Human brains MRI Images representation through generative models

Team ImageLina Farchado

Supervisors

Julien Perez

Nicolas Boutry

Objectives

Compression

Data Augmentation

State of the art

Data augmentation

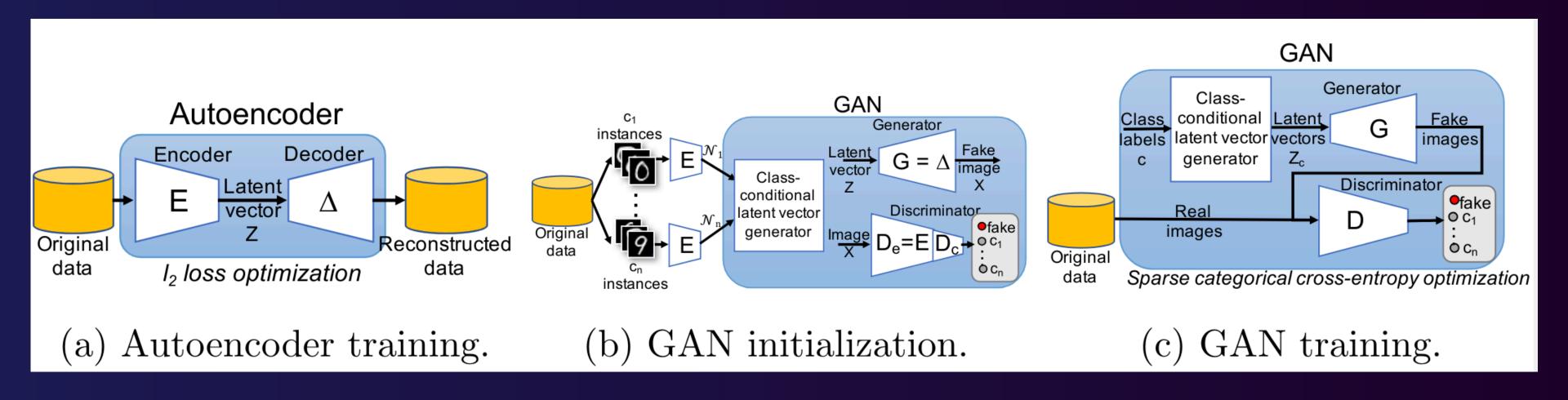


Figure 1: Mariani et al. (2018) BAGAN (Balancing Generative Adversarial Network) methodology for addressing class imbalance in image datasets [1]

Interpolation

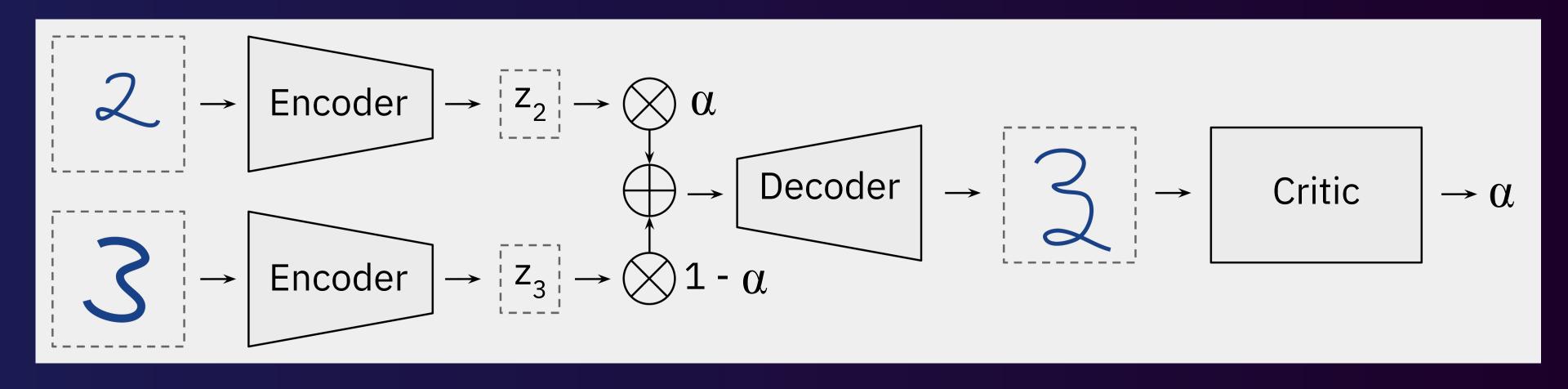
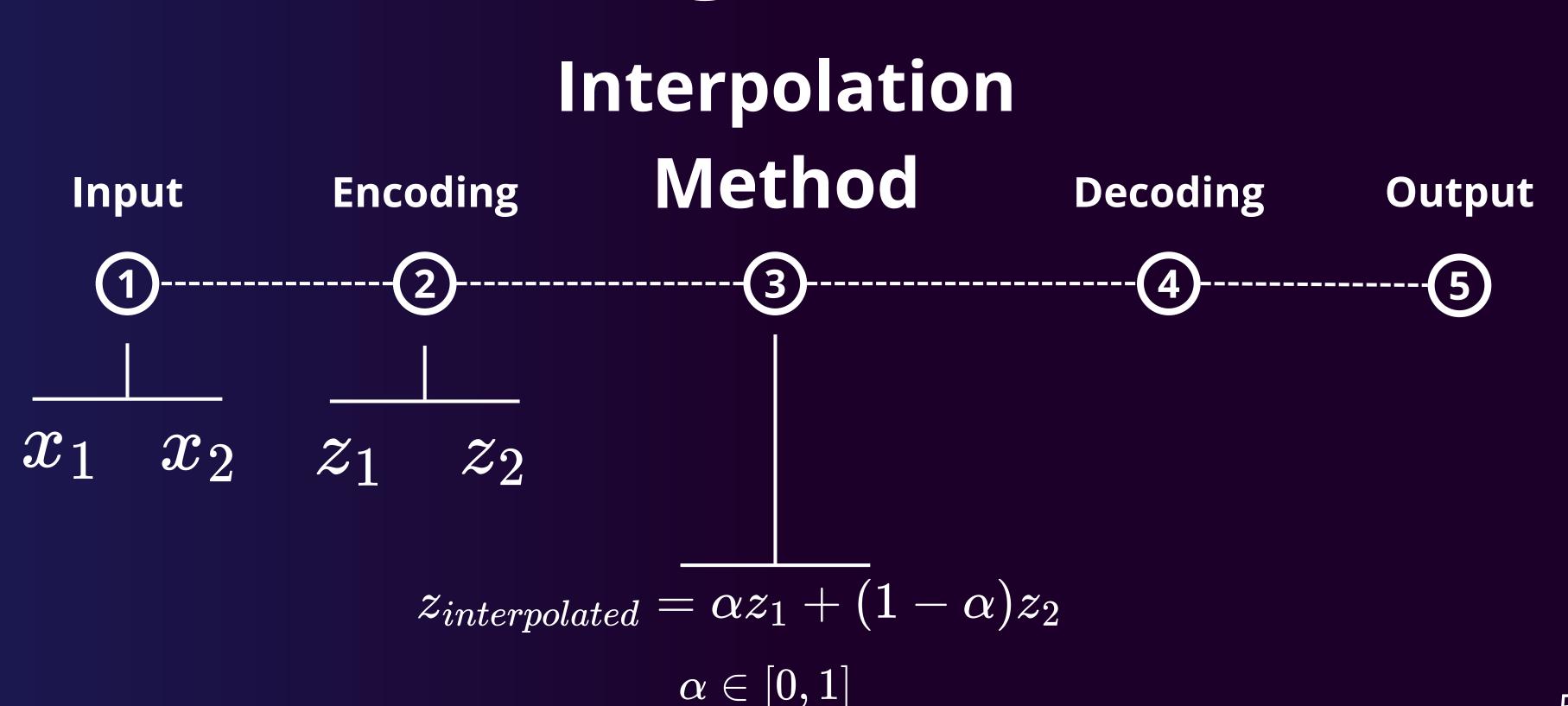


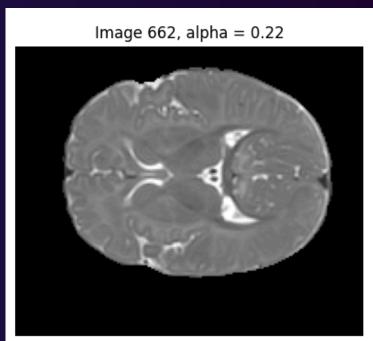
Figure 2: Goodfellow et al. (2018) Adversarially Constrained Autoencoder
Interpolation (ACAI) [2]

