Segmentation of Cerebral Tissues in Human Brain MRIs with uncertainty

Yacine BOUREGHDA Supervised by M. Nicolas BOUTRY

Segmentation In Medical Imaging with Deep Learning

- ☐ Segmentation of brain MRI's using deep learning algorithms across various datasets
- ☐ Improved Interpretation: Quantifying the uncertainty in segmentations produced by Neural Networks enhances interpretation for medical teams
- ☐ Uncertainty in Deep Learning: Addressing uncertainty remains a crucial and unresolved challenge in the field
- State of the Art: The leading approaches to quantify uncertainty include two main methods: Monte Carlo Dropout and Deep Ensembles

Presentation Outline

- ❖ State of the Art and Uncertainty Metrics
- Classification Task on MNIST
- ❖ iSeg-2017: 6-month Infant Brain MRI Segmentation
- Experimentations
- Related Work : Achievements for this Semester
- Future Directions for the Project

Quantifying Uncertainty in Deep Learning

Prediction	Prediction 1	Prediction 2	Prediction 3	Prediction 4	Prediction 5	Prediction 6	Prediction 7
Label 0	0.0993	0.1861	0.0651	0.0691	0.0480	0.1379	0.1511
Label 1	0.9007	0.8139	0.9349	0.9309	0.9520	0.8621	0.8489

Softmax Output for each prediction: Represents the probability of belonging to class 1 or class 0

For this distribution, we have the following results for the mean and standard deviation:

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i = rac{0.9007 + 0.8139 + 0.9349 + 0.9309 + 0.9520 + 0.8621 + 0.8489}{7} = 0.8919$$

$$\sigma = \sqrt{rac{1}{n}\sum_{i=1}^n (X_i-ar{X})^2}pprox 0.0467$$

State of the art: Quantify uncertainties with Deep Ensembles

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, Balaii Lakshminarayanan Alexander Pritzel Charles Blundell

Overview:

- Build and train a set of models to perform several predictions with each network
- Estimate the final prediction by aggregating predictions and computing the mean prediction of the ensemble
- Estimate uncertainty by calculating different metric, such as standard deviation from the mean

Key Steps:

- **Train five models** with different initializations
- Assign a unique seed to each model to control the variations in initialization.
- Train each U-Net independently on different subsets of the training dataset LRE

Algorithm 1 Pseudocode of the training procedure for our method

- 1: \triangleright Let each neural network parametrize a distribution over the outputs, i.e. $p_{\theta}(y|\mathbf{x})$. Use a proper scoring rule as the training criterion $\ell(\theta, \mathbf{x}, y)$. Recommended default values are M = 5 and $\epsilon = 1\%$ of the input range of the corresponding dimension (e.g. 2.55 if input range is [0,255]).
- 2: Initialize $\theta_1, \theta_2, \dots, \theta_M$ randomly
- 3: for m = 1 : M do

- > train networks independently in parallel
- 4: Sample data point n_m randomly for each net \triangleright single n_m for clarity, minibatch in practice
- Generate adversarial example using $\mathbf{x}'_{n_m} = \mathbf{x}_{n_m} + \epsilon \operatorname{sign}(\nabla_{\mathbf{x}_{n_m}} \ell(\theta_m, \mathbf{x}_{n_m}, y_{n_m}))$ Minimize $\ell(\theta_m, \mathbf{x}_{n_m}, y_{n_m}) + \ell(\theta_m, \mathbf{x}'_{n_m}, y_{n_m})$ w.r.t. $\theta_m \rightarrow adversarial training (optional)$

Fig 1: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, Balaji Lakshminarayanan Alexander Pritzel Charles Blundell [1612.01474] Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

State of the art: Quantify uncertainties with Monte Carlo Dropout

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Yarin Gal Zoubin Ghahramani

Overview:

- ❖ **Dropout Regularization**: This technique randomly deactivates a subset of neurons during each forward pass to reduce overfitting in neural networks
- **Bayesian Approximation**: By treating each forward pass as a sample from a Bayesian posterior distribution, the method allows for uncertainty quantification by applying dropout both during training and testing.
- ❖ **Predictive Distribution**: To capture the model's uncertainty, multiple forward passes (between 30 and 100) are performed for each input, generating a distribution of predictions

Key Steps:

- **Training**: The model is trained with dropout enabled, often at a rate of around 0.4, to promote robust feature learning
- **Testing/Inference**: During inference, dropout remains active, and several forward passes (e.g., 100) are executed to gather a range of predictions
- * Aggregation: Finally, the mean and variance of these predictions are calculated, providing not only the expected output but also a measure of uncertainty associated with the predictions

Combining Deep Ensembles and Monte Carlo Dropout (MCD)

Why Combine Deep Ensembles and MCD?

Monte Carlo Dropout (MCD):

- Advantages:
 - Efficient: Generates many predictions from a single trained model
- Limitations:
 - Limited diversity: Predictions tend to be similar, reducing the quality of uncertainty estimation

Deep Ensembles:

- Advantages:
 - Captures a broader and better range of predictive differences.
- Limitations :
 - Computationally expensive : Requires training multiple models
 - Limited predictions: Typically only 5 predictions, insufficient for a proper distribution

Combining Deep Ensembles and Monte Carlo Dropout (MCD)

Overview of the Combined Method

- Train **5 models** independently as in Deep Ensembles
- For each model, perform 20 stochastic predictions with Dropout activated
- Combine the predictions to create a distribution of 100 predictions
- Goal: Capture greater diversity in predictions and establish a more robust uncertainty estimation

Key Idea of the Combined Approach

- Leverage the strengths of both methods:
 - **Deep Ensembles** provide diverse predictive distributions
 - MCD generates a large number of predictions for each model
- Result:
 - Improved diversity in predictions from the ensemble
 - Higher quality uncertainty estimation with a more complete predictive distribution

Quantifying Uncertainty in Deep Learning (1/2)

1. Variation ratios

- For each stochastic forward pass $t \in \{1; T\}$, compute label from softmax probabilities
- $ightharpoonup c^*$: most frequent label over the T passes, with frequency $f_x^{c^*}$
- ► Compute variation-ratio var-ratio $[x] = 1 \frac{f_x^{c^*}}{T}$ ⇒ Epistemic uncertainty
- 2. **Predictive entropy**: captures the average amount of information contained in the predictive distribution.

$$\hat{\mathcal{H}}[y|x, \mathcal{D}_{train}] = -\sum_{c} \left(\frac{1}{T} \sum_{t} p(y = c|x, \hat{w_t})\right) \log \left(\frac{1}{T} \sum_{t} p(y = c|x, \hat{w_t})\right)$$

- ