improvements

Adapting partitioned_dlist

How to adapt our data structure to efficiently work only on some components?
Environment O

21/22

Further Improvements

Adapting partitioned_dlist

How to adapt our data structure to efficiently work only on some components?
Environment O

Controller<>

21/22

Further Improvements

Adapting partitioned_dlist

How to adapt our data structure to efficiently work only on some components?
Environment O

Multiple heads!

21/22

References

[§ Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman.
Algorithms for biichi games.
2008.

[Florian Renkin, Philipp Schlehuber-Caissier, Alexandre Duret-Lutz, and Adrien
Pommellet.
Dissecting ltlsynt.
Formal Methods in System Design, 61(2):248-289, 2022.

[@ Martin Zimmermann, Felix Klein, and Alexander Weinert.
Infinite games.
2016.

22/22

	ltlsynt battle plan
	A smart traffic light
	Solving Büchi Games
	Customized Data Structure for Büchi Solving
	Further Improvements
	References

