Gluing-Parallel-Symetric Poset and the Five Forbidden Structures

Quentin HAY-KERGROHENN under the direction of Uli FAHRENBERG, Hugo Bazille and Krzysztof Ziemiański

Laboratory of Research of EPITA

2 July 2023

Concurential theory

• Base structure: the **Posets**

Concurential theory

- Base structure: the Posets
- Search to understand structures bigger and more complex

Concurential theory

- Base structure: the **Posets**
- Search to understand structures bigger and more complex
- Enumerate them

Poset ? Kesako ?

Definition

A **Poset** is a partiel order set.

- Reflexivity : $\forall x \in E, xRx$
- Transitivity : $x, y, z \in E, xRy \land yRz \implies xRz$
- Antisymmetric : $x, y \in E, xRy \land yRx \implies x = y$
- ° : event
- ____: precedence order

IPoset

Definition

A **poset with interfaces (IPoset)** is a poset together with two injected sets:

$$[n] \xrightarrow{s} P \xleftarrow{t} [m], \quad n, m \ge 0$$

such as the image of s[n] is minimal and the image of t[m] is maximal

- s is a starting interface and t is a terminating interface
- n is "unstarted" and m is "unfinished"

IPoset

Definition

A **poset with interfaces (IPoset)** is a poset together with two injected sets:

$$[n] \xrightarrow{s} P \xleftarrow{t} [m], \quad n, m \ge 0$$

such as the image of s[n] is minimal and the image of t[m] is maximal

- s is a starting interface and t is a terminating interface
- n is "unstarted" and m is "unfinished"

Examples

Parallel composition

Definition

The **Parallel composition** of two GP-iposets $[n_1] \rightarrow (P_1) \leftarrow [m_1]$ and $[n_2] \rightarrow (P_2) \leftarrow [m_2]$ is defined by $[n_1 + n_2] \rightarrow [P_1 \otimes P_2] \leftarrow [m_1 + m_2]$

Composition not commutative

Case 1:

$$1) \otimes 1) \longrightarrow 0 =$$

$$2) \longrightarrow 0$$

Case 2:

$$1 \longrightarrow 0 \otimes 1 \longrightarrow 0$$

$$2 \longrightarrow 0$$

Gluing composition

Definition

Only if $m_1 = n_2$, the **Gluing composition** of two iposets $[n_1] \xrightarrow{s_1} (P_1, <_1) \xleftarrow{t_1} [m_1]$ and $[n_2] \xrightarrow{s_2} (P_2, <_2) \xleftarrow{t_2} [m_2]$ is:

$$P_1 \triangleright P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ (<_1 \cup <_2 \cup (P_1 / t_1[m]) \times (P_2 / s_2[m]))^+ \end{cases}$$

Gluing composition

Definition

Only if $m_1 = n_2$, the **Gluing composition** of two iposets

$$[n_1] \xrightarrow{s_1} (P_1, <_1) \xleftarrow{t_1} [m_1] \text{ and } [n_2] \xrightarrow{s_2} (P_2, <_2) \xleftarrow{t_2} [m_2] \text{ is:}$$

$$P_1 \triangleright P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ (<_1 \cup <_2 \cup (P_1 / t_1[m]) \times (P_2 / s_2[m]))^+ \end{cases}$$

Examples

$$\begin{pmatrix} \mathbf{1} & \mathbf{1} \\ & \triangleright \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \triangleright \begin{pmatrix} \bigcirc & \bigcirc \\ & \triangleright \\ & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \triangleright \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \triangleright \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \triangleright \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \triangleright \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \end{pmatrix} \Rightarrow \begin{pmatrix} \bigcirc & \bigcirc \\ & \bigcirc & \mathbf{1} \mathbf{1} \\ & \bigcirc & \bigcirc & \mathbf{1} \\ & \bigcirc & \bigcirc \\ & \bigcirc & \bigcirc & \mathbf{1} \\ & \bigcirc & \bigcirc \\ & \bigcirc & \bigcirc \\$$

GP-IPoset

Definition

An (i)poset is Gluing-Parallel (GP-(i)poset) if it is empty or if it is a finite combination of the following elements thanks to the Parallel composition and the Gluing composition.

O 1) (1 1 M 1

Figure: The four singletons

Forbidden structures

The following five posets are forbidden substructures for gp-posets:

Forbidden structures

Figure: Additional forbidden substructures for gp-posets.

