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❖ Segmentation of brain MRIs on various datasets using Deep Learning 
algorithm

❖ Quantifying the uncertainty of segmentations provided by the neural 
network leads to a better interpretation by medical teams

❖ Quantifying uncertainty in deep learning remains a key unresolved issue

❖ Implementation of several methods including Deep Ensemble and Monte 
Carlo Dropout
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❖ State of the Art and Uncertainty Metrics

❖ iSeg-2017 : 6-month infant brain MRI Segmentation

❖ Experimentations

❖ Achievements This Semester

❖ Future Work



Estimating Prediction Uncertainty :

❖ Average Probability Image:
➢ Mean probability for each pixel across all model 

predictions
➢ Central estimate of the segmentation
➢ Formula :  

❖ Standard Deviation Map:
➢ Standard deviation for each pixel across all model 

predictions
➢ Highlights variability and uncertainty in predictions
➢ Formula: 
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Quantifying Prediction Uncertainty (1/2)

Steps :

❖ Mean probability calculation for each pixel from all models
❖ Standard deviation calculation for each pixel from all models

Provides comprehensive view of prediction reliability.

Formulas:

❖ Mean Probability for each pixel :

❖ Standard Deviation: 



Estimating Prediction Uncertainty with Shannon Entropy

❖ Entropy calculated for each pixel across all model 
predictions

❖ Measures the unpredictability and information content 
of the segmentation

❖ Formula :
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Quantifying Prediction Uncertainty (2/2)

Steps :

❖ Calculate the probability distribution p for each class c at 
each pixel 

❖ Compute the Shannon entropy for each pixel using the 
probability distribution

Provides a detailed view of prediction uncertainty based on the 
distribution of predicted probabilities
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State of the Art and Uncertainty Metrics : Monte Carlo Dropout

Monte Carlo Dropout Technique

❖ Developed by: Yarin Gal and Zoubin Ghahramani (2016)

Overview:

❖ Dropout Regularization: Randomly deactivate neurons during each forward pass to prevent 
overfitting

❖ Bayesian Approximation: Treats each forward pass as a sample from a Bayesian posterior 
distribution by applying dropout during both training and testing

❖ Predictive Distribution: Perform multiple forward passes (30-100) for each input to generate a 
distribution of predictions
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Key Steps:

❖ Training:
➢ Train with dropout enabled (e.g., 0.4 dropout rate).

❖ Testing/Inference :
➢ Keep dropout enabled and perform multiple forward passes (e.g., 100).

❖ Aggregation :
➢ Calculate mean and variance of predictions

State of the Art and Uncertainty Metrics : Monte Carlo Dropout
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State of the Art and Uncertainty Metrics : Deep Ensembles

Deep Ensembles Technique

❖ Developed by : Balaji Lakshminarayanan, 
Alexander Pritzel, and Charles Blundell (2017)

Overview:

❖ Multiple Models : Train multiple independent 
neural networks with different initializations

❖ Ensemble Predictions : Each model makes a 
separate prediction for the same input

❖ Robustness : Aggregating predictions from 
different models enhances robustness and captures 
uncertainty

Key Steps :

❖ Training :
➢ Train 5 networks separately with different 

initializations
❖ Prediction :

➢ Each network makes its own prediction
❖ Aggregation :

➢ Compute mean and variance of predictions



Model Output :

❖ Probabilities : Each pixel is assigned a probability p (between 0 and 1) indicating the confidence that the pixel belongs to the 
target class

❖ Shape : For an input image of dimensions (H, W) the model output is also (H, W), with each value representing a probability

Classification Threshold :

❖ Threshold t: Probabilities are converted into binary classification using a threshold, typically  t = 0.5
❖ Decision :

➢ If p ≥ t : the pixel is classified as the target class
➢ If p < t : the pixel is classified as the background class

Result Interpretation :

❖ Probabilities : Display the predicted probabilities for each pixel
❖ Binary Predictions : Binary classification of each pixel using the threshold t. (1 = target class, 0 = background class)
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Construction of the Final Prediction in Binary Segmentation