Data Augmentation

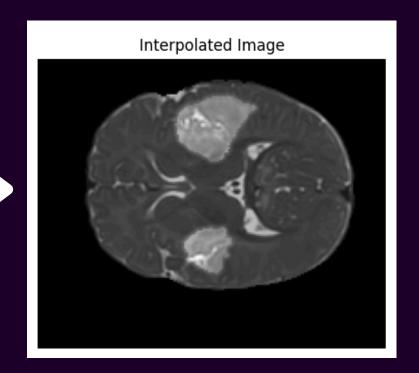


Interpolation

Figure 3: Random images from dataset

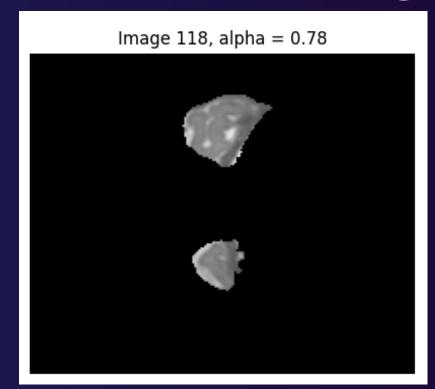


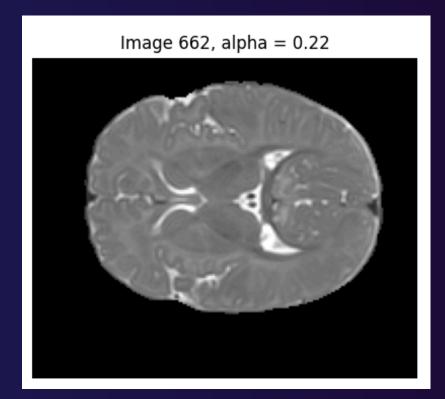
Problem

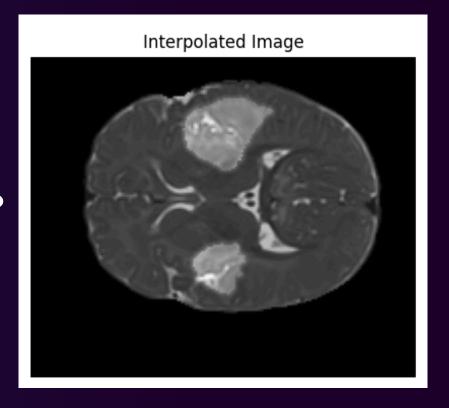


Interpolation

Figure 3: Random images from dataset







Problem Solution

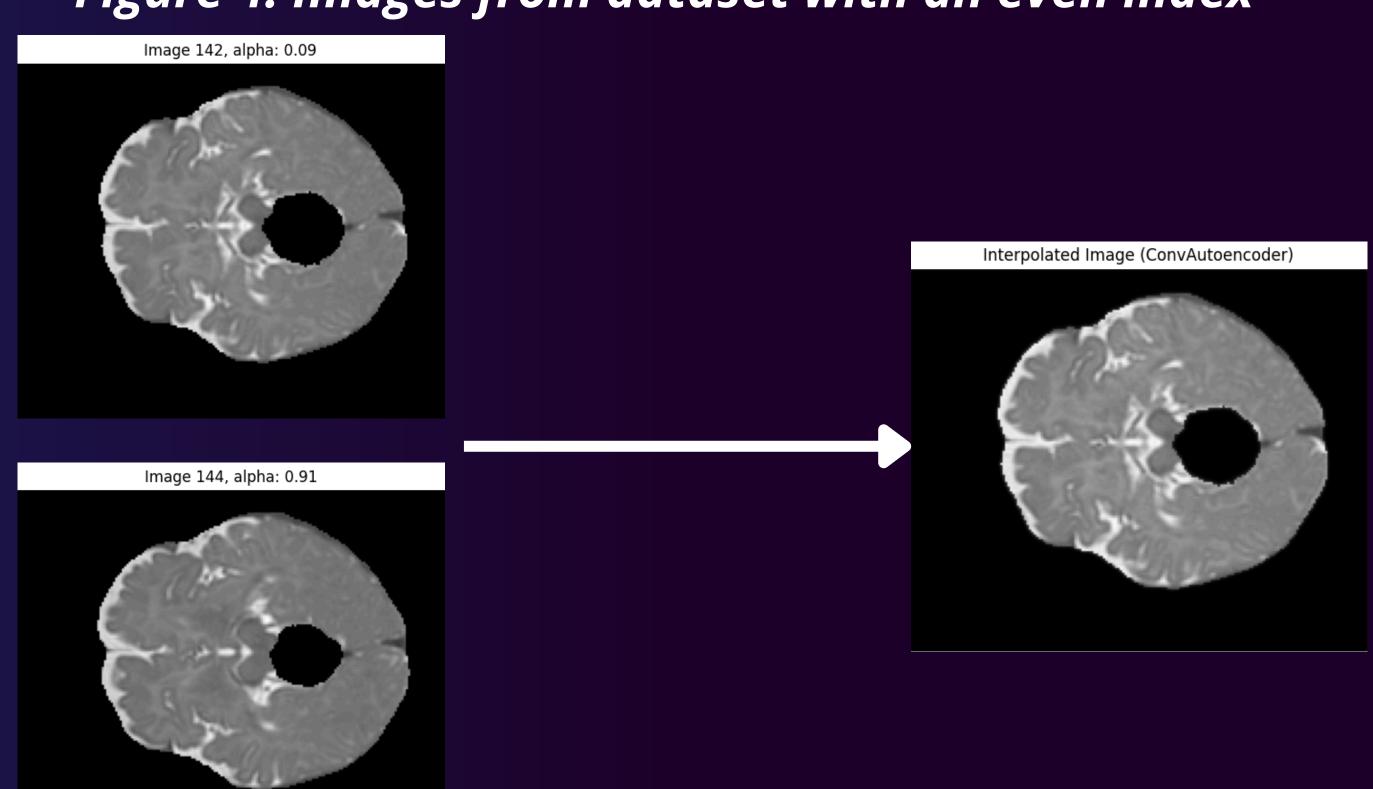
same patient

spacial closeness

Configurations

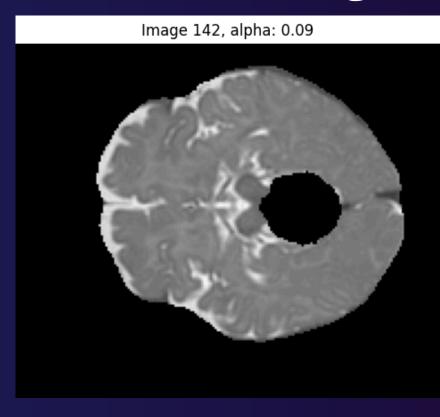
Config 1: interpolate even/odd images

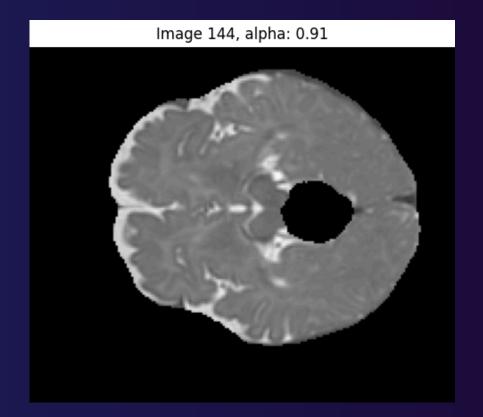
Figure 4: Images from dataset with an even index

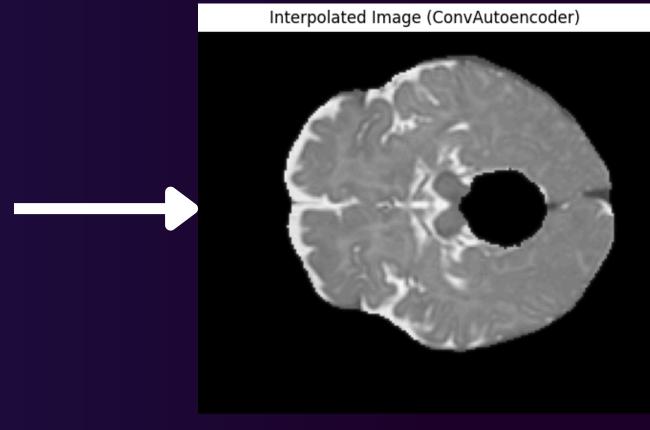


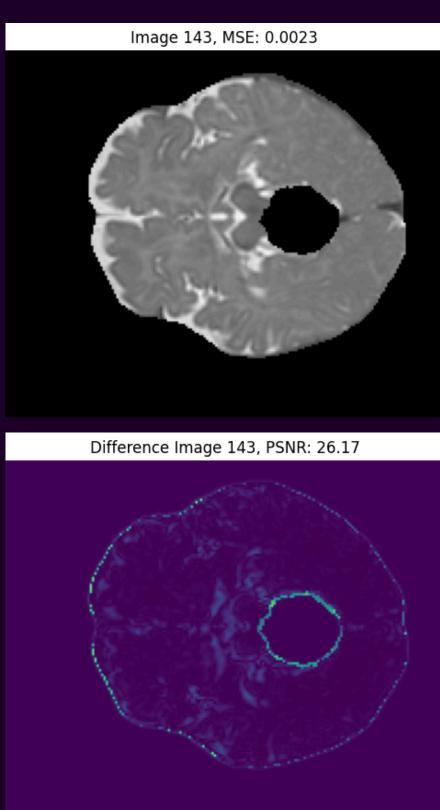
Config 1: interpolate even/odd images

Figure 4: Images from dataset with an even index



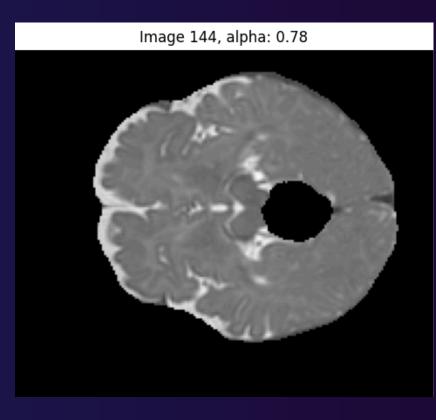




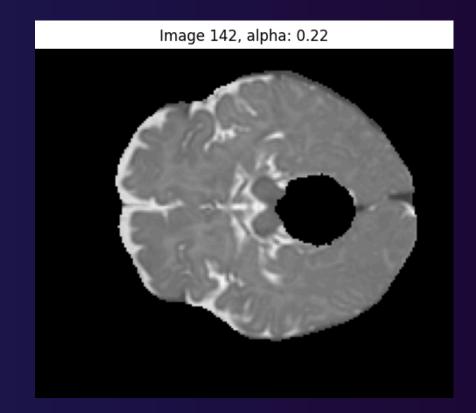


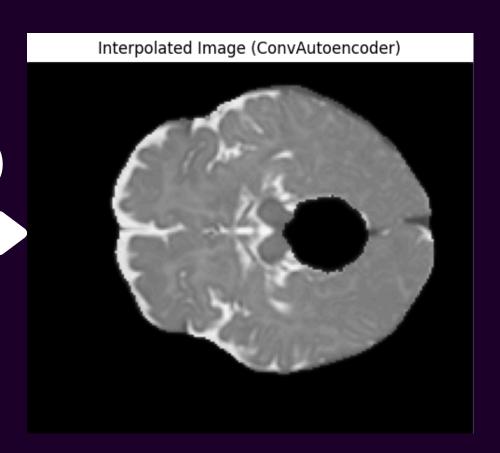
Config 2: interpolate 2 images with noise injection

