
LTLf Synthesis

Rémy LE BOHEC
under the supervision of Philipp Schlehuber-Caissier

EPITA Research Laboratory

July 2024 Seminar

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 1 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 2 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 3 / 38

What is LTL?

LTL is a formalism used in model checking to describe and reason over
sequences of boolean variables.

LTL: the language

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 =⇒ φ2

| Xφ | Fφ | Gφ | φ1Uφ2 | φ1Wφ2 | φ1Rφ2 | φ1Mφ2

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 4 / 38

What is LTL?

LTL is a formalism used in model checking to describe and reason over
sequences of boolean variables.

LTL: the language

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 =⇒ φ2

| Xφ | Fφ | Gφ | φ1Uφ2 | φ1Wφ2 | φ1Rφ2 | φ1Mφ2

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 4 / 38

What is LTL?: traces

A trace (also known as a path or a run) is a sequence of boolean variables.

ab a!b !ab !a!b · · ·

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 5 / 38

What is LTL?: Atomic propositions

φ ::= p

p is an atomic proposition, a single boolean variable.

Atomic propositions can also be combined using boolean logic operators
(not, and, etc).

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 6 / 38

What is LTL?: Next

φ ::= Xψ

X is the next operator. It means that the formula must hold starting at
the next state.

For the formula φ = Xa:

⊤ a · · ·

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 7 / 38

What is LTL?: While and Until

φ ::= ψ1Wψ2 | ψ1Uψ2

U is the until operator. ψ1 must hold until ψ2 becomes (and will become
true).
W (while) is the same except ψ2 may never be true.

For the formula φ = a U b:

a!b a!b a!b !ab · · ·

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 8 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 9 / 38

What is LTLf?

LTL is used to reason about infi-
nite sequences of states which is convenient for systems who run indefinitely.

LTLf is a modification of LTL intended for finite traces, that is traces with
a finite number of states.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 10 / 38

LTLf examples

While LTLf is similar to LTL, it posesses some slight differences.

LTLf adds variants which wouldn’t make sense in a LTL context, such as
weak next (X).

Weak next of φ means that if a future state exists, then φ must hold in it.

Strong next (X [!]) means that the future state must exist and φ must hold
in it.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 11 / 38

LTLf examples

While LTLf is similar to LTL, it posesses some slight differences.

LTLf adds variants which wouldn’t make sense in a LTL context, such as
weak next (X).

Weak next of φ means that if a future state exists, then φ must hold in it.

Strong next (X [!]) means that the future state must exist and φ must hold
in it.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 11 / 38

LTLf examples

As a consequence, consider the following formula:

φ = G (X !a)

In LTL, a valid trace could have been:

T a · · · a · · ·

However, in LTLf, no trace is valid! (Because of the strong next).

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 12 / 38

LTLf examples

As a consequence, consider the following formula:

φ = G (X !a)

In LTL, a valid trace could have been:

T a · · · a · · ·

However, in LTLf, no trace is valid! (Because of the strong next).

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 12 / 38

LTLf examples

As a consequence, consider the following formula:

φ = G (X !a)

In LTL, a valid trace could have been:

T a · · · a · · ·

However, in LTLf, no trace is valid! (Because of the strong next).

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 12 / 38

LTLf examples

As a consequence, consider the following formula:

φ = G (X !a)

In LTL, a valid trace could have been:

T a · · · a · · ·

However, in LTLf, no trace is valid! (Because of the strong next).

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 12 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 13 / 38

Why LTLf?

First, LTLf is more appropriate to use than LTL when studying systems
based on finite tasks (processes, workflows) compared to systems which
should run indefinitely such as operating systems.

Then, LTLf can be translated into simpler automata than LTL.
We do not need Büchi acceptance for infinite words since we work with
finite traces.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 14 / 38

Why LTLf?

First, LTLf is more appropriate to use than LTL when studying systems
based on finite tasks (processes, workflows) compared to systems which
should run indefinitely such as operating systems.

