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input signals to some control-
lable output signals.

Optionally decompose ¢ = A, ¢; as a conjunc-
tion of subspecifications @; with independent
outputs. (Finkbeiner et al, 2021)

For this subclass of formulas, we can bypass the
‘game-theoretical framework. (Section 6)

@ is converted to a parity game where player 0
plays the input signals, and player 1 plays the
output signals. (Section 3)

The game is solved using a variant of Zielonka’s
algorithm (van Dijk, 2018). A controller is real-
izable if player 1 has a winning strategy for the
initial state.

When 1tlsynt is calld with option
--realizability, the process can stop here
by combining the results of all ¢;s.

Otherwise, an Incompletely specified General-
ized Mealy Machine (IGMM) is created from
the winning strategy, or from ;.

Simplifying the IGMM helps to reduce the size
of the controller. (Section 4)

Encoding as an And-Tnverter Graph can be done
in a number of ways. Combining the different
“sub- 7 for the @;s is done in this step.

AIGER file

(Section 5)
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Customized Data Structure for Biichi Solving

The needs for an appropriate Data Structure
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m Deletion of arbitrary states and edges;
m Access to the data associated with any arbitrary state/edge;
m Traversal of all states/edges that are not yet removed.
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Customized Data Structure for

set VS. unordered_set

buchi solver v1, using set
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Customized Data Structure for Biichi Solving

The hidden constant behind unordered_set

unordered_set have an ideal time complexity. However, they hide a strong hidden
constant.
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Customized Data Structure for Biichi Solving

unordered_set VS. vector<bool>
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Customized Data Structure for Biichi Solving

Introducing partitioned_dlist

m We know in advance all the states we need to store, so we can store them
statically.
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Introducing partitioned_dlist

m We know in advance all the states we need to store, so we can store them
statically.

m We can mark a state if it is deleted using a single boolean

m To allow fast iteration over active elements, we use a pointer next to the next
active element.

m Deleting an element means the next of our previous becomes our next (we skip
the element), so we also need a pointer prev.
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Customized Data Structure for Biichi Solving

Complexity of partitioned_dlist

set unordered_set | vector<bool> | partitioned_dlist
Deletion | O(log([A])) o(1) o(1) o(1)
Access | O(log(]A])) o(1) o(1) o(1)
Traversal O(|A]) O(|A]) O(n) O(|A])

Where |A| is the size of the active arena, and n is the total number of states.
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tomized Data Structure for Biichi Solving

vector<bool>vs. partitioned_dlist
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Customized Data Structure for Biichi Solving

Actual state of the Bichi Solver

running time to solve a random Bichi game

running time to solve a random Buchi game
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Figure: In double-log scale Figure: In linear scale
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Further Improvements

Strongly Connected Component Decomposition
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Further Improvements

Adapting partitioned_dlist

How to adapt our data structure to efficiently work only on some components?
Environment O
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