8-points forbidden structure

8-points forbidden structure

8-points forbidden structure

It is the same for the bigger forbidden structures: they are decomposable but interfaces are permuted in a wrong way.

GPS-Posets

Definition

An iposet is **gluing-parallel-symmetric** (**gps**) if it is empty or can be obtained from the elements:

- C
- 4 1
- _ 1 ⋈ 1
- 1 M 2 1 M 2
- 2 N 1 where 2 N 1 = $(s,[2],t):2\rightarrow 2$ is the non-trivial symmetry on 2.

by finitely many applications of \triangleright and \otimes .

GPS-Posets

Definition

An iposet is **gluing-parallel-symmetric** (**gps**) if it is empty or can be obtained from the elements:

```
• 0
```

- **(**1
- a 1 M 1
- 1 11 2 1 11 2
- 2 M 1 where 2 M 1 = $(s,[2],t):2 \rightarrow 2$ is the non-trivial symmetry on 2.

by finitely many applications of \triangleright and \otimes .

• We can define the gps-posets class in a similar way we defined the gps-iposets.

GPS-Posets

Definition

An iposet is **gluing-parallel-symmetric** (**gps**) if it is empty or can be obtained from the elements:

- 0
- a 1)
- 1 1 1
- 1 11 2 1 11 2
- 2 where 2 1 = $(s,[2],t):2\to 2$ is the non-trivial symmetry on 2.

by finitely many applications of \triangleright and \otimes .

- We can define the gps-posets class in a similar way we defined the gps-iposets.
- gps-iposets contain all the gp-posets and also all the symmetries $n \to n$ for any n.

Forbidden Five

Figure: The five posets that are forbidden substructures

Conjecture

Conjecture

A poset is GPS if and only if it does not contain any of the five induced sub-structures:

What we have done

Work of this semester

Theorem

An poset P is GSP if and only if it admits an interval representation in a SP-poset V

Theorem

An poset P is GSP if and only if it admits an interval representation in a SP-poset V

Definition

A **Serial-Parallel Poset** (**SP Poset**) if it is empty or can be obtained from the singleton $\{\ ^{\circ}\ \}$ by finitely many applications of * and \otimes .

Theorem

An poset P is GSP if and only if it admits an interval representation in a SP-poset V

Definition

A **Serial-Parallel Poset** (**SP Poset**) if it is empty or can be obtained from the singleton $\{ \ ^{\circ} \ \}$ by finitely many applications of * and \otimes .

Definition

An **Interval representation** of a P poset in a V poset is a pair of functions $f, g: P \rightarrow V$ such that:

- $f(p) \leq g(p), \forall p \in P$
- $p <_P q \leftrightarrow g(p) <_V f(q), \forall p, q \in P$

Examples **1** 1 2

- $\bullet \ \mathsf{GPS} \Longleftrightarrow \mathsf{IO}(\mathsf{SP})$
- SP-Posets have good algebraic properties

- GPS \iff IO(SP)
- SP-Posets have good algebraic properties

- GPS \iff IO(SP)
- SP-Posets have good algebraic properties

IO(SP) of Forbidden Five structrures

Issue

$$ba^{+}c^{+}\bigcirc \qquad a^{-}\bigcirc \longrightarrow \bigcirc e \qquad a^{-}\bigcirc \longrightarrow d\bigcirc$$

$$= ba^{+}c^{+}\bigcirc *$$

$$c^{-}\bigcirc \longrightarrow \bigcirc d \qquad c^{-}\bigcirc \longrightarrow e\bigcirc$$

IMPOSSIBLE !! c < f and $\forall x \in P/\{c\} | x \not> c$ and $x \not\leq c$

Issue

IMPOSSIBLE !! c < f and $\forall x \in P/\{c\} | x \not> c$ and $x \not\leq c$

Solve

Solve

Solve

Conclusion

- Lack of "consistency" when adding a point
- Imprevisibility of a poset P in sp-interval
- Wrong way ?
- More hope in the track presented by Paul

References

Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański.

Posets with interfaces as a model for concurrency, 2022.

Olavi Äikäs, Uli Fahrenberg, Christian Johansen, and Krzysztof Ziemiański.

Generating posets with interfaces, 2022.