Then, LTLf can be translated into simpler automata than LTL.
We do not need Büchi acceptance for infinite words since we work with
finite traces.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 14 / 38

A dedicated translation?

Typically, LTL is translated into
deterministic TELA (transition based
Emerson-Lei automata) or
nondeterministic generalized Büchi
automata.

For LTLf, since all words are finite,
we can directly translate into
deterministic finite automata.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 15 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 16 / 38

Formula rewriting

Given a LTLf formula φ, we want to rewrite the formula into a current
condition and a future formula that we can process later.

Let φ = G (a).
φ rewrites to ε | a & X (G (a)): we want to accept or have a on the
current state and G (a) in the next state if it exists.

We already are translating G (a), meaning we can loop on it.

The resulting automaton looks like this:

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 17 / 38

Linear forms

Linear forms are vectors of (bdd, formula) representing all transitions from
a state.

A formula is rewritten into a linear form, and the process is reapplied to
new formulas that appear.

State 0 linear form: [(a, a U (b U c)), (c ,⊤), (b&!c , b U c)]

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 18 / 38

Linear forms

Linear forms are vectors of (bdd, formula) representing all transitions from
a state.

A formula is rewritten into a linear form, and the process is reapplied to
new formulas that appear.

State 0 linear form: [(a, a U (b U c)), (c ,⊤), (b&!c , b U c)]

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 18 / 38

Linear forms

Linear forms are vectors of (bdd, formula) representing all transitions from
a state.

A formula is rewritten into a linear form, and the process is reapplied to
new formulas that appear.

State 0 linear form: [(a, a U (b U c)), (c ,⊤), (b&!c , b U c)]

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 18 / 38

Formula graph

To assist in the translation, we use a formula graph to:

Store the formulas we have already translated

Remember which states to go back to once a formula has been visited

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 19 / 38

Formula graph

To assist in the translation, we use a formula graph to:

Store the formulas we have already translated

Remember which states to go back to once a formula has been visited

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 19 / 38

Formula graph

To assist in the translation, we use a formula graph to:

Store the formulas we have already translated

Remember which states to go back to once a formula has been visited

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 19 / 38

Formula graph: an example

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 20 / 38

Formula graph: a visible example

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 21 / 38

Determinize and Merge

In order to produce deterministic finite automata while translating the
formula, I wrote two functions: determinize and merge transitions.

The determinize function aims to partition all transitions such that no
conditions overlap.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 22 / 38

Determinize and Merge

In order to produce deterministic finite automata while translating the
formula, I wrote two functions: determinize and merge transitions.

The determinize function aims to partition all transitions such that no
conditions overlap.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 22 / 38

determinize

First, we create an implication graph whose leaves are all disjoint and can
be combined to form the constraints in the linear form (bdd partition).

Then, for each condition c of the partition, we make a disjunction of all
formulas in the linear form which can be reached by c.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 23 / 38

determinize: example

...

φ1

φ2

...

φ1

φ1 | φ2

φ2

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 24 / 38

merge transitions

The objective here is to add transitions that lead to the same formula.

We start with our linear form:
[(c1, φ1), (c2, φ2), (c3, φ1), (c4, φ2)]

We iterate over the linear form, starting at (c1, φ1) and grouping all
transitions with the same formula:
[(c1|c3, φ1), (c2, φ2), (c4, φ2)]

We advance and repeat until we reach the end of the linear form:
[(c1|c3, φ1), (c2|c4, φ2)]

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 25 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 26 / 38

Model checking

Model checking is a verification technique that explores all reachable
system states to ensure that the induce runs to not violate the
specification.

In our case, given a LTLf specification, we want to ensure that a system
behaves properly.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 27 / 38

Model checking

Model checking is a verification technique that explores all reachable
system states to ensure that the induce runs to not violate the
specification.

In our case, given a LTLf specification, we want to ensure that a system
behaves properly.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 27 / 38

Model checking example

Consider a traffic light.

Figure: Are you a robot?

To prevent deadlocks, we want red
light to eventually be followed up by
a green light.