Figure 5: Added noise to latent representation



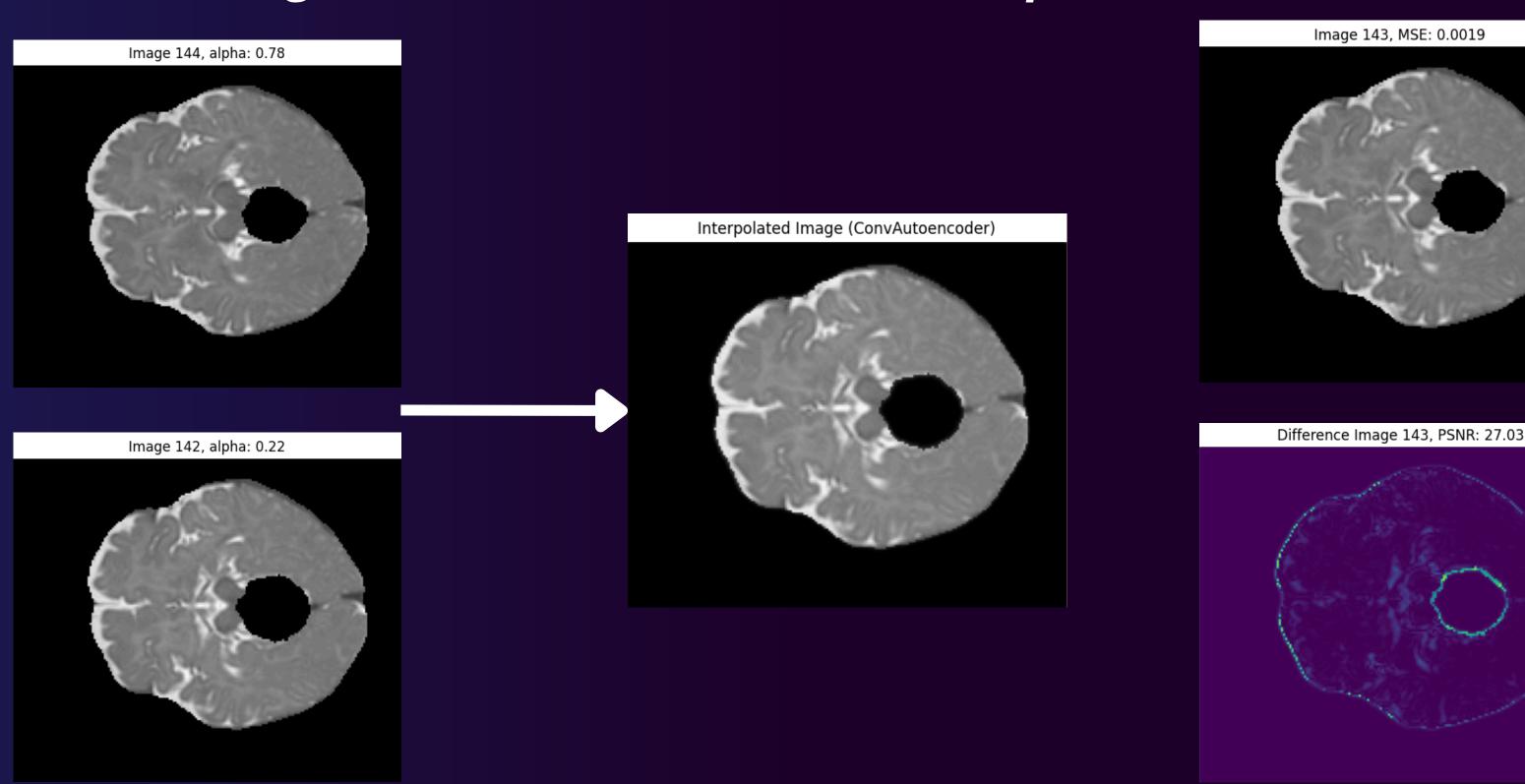
noise range (-0.01, 0.01)





Config 2: interpolate 2 images with noise injection

Figure 5: Added noise to latent representation



$$orall lpha \in [0;1], orall n \in \mathbb{N}, z_{interpolated} = \sum_{i=1}^n lpha_i z_i, \sum_{i=1}^n lpha_i = 1$$

$$orall lpha \in [0;1], orall n \in \mathbb{N}, z_{interpolated} = \sum_{i=1}^n lpha_i z_i, \sum_{i=1}^n lpha_i = 1$$

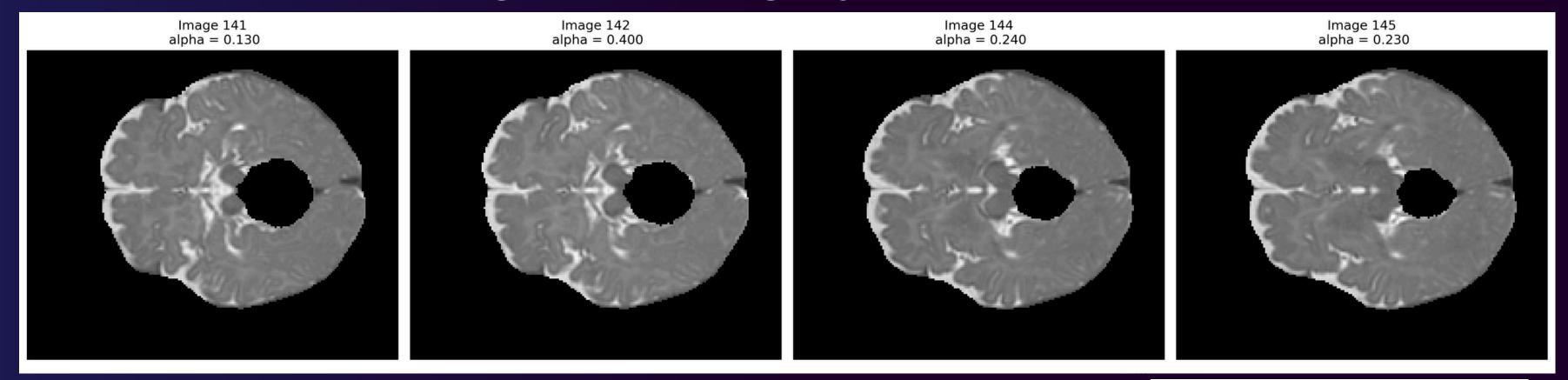
$$W_i = 1 - rac{|i - \lfloor n/2
floor|}{n+1}$$
 $R_i = W_i * rand(0,1)$

$$R_i = W_i * rand(0,1)$$

$$lpha_i = rac{R_i}{\sum_{i=0}^{n-1} R_i}$$

- n: number of images to interpolate
 $i \in [0, n-1]$: the index of the image
 $\lfloor n/2 \rfloor$: the index of the central point

Figure 6: 4 Images from dataset



$$orall lpha \in [0;1], \sum_{i=1}^4 lpha_i = 1$$

 $\overline{z_{interpolated}} = \overline{\alpha_1 z_1} + \overline{\alpha_2 z_2} + \overline{\alpha_3 z_3} + \overline{\alpha_4 z_4}$

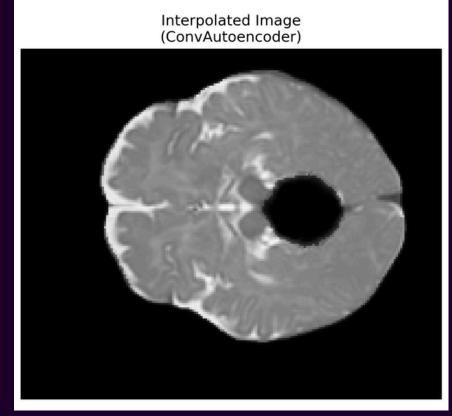
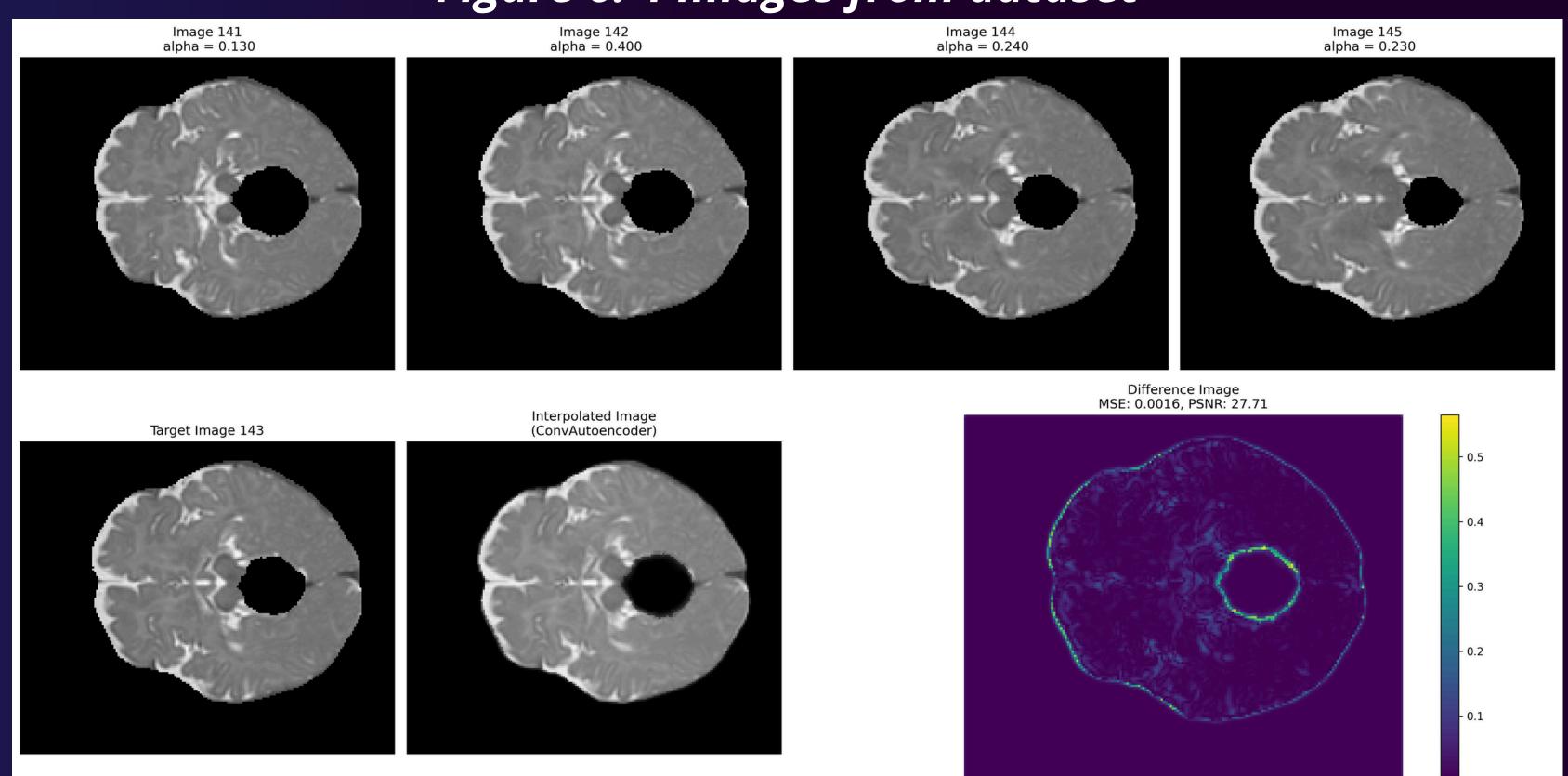


