LTL: BMC and passive learning

XU Thomas

Adrien Pommellet, LRE

January 14, 2025

Introduction

Motivations

Check that certain properties are verified by our program.

Reactive systems[1]

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

Temporal properties to check[1]

Properties to check

For reactive systems, correctness depends on the executions of the system.

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

Kripke structure[1]

Definition

A kripke system is a structure $M = \langle Q, I, AP, R \rangle$ where:

- Q: States of the kripke.
- I: Initial states of the kripke.
- AP: Atomic propositions.
- R: QxQ the transition function.

Kripke structure[1]

Definition

A kripke system is a structure $M = \langle Q, I, AP, R \rangle$ where:

- Q: States of the kripke.
- I: Initial states of the kripke.
- AP: Atomic propositions.
- R: QxQ the transition function.

Example: Traffic light modelization start \longrightarrow G (100) Y (010) R (001)

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

Linear temporal logic (LTL)[1]

Problem

Some properties are very hard / impossible to verify by manual testing.

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

Linear temporal logic (LTL)[1]

Problem

Some properties are very hard / impossible to verify by manual testing.

LTL formula

- Atomic propositions (ie.r, g, y)
- Boolean connectors (and or)
- Basic temporal operators + Until and Next

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

LTL semantics

Definition

For an infinite path π of a Kripke structure M and a LTL formula f, we define that f holds on π written $\pi \models f$:

- $\pi \models p$ iff $p \in L(\pi(0))$.
- $\pi \models Xf$ iff $\pi_1 \models f$.
- $\pi \models Gf$ iff $\pi_i \models f \ \forall i \geq 0$.
- $\pi \models Ff$ iff $\pi_i \models f$ for some $i \ge 0$.
- $\pi \models fUg$ iff $\pi_i \models g$ for some $i \ge 0$ and $\pi_j \models f \ \forall 0 \le j < i$.
- $\pi \models fRg \text{ iff } \pi_i \models g \text{ if } \forall j < i, \pi_j \not\models f.$

Model Checking Example[1]

LTL formula

For instance $T \models 100U010$ or $T \not\models G$ 010

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

Model Checking Example[1]

LTL formula

For instance $T \models GF100$ or $T \not\models G \neg 111$

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

Model Checking[1]

Pros

Fully automated and returns a counter-example when there is a problem.

Cons

Scales badly with the size of the system.

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

Bounded Model Checking[1][2][3]

Note

LTL formulas are defined over all paths \implies Finding a counterexample is equivalent to finding a trace that contradicts it.

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

²Tzu-Han Hsu et al: Bounded Model Checking for Asynchronous Hyperproperties.

³Armin Biere et al: Bounded Model Checking

Bounded Model Checking[1][2][3]

Note

LTL formulas are defined over all paths \implies Finding a counterexample is equivalent to finding a trace that contradicts it.

General idea

We will try to find counterexamples of size k bounded by considering finite prefix of paths that may be a witness.

¹Christel Baier and Joost-Pieter Katoen: Principles of model checking.

²Tzu-Han Hsu et al: Bounded Model Checking for Asynchronous Hyperproperties.

³Armin Biere et al: Bounded Model Checking

Bounded path

No loop

k-l loop

Definition (k-I)-loop

A path π is a (k,l)-loop if

-for
$$l \leq k$$
, $T(\pi(k), \pi(l))$

$$-\pi = uv^w$$
 with $u = (\pi(0), ..., \pi(I-1))$ and $v = (\pi(I), ..., \pi(k))$.

Bounded semantics

Definition

Let $k \ge 0$, an LTL formula f is valid along the path π with bound k (written $\pi \models_k f$) iff:

- π is a k-loop and $\pi \models f$.
- π is not a k-loop and $\pi \models_k^0 f$ where:
 - $\pi \models_k^i Xf \text{ iff } i < k \text{ and } \pi \models_k^{i+1} f.$
 - $\triangleright \pi \models_{k}^{i} Gf$ is false.
 - $\pi \models_{k}^{i} Ff \text{ iff } \exists j, i \leq j \leq k, \pi \models_{k}^{j} f.$
 - $\pi \models^i_k fUg \text{ iff } \exists j, i \leq j \leq k, \pi \models^j_k g \text{ and } \forall n, i \leq n < j, \pi \models^n_k g$.

Lemmas

Let f be an LTL formula, M a Kripke structure and π a path.

$$\pi \models_k f \implies \pi \models f.$$

$$M \models f \implies \exists k \geq 0 \text{ such that } M \models_k f.$$

BMC to SAT

Propositional formula

Given a Kripke structure M, an LTL formula f and a bound k, we will construct a propositional formula $[\![M,f]\!]_k$. Let $s_0,...,s_k$ be a finite sequence of states on path π .