Therefore, the specification is
G (r =⇒ g).

Model checking here would be
checking the reachable execution
states of the light to ensure the
green light eventually turns on.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 28 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 29 / 38

Model checking on the fly

Usually, model checking is done by traversing the FA corresponding to the
controller alongside the FA corresponding the the negation of the
specification (¬φ).

However, we decided to look into doing so on the fly: that is, building the
linear forms associated with the specification as we go to potentially avoid
building the whole automata.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 30 / 38

Model checking on the fly

Usually, model checking is done by traversing the FA corresponding to the
controller alongside the FA corresponding the the negation of the
specification (¬φ).

However, we decided to look into doing so on the fly: that is, building the
linear forms associated with the specification as we go to potentially avoid
building the whole automata.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 30 / 38

WIP algorithm

Given a LTLf formula φ and a symbolic automaton ctrl representing a
controller, we want to perform a depth first traversal of the automata
associated with ¬φ and ctrl to look for accepting paths.

We explore states (φ, bdd) by traversing the linear form associated with φ
and retrieving the successor (if it exists) of the symbolic automata.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 31 / 38

WIP algorithm

Given a LTLf formula φ and a symbolic automaton ctrl representing a
controller, we want to perform a depth first traversal of the automata
associated with ¬φ and ctrl to look for accepting paths.

We explore states (φ, bdd) by traversing the linear form associated with φ
and retrieving the successor (if it exists) of the symbolic automata.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 31 / 38

WIP algorithm

For terminating successors of the ctrl, we check for transitions leading to
terminating states in the linear form and reject if needed.

For the non-terminating successors, we continue exploring while possible.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 32 / 38

WIP algorithm

For terminating successors of the ctrl, we check for transitions leading to
terminating states in the linear form and reject if needed.

For the non-terminating successors, we continue exploring while possible.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 32 / 38

WIP algorithm: example

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 33 / 38

WIP algorithm: example

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 34 / 38

WIP algorithm: example

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 35 / 38

Table of Contents

1 LTL

2 LTLf

3 Motivations for LTLf

4 Translating LTLf

5 Model checking

6 Model checking on the fly

7 Conclusion

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 36 / 38

Conclusion

My work aimed to improve the current process of synthesis and model
checking in spot regarding LTLf.

While the model checking algorithm has yet to be fully implemented and
tested, the LTLf to DFA part produces satisfactory results.

Some improvements are possible which hopefully will be ready for next
year’s edition of SYNTCOMP: a competition for reactive synthesis tools
and also to integrate within Lisa.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 37 / 38

Conclusion

My work aimed to improve the current process of synthesis and model
checking in spot regarding LTLf.

While the model checking algorithm has yet to be fully implemented and
tested, the LTLf to DFA part produces satisfactory results.

Some improvements are possible which hopefully will be ready for next
year’s edition of SYNTCOMP: a competition for reactive synthesis tools
and also to integrate within Lisa.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 37 / 38

Conclusion

My work aimed to improve the current process of synthesis and model
checking in spot regarding LTLf.

While the model checking algorithm has yet to be fully implemented and
tested, the LTLf to DFA part produces satisfactory results.

Some improvements are possible which hopefully will be ready for next
year’s edition of SYNTCOMP: a competition for reactive synthesis tools
and also to integrate within Lisa.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 37 / 38

Bibliography

Pnueli, A. 1977. The temporal logic of programs. In FOCS, 46–57. IEEE.

De Giacomo, G., Favorito, M., Li, J., Vardi, M. Xiao, S., Zhu, S. 2022.
LTLf Synthesis as AND-OR Graph Search: Knowledge Compilation at
Work. IJCAI-ECAI.

De Giacomo, G. 2023. Linear-time Temporal Logics on Finite Traces.
AAAI 2023 Spring Symposium.

Rémy LE BOHEC (EPITA) LTLf Synthesis July 2024 Seminar 38 / 38

	LTL
	LTLf
	Motivations for LTLf
	Translating LTLf
	Model checking
	Model checking on the fly
	Conclusion