Figure 6: 4 Images from dataset



Metric comparison

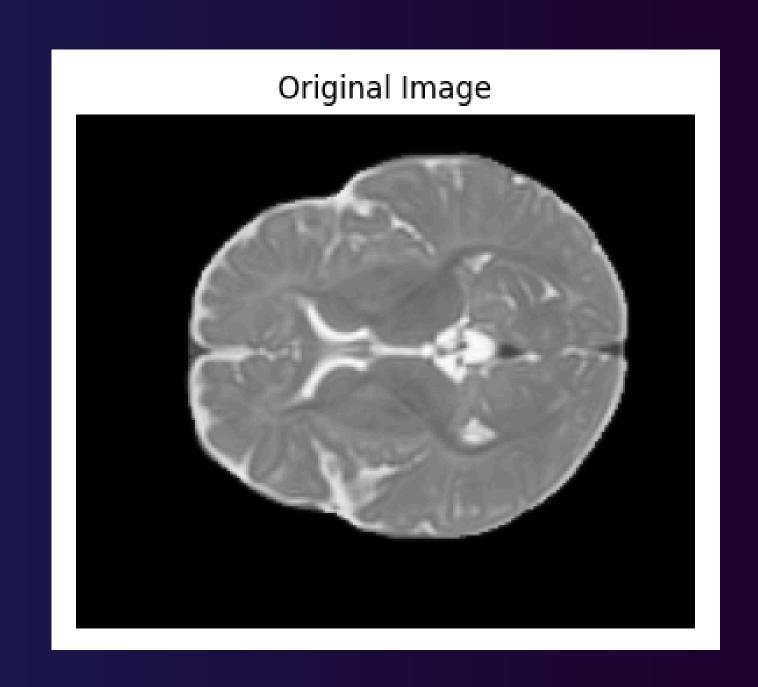
Table 1: MSE scores achieved by different interpolations

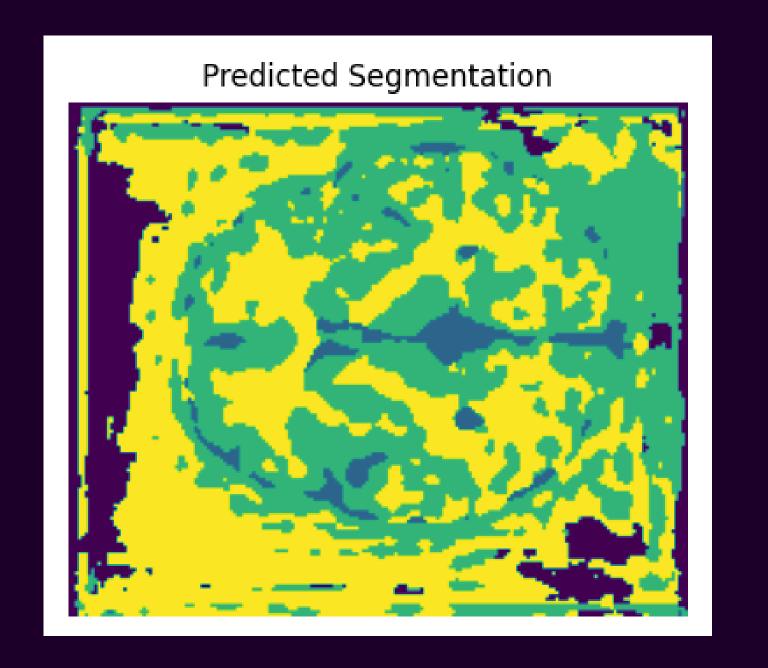
Metric	Even/Odd index	Latent space noise	Multi-image
Mean Squared Error	0.0002 ± 0.0043	0.0002 ± 0.0045	0.0005 ± 0.0055

Segmentation Experiments

Segmentation

Figure 7: Segmentation of interpolated images





Augmented dataset

Table 2: Dataset sizes for different interpolation configurations

Configuration	Generated dataset size	Augmented dataset size
Even/Odd index interpolation	360	784
Even + Odd augmented dataset	720	1144
Latent space noise injection	360	784
Multi-image interpolation	695	1119

Segmentation

- Integration of weighted augmented data in the training process
- Systematic weight analysis ranging from 0.05 to 0.95 (step size: 0.05)
- Comprehensive assessment of weight coefficients' impact on model performance
- Selection and analysis of representative weighting scenarios

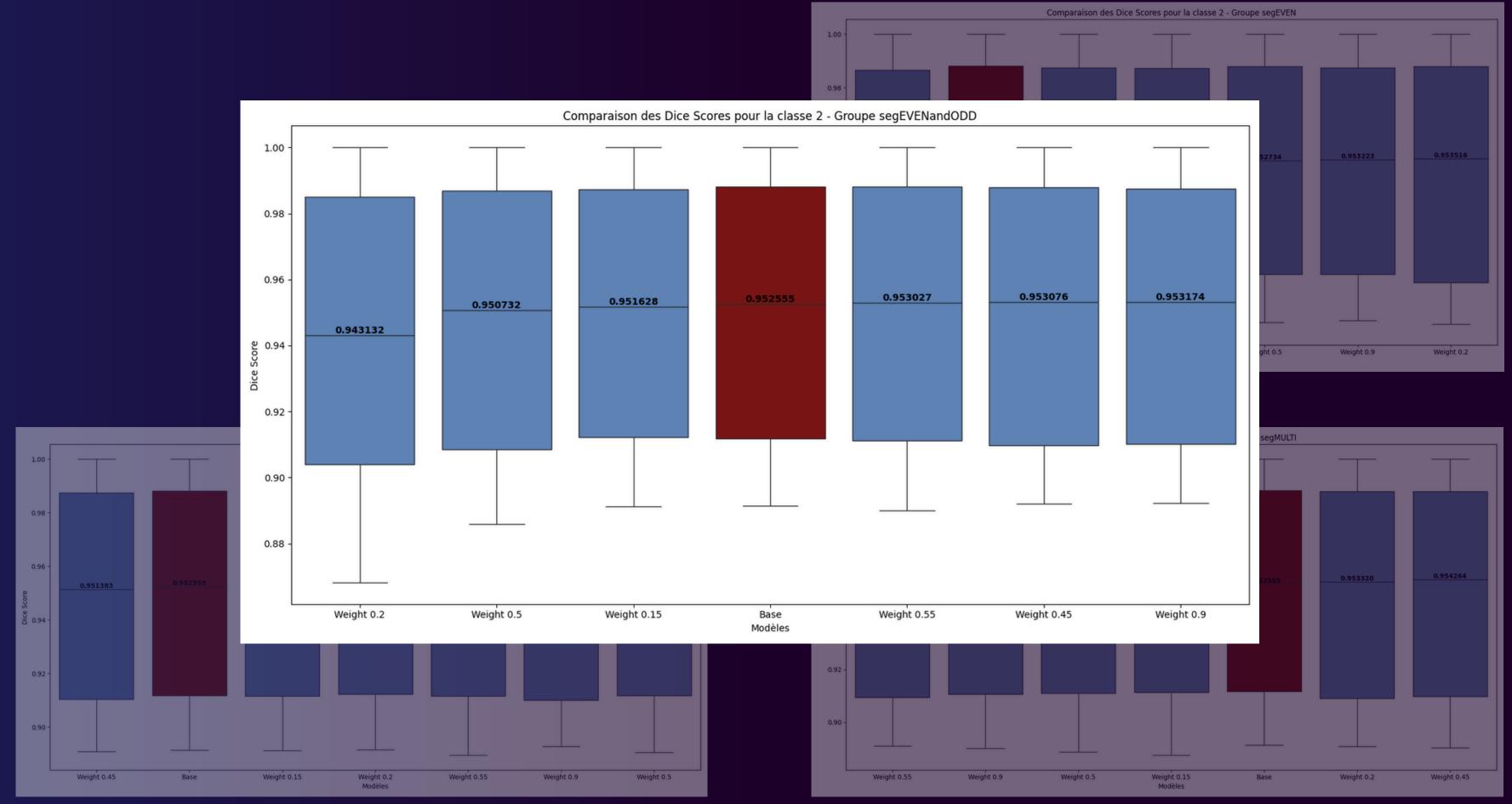


Figure 8: Comparative results of the Dice scores for classe 2 across selected models with different weights, compared to the baseline segmentation model.

