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Introduction

Introduction

@ Background and Motivation
e Importance of accurate crowd counting
o Applications: event management, public safety, urban planning,
surveillance, etc.

Figure: Image of a Crowd Scene. [1]
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Introduction

@ Challenges in Crowd Counting
e Occlusion, scale variation, density variation, perspective distortion

Figure: Occlusion, Scale and Density Variations, Perspective Distortion Crowd
Scenes. [2]
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Detection-based Methods

@ Monolithic Detection

e Trains classifier using full-body appearance.

o Uses features like Histogram of Oriented Gradients (HOG).

e Employs Support Vector Machines (SVMs) and Random Fo-
rests with a sliding window approach.

o Effective for sparse crowds, limited for dense crowds.

o Part-based Detection

e Focuses on parts like the head and shoulders.
o Combines head and shoulders for more reliable detection.
o More effective for dense crowds.
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Regression-based Methods

@ Avoid segmentation or individual tracking.
o Approach

o Extract low-level features: edges, foreground pixels.

o Apply regression modeling to map features to count.

o Uses total area and texture of foreground pixels to
provide direct estimation of crowd size.
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Density-based Methods

@ Approach

o Estimate density, incorporating spatial information.

e Map local features to density maps, tracking groups of individuals.

o Creates separate forests for crowded and less crowded areas.
o Advantages

o Addresses occlusion and clutter.
o Provides spatial distribution of individuals.
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Deep Learning Approaches

o CNN-based Models
e Basic CNNs
o Initial methodologies with fundamental convolutional layers.
o Scale-aware Models
@ Multi-column designs.
o Context-aware Models
o Integrate local and global contextual information.
o Examples of CNN-based Approaches

o Wang et al. [3]: CNN regression model using AlexNet.
o Zhang et al. [4]: Multi-Column CNN for adaptive learning.
o Boominathan et al. [5]: Hybrid deep and shallow networks.
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Limitations of Existing Methods

e Handling Varying Head Scales

o Difficulty in accurately counting individuals with different head sizes
due to perspective effects.

@ Scene Variations
e Inconsistencies in different environments and lighting conditions.
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CNN-GNN Combination

@ Combined Model Architecture

o CNN backbone for feature extraction
e Graph construction and GNN processing
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Proposed Approach

@ CNN for Spatial Feature Extraction
o U-Net architecture for segmentation
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Figure: UNet Architecture. Source: [8]
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https://github.com/milesial/Pytorch-UNet

Proposed Approach

@ GNN for Structural Information Processing

e Graph construction from CNN embeddings
e Graph convolutional layers for message passing
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Figure: GNN Architecture.
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Proposed Approach

Experiments

@ Dataset: JHU-CROWD-++

o Diverse crowd densities and environmental conditions
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Figure: Sample of the GNN Dataset.

Figure: Sample of the CNN Dataset.
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Proposed Approach

Training Procedures and Hyperparameters

Category | Hyperparameter Value
CNN Optimizer Adam (Ir=1e-4)
Scheduler ReduceLROnPlateau (patience=10)
Loss Functions Binary Cross-Entropy (BCE), Dice Loss
Epochs 1000
Evaluation Metric Dice Score
GNN Optimizer Adam (Ir=0.001)
Loss Function Mean Squared Error (MSE)
Epochs 200
Evaluation Metric Mean Absolute Error (MAE)

Table: Training Procedures and Hyperparameters
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Proposed Approach
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Figure: CNN Component of the Framework.
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GNN Component

Predicted Image

Thresholded Binary
Image

Figure: GNN Component of the Framework.
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Results

Number of connected components w/o erosion (CNN): tensor([18, 11, 36, 18, 35, 21, 8, 64])

Number of connected components w erosion (CNN): tensor([16, 1@, 35, 18, 35, 17, 7, 66])

Actual output: tensor([ 48., 17., 86., 25., 36., 54., 23., 127.])

Predicted output: tensor([ 68.3502, 34.2540, 72.8633, 364.8552, 66.2278,  32.4979,
3120.0261, 139.6208])

Figure: Quantitative Results and CNN Result Image.
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Discussion

Discussion

o Limitations and Future Work
o Post-processing Improvements
o Addressing issues with erosion that may remove small components.
e Shape Handling

o Better representation of true oval shapes of faces.
e Mitigating shape deformation from image resizing.

o Hyperparameters

@ Examining hyperparameters and kernel sizes.
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Conclusion

Conclusion

o Key Points
o Proposed approach: combining CNNs and GNNs for crowd counting
e Findings: local spatial features and global structural patterns

@ Contributions and Implications

e Impact on crowd management and surveillance

o Future research directions:
@ Post-processing improvements
o Handling ovular shapes and mitigating image resizing effects
@ Hyperparameter sensitivity analysis
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