Seminar

Adversarial methods for LLM alignment on coding tasks
Ilyas Oulkadda

January 2025

llyas Oulkadda

RDI



Introduction

Alignment
A

Pre-Training

Figure: The whole training cycle of an LLM, alignment step usually refers to the
Reinforcement Learning from Human Feedbacks, RLHF, step but
Supervised Fine-Tuning, SFT could also be considered as alignment (Wolfe,

2023).
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Introduction

Goal
Improve CodelLLMs alignment (Ouyang et al., 2022)

How 7
o Adversarial (OpenAl et al., 2021)
o Self-play (Sukhbaatar et al., 2018)

o Curriculum learning (Sukhbaatar et al., 2018)
o At scale (Bowman et al., 2022)
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Code LLMs
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Figure: The open code LLM benchmark (Ben Allal, Muennighoff, et al., 2022) on

the BigCodeBench dataset
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Article to be submitted to ICML 2025

o Key focus: Enhancing the
robustness and reliability of
Code-LLMs.

@ Techniques: DPO, adversarial
methods, curriculum learning,
synthetic datasets.

o Contributions:

» Dataset-independent training
framework.

» Quality data generation due
to the curriculum and
adversarial.

» Effective training framework.
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Adversarial Knowledge Distillation

o)) f
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Figure: Adversarial Knowledge Distillation framework involves three components:
models (green), training processes (red), and synthetic data generation (blue).
Topics and seeds initiate the dataset, with exercises iteratively sampled using
margin rewards to guide improvement. Teacher-generated 'chosen’ and
student-generated 'rejected’ solutions form the dataset for Direct Preference
Optimization (DPO) (Rafailov et al., 2023), enabling targeted student model
enhancement.
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Direct Preference Optimization

Reinforcement Learning from Human Feedback (RLHF)

x: “write me a poem about

the history of jazz"
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Figure: DPO directly optimizes for the policy best satisfying the preferences with
a simple classification objective, fitting an implicit reward model whose

corresponding optimal policy can be extracted in closed form. (Rafailov et al.,

2023)
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DPO : Equations

To(Yw | X) mo(yr | x)
) — ToWw 1X) T N (4
EDPO(W&' Wref) E(X7yW7yI)ND [Ioga (ﬁ o 7Treff(yw ‘ X) Plog 7T-ref(y/ | X) ( )

Rehosen = 6 : (|Og7‘l'9(yw | X) - Iogﬂ-ref(yw | X)) (1)
Rrejected =p- (Iog 779()’/ ’ X) — log Trref(}/I | X)) (2)
Rmargin = NRchosen — Rrejected (3)
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Synthetic Datasets

Main issues
@ Structured outputs

@ Control diversity

Solution

@ Try/Catch, repeat n times until we get the asked outputs and
markdown usage.

@ Use a database of seeds, diverse prompts = diverse outputs.
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Seeds

Topic seeds

Extracted a list of coding categories from LeetCode. Total of 70
categories. (Gunasekar et al., 2023) (Ben Allal, Lozhkov, et al., 2024)

Example of topics
@ Dynamic Programming
@ Tree
@ Linked List

Professions

We also have a list of professions which allows us to control the semantic
of the generated coding exercises.
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Adversarial game

Requirements
For DPO, datasets must have a Prompt, Chosen and Rejected

Setup
@ An oracle and student models.
@ Generate subtopics for initial topics.
o Create a dataset of prompts using seeds combinations.

o Generate a dataset of exercises using the oracle

@ Student and oracle both generate their own solutions for the exercises

v
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Adversarial game

Adversarial dataset

At the end of each training, we retrieve the hardest exercise to use as
seeds for the next steps. (Sukhbaatar et al., 2018)

Rchosen = 6 ' (|Og7T9(yW | X) - |Og Wref(}/W | X))
Rrejected =03- (Iog 770()’/ | X) — log Wref(Yl | X))

Rmargin = Nchosen — Rrejected
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Knowledge Distillation (Hinton et al., 2015)
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Figure: Knowledge distillation, the loss is usually a combination of soft and hard
labels

Issues
The classic KD approach usually requires you to train your student from
scratch.

llyas Oulkadda RDI January 2025 13 /25



LoRA (Hu et al., 2021)

h ]
A TR
Pretrained

Weights

= Rdxd

x————— ]

Figure: Low rank adaptation allows us to only train a small amount of parameters
llyas Oulkadda
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LoRA, Which layers ?

>
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Figure: We apply LoRA to both the MLP module and MHA modules, precisely
the up and down projections in the MLP module. In the MHA module, we apply
LoRA to all KQV projections and out projections at the end of the module

(Vaswani et al., 2023)
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HumanEval (Chen et al., 2021)

from typing import List
def has_close_elements(numbers: List[float], threshold: float) —> bool:
Check if in given list of numbers, are any two numbers closer
to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

Figure: The HumanEval dataset contains 164 python coding exercises. The
prompt is a function signature with it's arguments and a doc-string describing the
expected behavior. We evaluate using a test suite provided for each sample.
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Models

e Qwen 2.5 Coder models (Hui et al., 2024). Available in multiple
sizes (1.5B, 3B, 7B, 14B, 32B). SOTA scores on coding benchmarks
for the smaller models. Fine-tuned Qwen 2.5 on coding datasets.

e Llama 3.2/3.1 models (Dubey et al., 2024). Available in (1B and
7B). The 1B version is a pruned version using 8B and 70B models.
Followed by an instruction distillation using 405B.

e Phi 1.5/2 (Gunasekar et al., 2023). Around 2B parameters.
Pre-trained models only for Phi-1.5. Phi-2 has been trained to
respond in chat format. Trained on synthetic data.
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HumanEval results

Model Pair Teacher Student AKD
Llama-3.1 8B / Phi-1.5 62 31 39
Qwen2.5 7B / Phi-1.5 38 31 38
Qwen2.5 7B / Llama 3.2 1B 88 32.0 35

Table: Fine-Tuning Results using AKD with Teacher/Student Pairs on
HumanEval (%)
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Method comparison

Method Accuracy Dataset Size
Self-Supervised (AKD) 38 1.6k
Self-Supervised (APPS) 38 5.0k
AKD 38 1.6k

Table: Comparison of Benchmark Performance Between AKD and Self-Supervised
Fine-Tuning on HumanEval (%). Models: Qwen2.5 Coder 7B / Llama 3.2 1B
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Adversarial steps evaluation

Method Accuracy Improvement
DPO Baseline 35.0 -
Adversarial Training 38.0 +3.0

Table: Performance Comparison: Adversarial Training vs. DPO Baseline on
HumanEval (%)
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Limitations

Family models

We observed no improvement when running AKD on models from the
same family (e.g. Llama 1B and Llama 7B) due to being a distilled model
or being trained on the same dataset. This limited our evaluation when
testing speculative decoding. We think that AKD improves the use of SD.
However, this requires us to have the same tokenizer on the assistant and
main models.

Generation bottleneck

We noticed during our experiments that generation is the slower part of our
framework and can be limiting when trying to generate very large datasets.
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Conclusion
Goal : Efficiently improve alignment using adversarial methods
How 7

@ Synthetic datasets

@ Direct Preference Optimization

@ Adversarial methods

@ Curriculum learning

Results
@ Performance improvements on HumanEval.
@ High-Quality Synthetic Dataset.
@ Adversarial steps improvements. (AKD > single large DPO)

Limitations

Generation bottleneck and limited number of usable models combinations
for now.
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