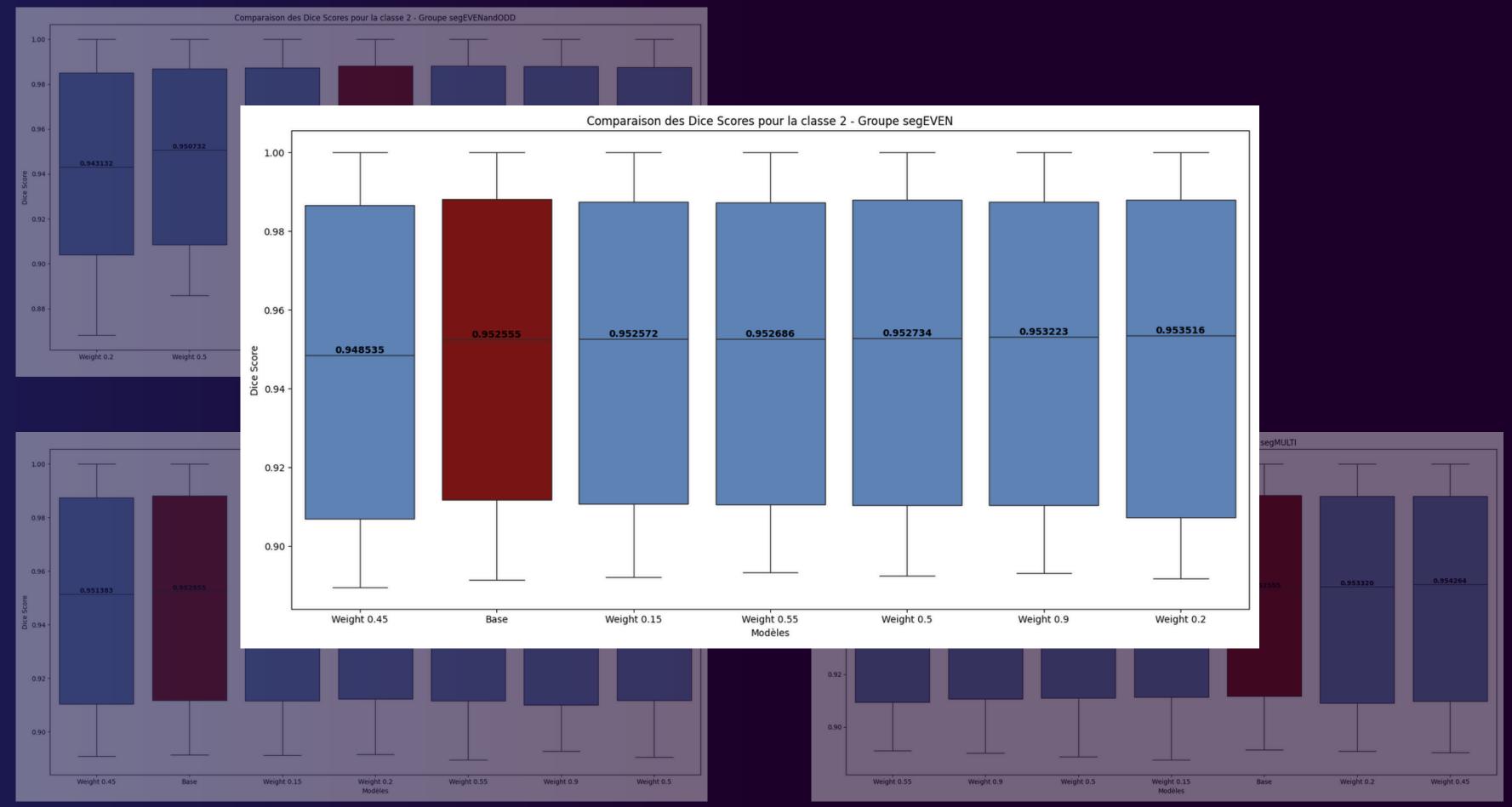


Figure 8: Comparative results of the Dice scores for classe 2 across selected models with different weights, compared to the baseline segmentation model.

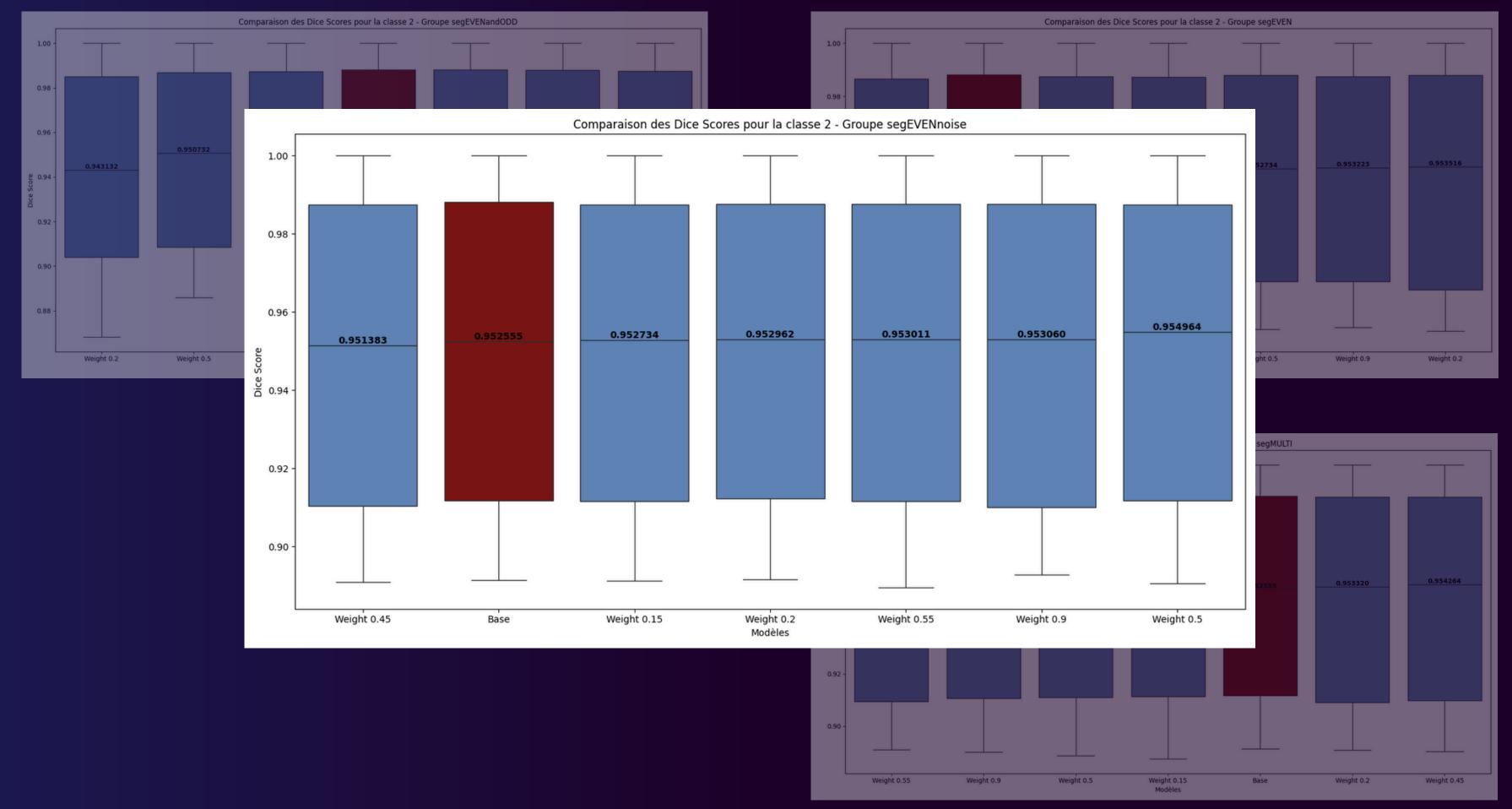


Figure 8: Comparative results of the Dice scores for classe 2 across selected models with different weights, compared to the baseline segmentation model.

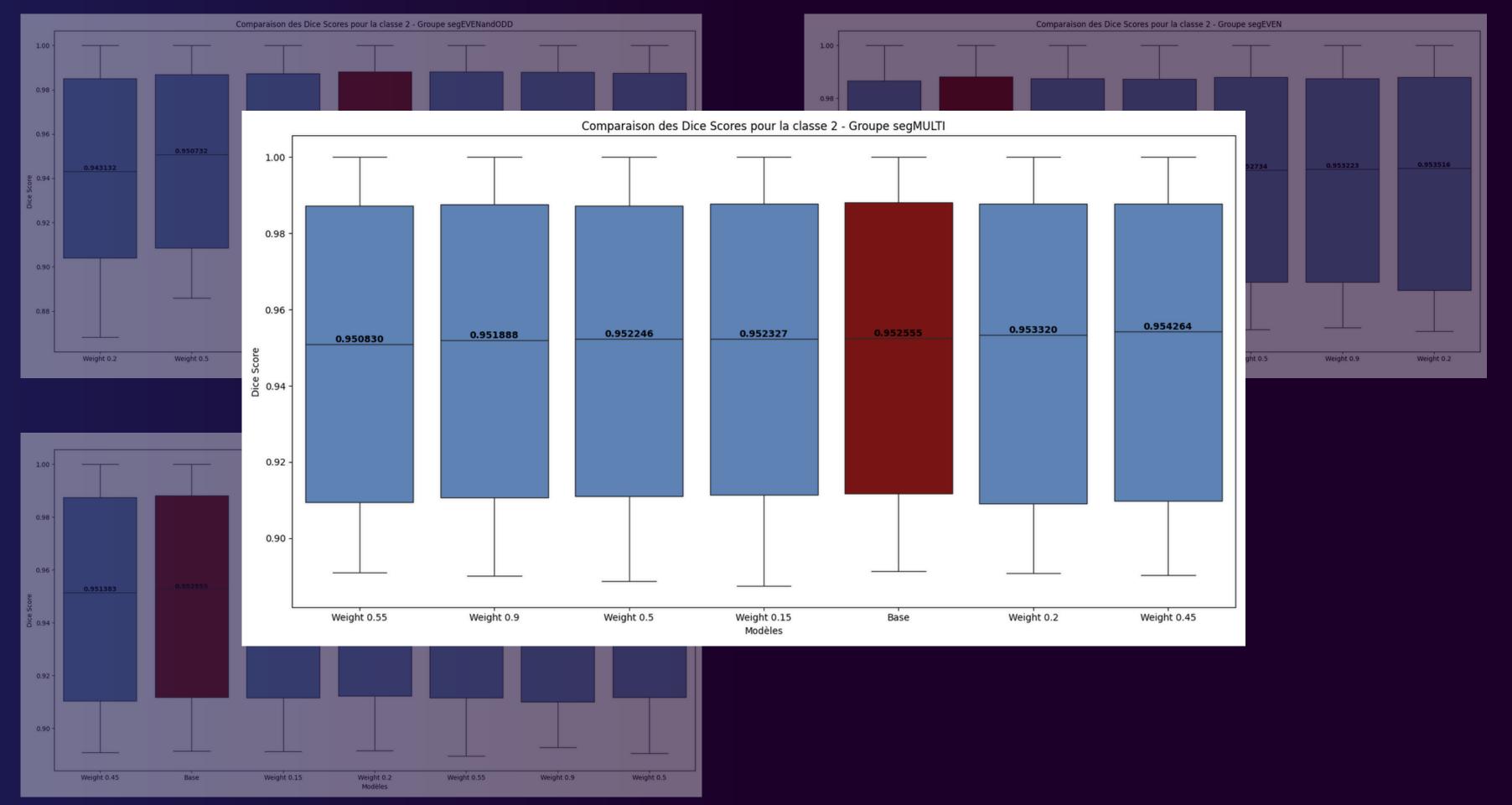


Figure 8: Comparative results of the Dice scores for classe 2 across selected models with different weights, compared to the baseline segmentation model.