❏ iSeg-2017 challenge focuses on comparing semi-automatic algorithms for segmenting 6-month infant brain MRIs 

using T1 and T2 images

❏ Critical for studying the dynamic first year of postnatal human brain development and associated cognitive and motor 

functions

❏ Intense phase at 6 months presents the lowest tissue contrast, posing significant challenges for accurate segmentation

❏ Engages researchers to develop and test automatic segmentation algorithms for white matter, gray matter, and 

cerebrospinal fluid
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Figure 1 : MIICCAI Grand Challenge on iSeg-2017, 
6-Month infant Brain MRI Segmentation, iSeg-2017

iSeg-2017 : 6-month infant brain MRI Segmentation

https://iseg2017.web.unc.edu/
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Experimentations : Segmentation of Brain Area

Figure 2 : Input for the segmentation of the brain area

Deep Ensembles for Uncertainty Estimation

❖ 5 networks are trained separately
❖ Each network is independently initialized

Monte Carlo Dropout for Uncertainty Estimation

❖ 100 predictions with Dropout Rate of 0.4
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Experimentations : Segmentation of Brain Area

Figure 3 : Mean prediction with Deep Ensembles Method, for Patient 1, slice sz // 2

Figure 4 : Mean prediction with Monte Carlo Dropout Method for Patient 1, slice sz // 2
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Experimentations : Segmentation of Brain Area

Figure 5 : Predictions from the 5 Networks in the Ensemble

Figure 6 : Mean prediction with Deep Ensembles Method, for Patient 1, slice sz // 2



14

Experimentations : Segmentation of Brain Area with Deep Ensembles

Figure 8 : Shannon Entropy for Deep EnsemblesFigure 7 : Standard Deviation Map for 
Deep Ensembles



15

Experimentations : Segmentation of Brain Area with Monte Carlo Dropout

Figure 10 : Shannon Entropy for Monte Carlo 
Dropout

Figure 9 : Standard Deviation Map for 
Monte Carlo Dropout
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Experimentations : Segmentation of Brain Area

Dice Formula :

Figure 11 : Dice coefficients of the 5 networks for the same 
input
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Experimentations : Segmentation of White and Gray Matter

Figure 12 : Input for the segmentation of White and Gray matter

Figure 13 : GroundTruth vs Mean Prediction for Deep Ensembles vs Monte Carlo Dropout



18

Experimentations : Segmentation of White and Gray Matter with Monte Carlo Dropout

Figure 15 : Shannon Entropy for Monte Carlo 
Dropout

Figure 14 : Standard Deviation Map 
for Monte Carlo Dropout
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Experimentations : Segmentation of White and Gray Matter with Deep Ensembles

Figure 17 : Shannon Entropy with Deep EnsemblesFigure 16 : Standard Deviation Map 
for Deep Ensembles
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Experimentations : Segmentation of White Matter with Deep Ensembles

Figure 19 : Shannon Entropy with Deep EnsemblesFigure 18 : Standard Deviation Map 
for Deep Ensembles
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Experimentations : Segmentation of White Matter with Monte Carlo Dropout

Figure 21 : Shannon Entropy with Monte Carlo 
Dropout

Figure 20 : Standard Deviation Map 
with Monte Carlo Dropout
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Related Work : Achievements for this Semester

Experimentation:

❖ Experimented with two methods for uncertainty quantification
❖ Compared the effectiveness of both methods

Segmentation:

❖ Performed basic segmentation tasks using a U-net model

Uncertainty Measures:

❖ Implemented basic uncertainty measures including mean, standard deviation, and 
Shannon entropy



23

Future Work : Research Focus for Next Semester

Identifying Sources of Uncertainty:

❖ Differentiating between aleatoric uncertainty (data-related) and epistemic uncertainty 
(model-related)

❖ Objective: Determine which type of uncertainty is being measured and identify its 
source

Dataset:

❖ Work with MRBrains dataset

Complex Segmentations:

❖ Perform segmentations on even more complex structures
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