Active learning of a specialization from an IGMM

XU Thomas

Adrien Pommellet, LRE

July 03, 2024

Introduction

Motivations

Learn and understand the behavior of black box systems.

Active Learning

Minimally adequate teachers[1][2]

The student can submit **membership** queries.

¹Dana Angluin. Learning regular sets from queries and counterexamples.

²Falk Howar et al. The teachers' crowd: The impact of distributed oracles on active automata learning.

Equivalence Queries

The student can also submit equivalence queries.

Warning

These queries are complex to answer (if it is even possible) and should be used conservatively.

Mealy Machines

Example: Coffee machine modelization

Membership Queries[1][3]

The student can submit output queries.

These queries can be answered by merely running the black box.

¹Dana Angluin. Learning regular sets from queries and counterexamples.

 $^{^3}$ Frits W. Vaandrager et al. A New Approach for Active Automata Learning Based on Apartness.

L# Apartness

Example: Coffee machine modelization

L# Observation Tree

Build hypothesis

Figure: Coffee machine[4]

10/31

XU Thomas (EPITA LRE) Active learning July 03, 2024

³Daniel Neider et al. Benchmarks for automata learning and conformance testing

Execution

Check consistency

Equivalence query

Insert counter example

Minimizing

Incompletely specified Mealy machines

coffee/{coffee - nothing}

IGMM specialization

Example: Specialization of a broken coffee machine

IGMM Observation Tree

DFA _____

DFA

DFA Observation tree

DFA Observation tree

DFA Observation tree

Goals

Work done

- Implementation of IGMM in C++ in the new repo.
- Implementation of Lsharp for MM and DFA.
- Work on incompletely specified states in the observation tree.

Work to do

• Implementation of active learning for a specialization of IGMMs.

Bibliography

Learning regular sets from queries and counterexamples. *Inf. Comput.*, 75(2):87–106, 1987.

Falk Howar, Oliver Bauer, Maik Merten, Bernhard Steffen, and Tiziana Margaria.

The teachers' crowd: The impact of distributed oracles on active automata learning.

volume 336 of *Communications in Computer and Information Science*, pages 232–247. Springer, 2011.

Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wißmann.

A new approach for active automata learning based on apartness. *CoRR*, abs/2107.05419, 2021.