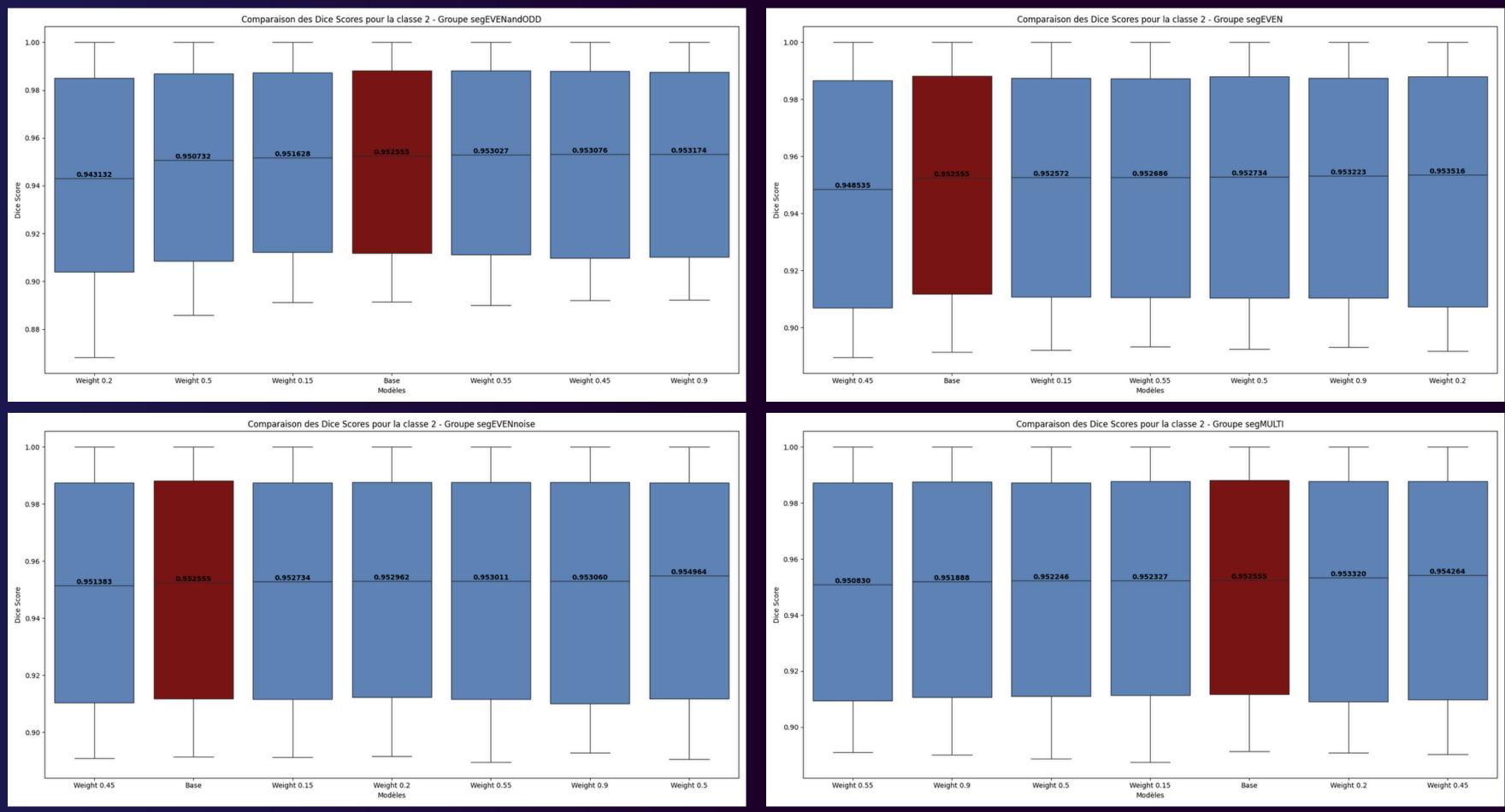


Figure 8: Comparative results of the Dice scores for classe 2 across selected models with different weights, compared to the baseline segmentation model.

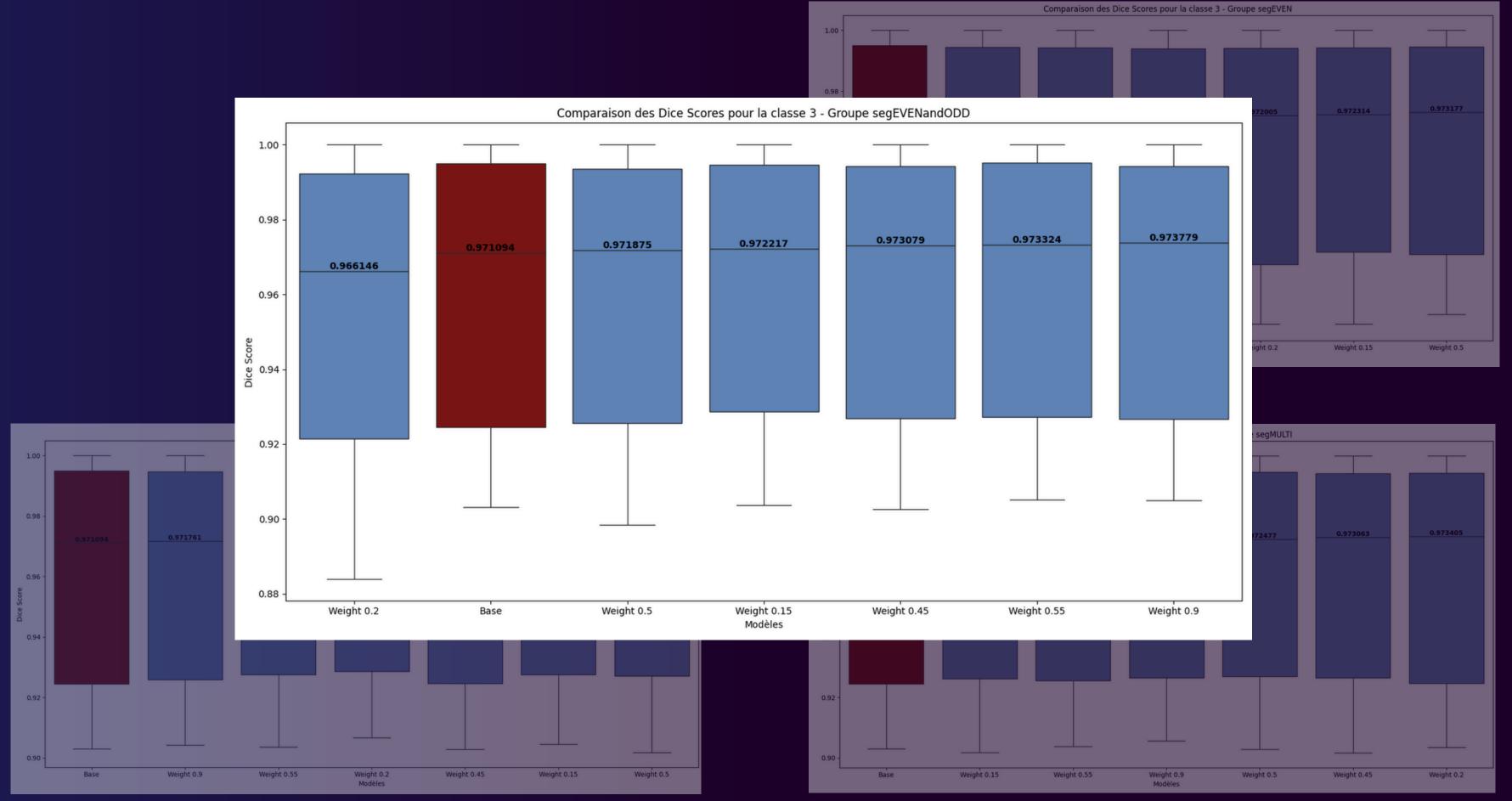


Figure 9: Comparative results of the Dice scores for classe 3 across selected models with different weights, compared to the baseline segmentation model.