 $[\![M,f]\!]_k$ encodes $s_0,...,s_k$ such that $[\![M,f]\!]_k$ is satisfiable iff π is a witness for f.

Propositional formula $[\![M,f]\!]_k$

Transition relation

$$\llbracket M \rrbracket_k := I(s_0) \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}).$$

Propositional formula $[\![M,f]\!]_k$

Transition relation

$$I(s_0) = s[0] \land \neg s[1] \land \neg s[2] = s[0]$$

$$T(s,s') = (s[0] \land ((\neg s[1] \land \neg s[2]) \leftrightarrow (s'[1] \land s'[2]))) \lor (\neg s[0] \land s'[1])...$$

$$\llbracket M \rrbracket_2 = I(s_0) \land T(s_0,s_1) \land T(s_1,s_2).$$

Propositional formula $[\![M,f]\!]_k$

Loop condition

For a path π , ${}_{l}L_{k}$ is true if $T(s_{k}, s_{l})$.

The loop condition L_k is true iff there is a back loop from state k to a previous state or itself:

$$L_k = \bigvee_{l=0}^k {}_l L_k$$

Translation of LTL formula

Let f be an LTL formula, k,l,i ≥ 0 , with $l, i \leq k$.

Translation for loops

```
I[Gf]_{k}^{i} =_{I} [f]_{k}^{i} \wedge_{I} [Gf]_{k}^{succ(i)}
I[Ff]_{k}^{i} =_{I} [f]_{k}^{i} \vee_{I} [Ff]_{k}^{succ(i)}
I[Xf]_{k}^{i} =_{I} [f]_{k}^{succ(i)}
I[FUg]_{k}^{i} =_{I} [g]_{k}^{i} \vee_{I} [fUg]_{k}^{succ(i)}
```

Translation without loops

Translation of LTL formula

General translation

$$[\![M,f]\!]_k = [\![M]\!]_k \wedge ((\neg L_k \wedge [\![f]\!]_k^I) \vee \bigvee_{l=0}^k ({}_l L_k \wedge_l [\![f]\!]_k^0))$$

 $\llbracket M, f \rrbracket_k$ is satisfiable iff $M \models_k f$.

Propositional formula

Example with T 1/2

The safety property can be $G \neg p$ where $p = s[0] \land s[1] \land s[2]$. For BMC we want to look for a witness for Fp.

With k = 2, we have for paths without loops:

$$[\![Fp]\!]_2^0 = p(s_0) \lor [\![Fp]\!]_2^1
 [\![Fp]\!]_2^1 = p(s_1) \lor [\![Fp]\!]_2^2
 [\![Fp]\!]_2^2 = p(s_2) \lor [\![Fp]\!]_2^3
 [\![Fp]\!]_2^3 = 0
 [\![Fp]\!]_2^0 = p(s_0) \lor p(s_1) \lor p(s_2)$$

Propositional formula

Example with T 2/2

$$[\![M, Fp]\!]_2 = [\![M]\!]_2 \wedge ((\neg L_k \wedge [\![Fp]\!]_2^l) \vee \bigvee_{l=0}^2 ({}_l L_2 \wedge_l [\![Fp]\!]_2^0))$$
$$[\![M]\!]_2 = I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2)$$

$$[\![Fp]\!]_2^0 = p(s_0) \wedge p(s_1) \wedge p(s_2)$$

$$[\![M, Fp]\!]_2 = I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \wedge p(s_0) \wedge p(s_1) \wedge p(s_2)$$

The path 100, 111, 100 satisfies $[\![M, Fp]\!]_2$. This assignment corresponds to a path from the initial state that violates the safety property.

Passive learning LTL[4][5]

Definition

We have 2 samples of kripke structures P and N, and we want to learn a short LTL formula that distinguish them.

³Daniel Neider and Ivan Gavran: Learning Linear Temporal Properties.

⁴Adrien Pommellet et al: SAT-based Learning of Computation Tree Logic.

Work

On going

Bounded model checking.

Work to do

• Finish it.

Bibliography

Christel Baier and Joost-Pieter Katoen.

Principles of model checking.

MIT Press, 2008.

Tzu-Han Hsu, Borzoo Bonakdarpour, Bernd Finkbeiner, and César SÃinchez.

Bounded model checking for asynchronous hyperproperties, 2023.

Armin Biere et al.

Bounded model checking.

Adv. Comput., 58:117-148, 2003.

- Daniel Neider and Ivan Gavran. Learning linear temporal properties, 2018.
- Adrien Pommellet, Daniel Stan, and Simon Scatton. Sat-based learning of computation tree logic, 2024.