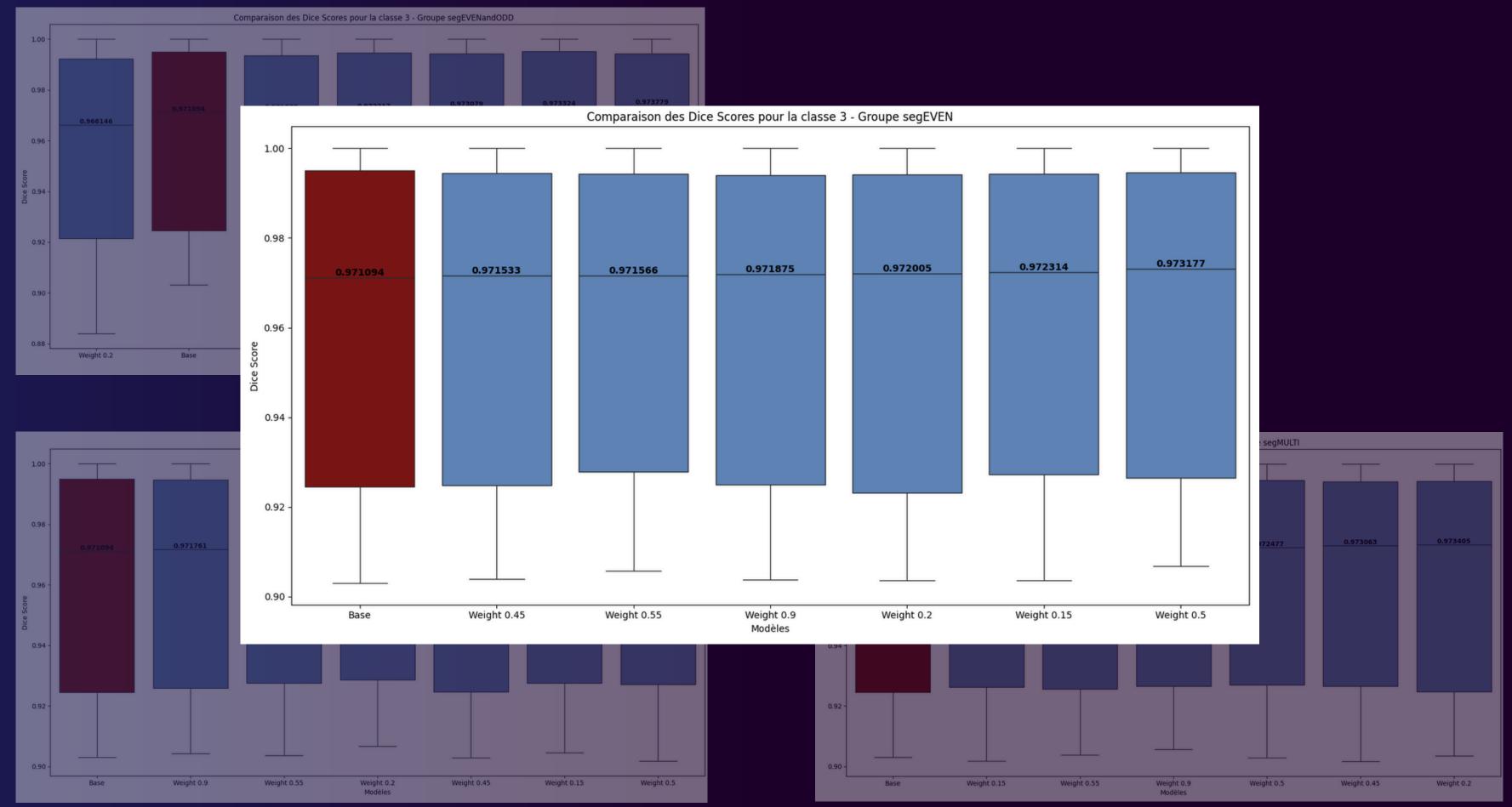


Figure 9: Comparative results of the Dice scores for classe 3 across selected models with different weights, compared to the baseline segmentation model.

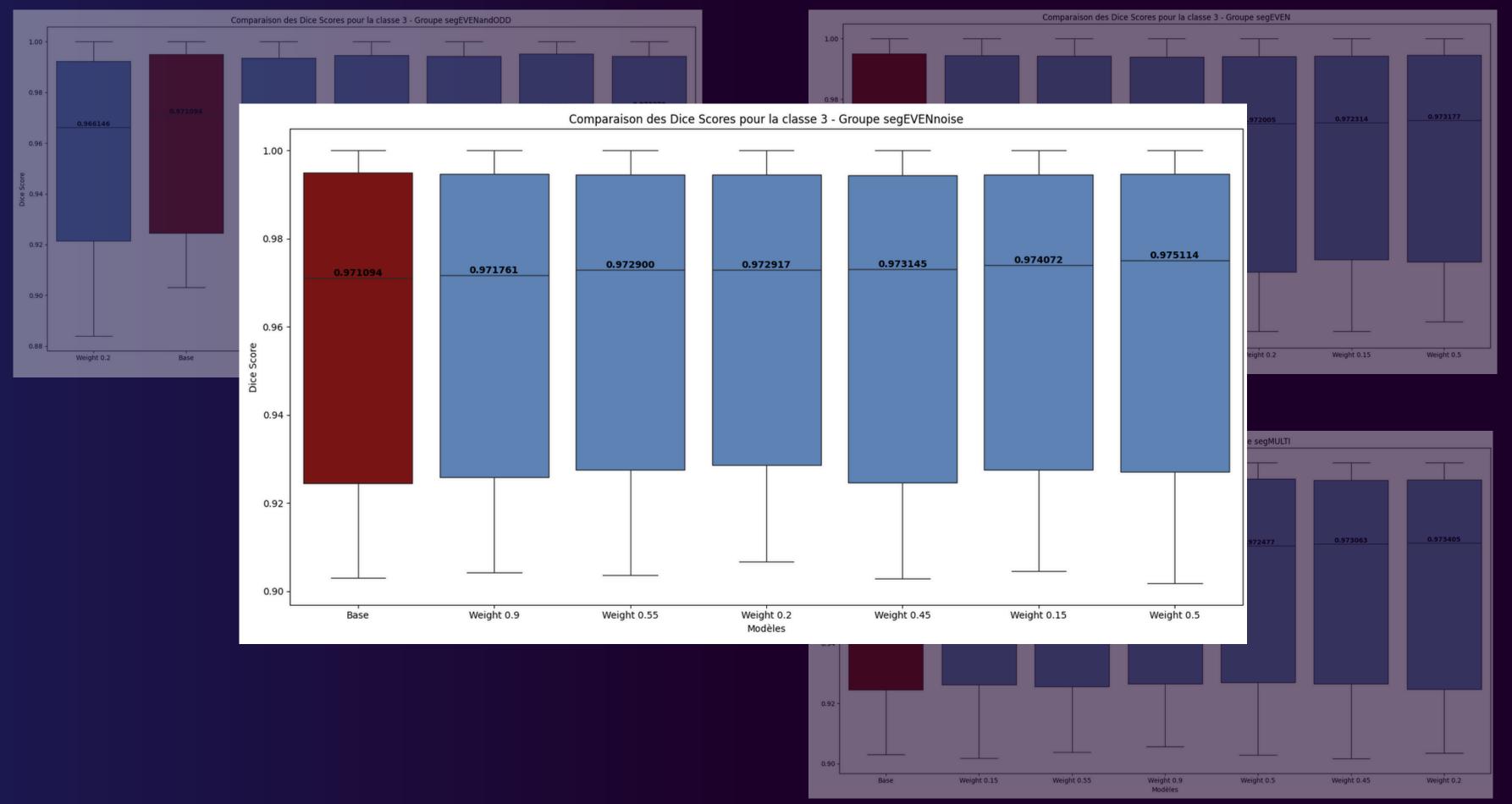


Figure 9: Comparative results of the Dice scores for classe 3 across selected models with different weights, compared to the baseline segmentation model.

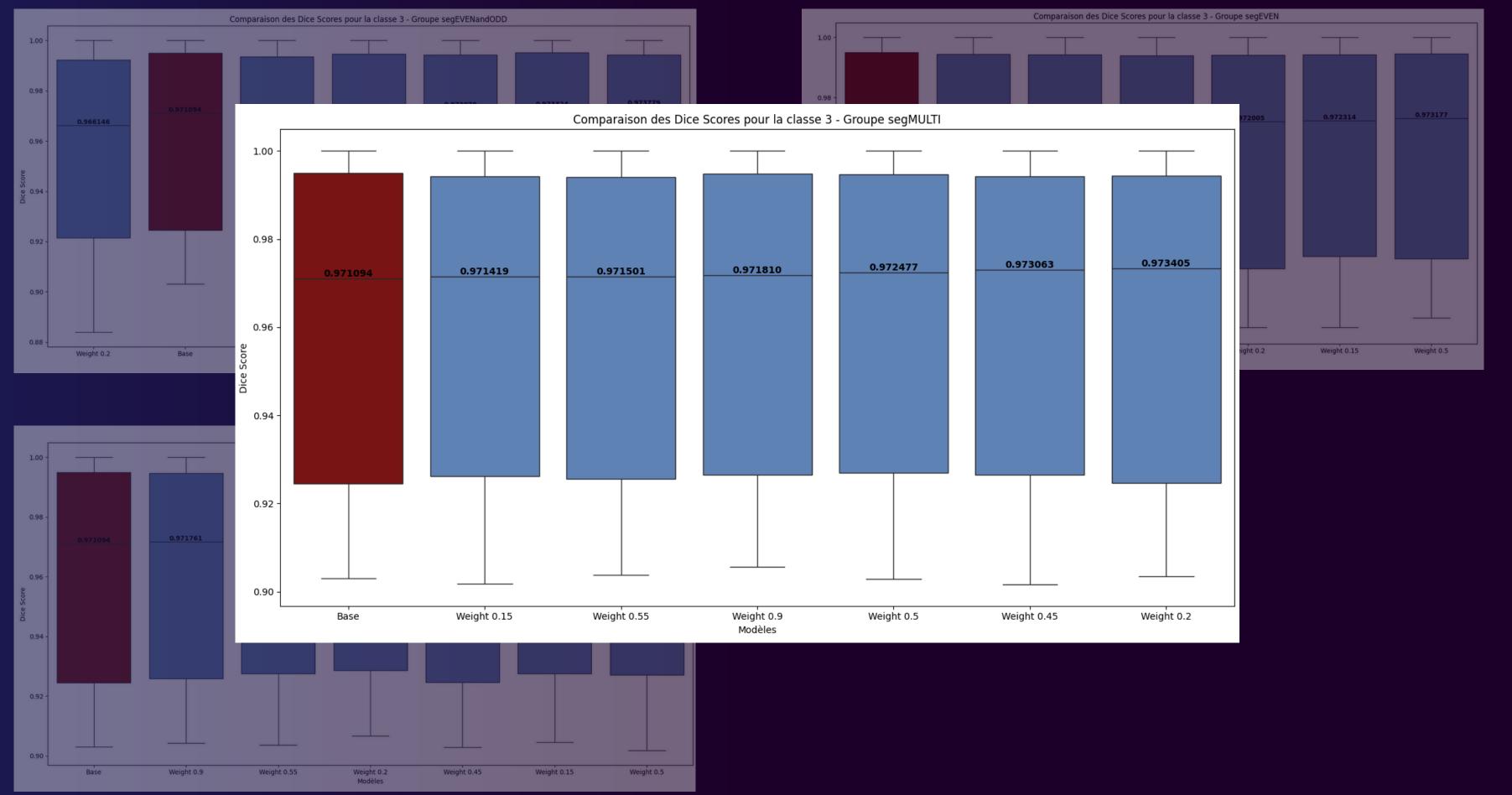


Figure 9: Comparative results of the Dice scores for classe 3 across selected models with different weights, compared to the baseline segmentation model.

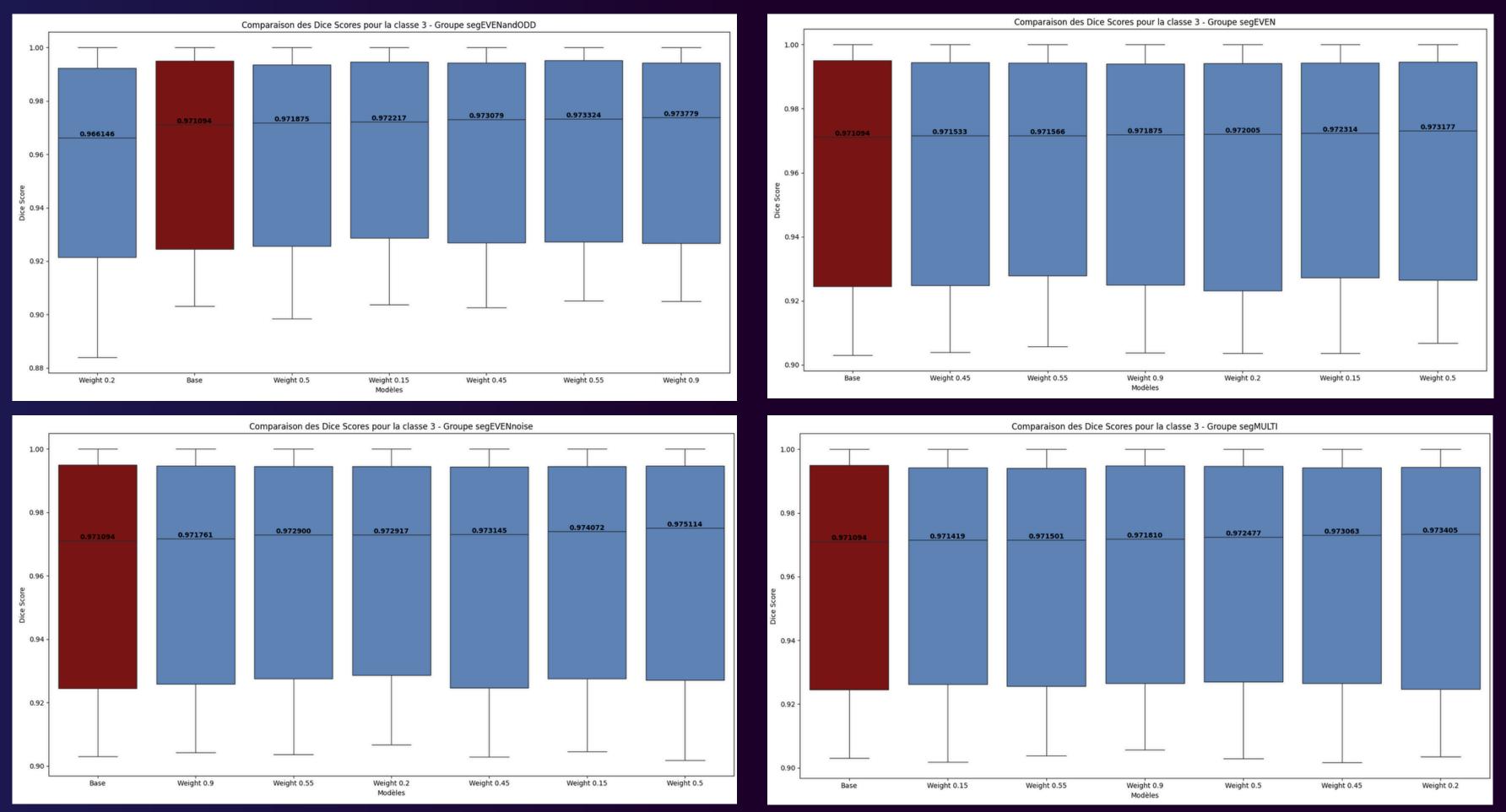


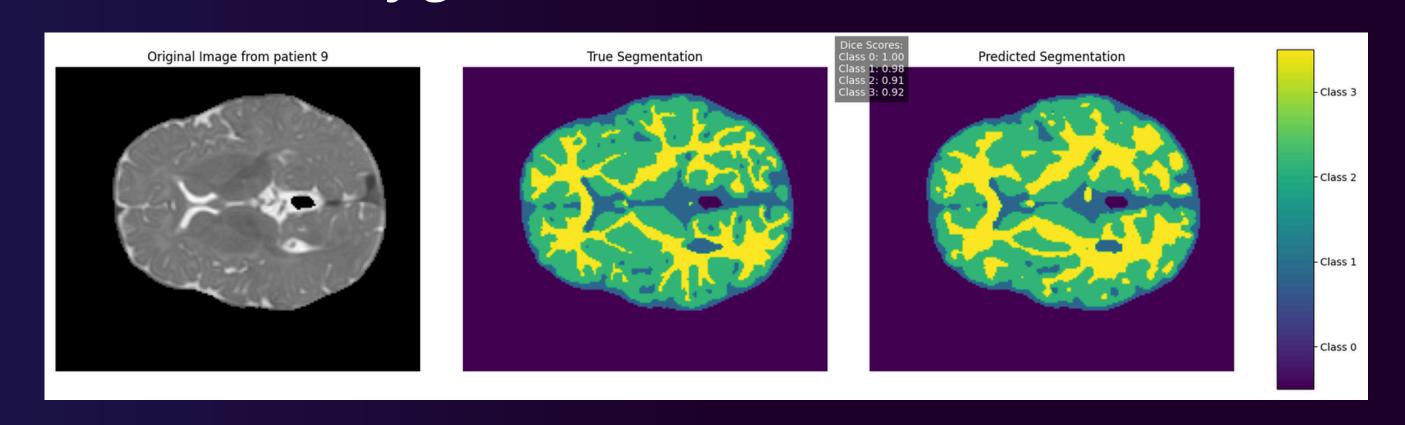
Figure 9: Comparative results of the Dice scores for classe 3 across selected models with different weights, compared to the baseline segmentation model.

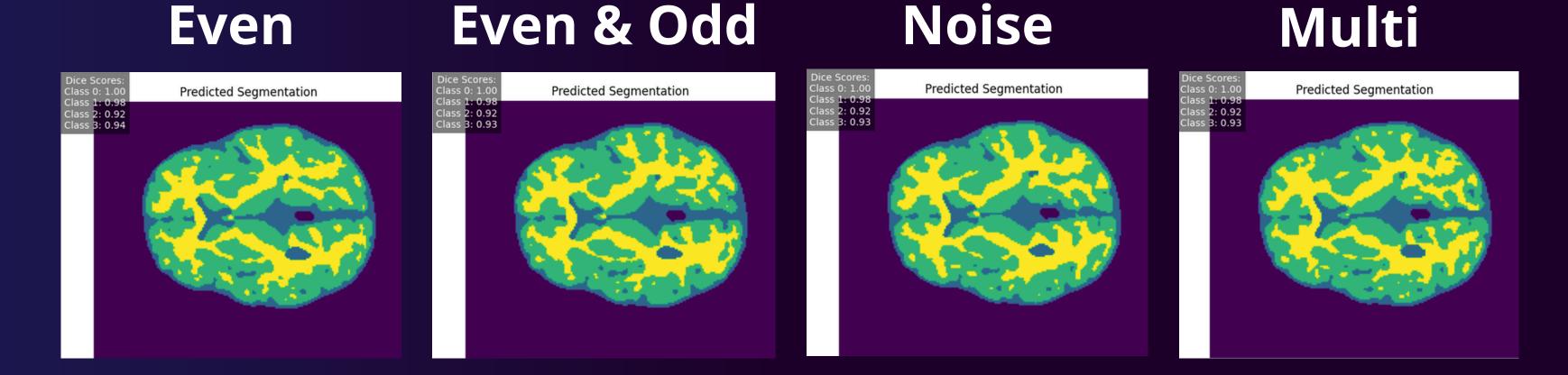
Segmentation Improvements

Method	Class				
	0: Background	1: Cerebrospinal Fluid	2: Gray Matter	3: White Matter	
segEVEN	$-0.03 \pm 0.09\%$	$-0.03 \pm 0.25\%$	$0.10 \pm 0.52\%$	$0.24 \pm 0.22\%$	
segEVEN and ODD	$-0.04 \pm 0.10\%$	$-0.06 \pm 0.16\%$	$0.07 \pm 1.05\%$	$0.28 \pm 0.79\%$	
segEVENnoise	$-0.03 \pm 0.07\%$	$-0.02 \pm 0.26\%$	$0.25 \pm 0.61\%$	$0.41 \pm 0.71\%$	
segMULTI	$-0.03 \pm 0.03\%$	$-0.04 \pm 0.15\%$	$0.18 \pm 0.36\%$	$0.24 \pm 0.28\%$	

Table 3: Segmentation performance improvements (%) over baseline model (trained without data augmentation) across different data augmentations

Figure 10: Comparative analysis of segmentation performance across configurations VS baseline model





Conclusion: Future directions

Investigate pixel intensity distributions

Expanding dataset

Bibliography

[1] MARIANI, Giovanni, SCHEIDEGGER, Florian, ISTRATE, Roxana, et al. "Bagan:Data augmentation with balancing gan". arXiv preprint arXiv:1803.09655, (2018).

[2] Berthelot, David, et al.

"Understanding and improving interpolation in autoencoders via an adversarial regularizer." arXiv preprint arXiv:1807.07543 (2018).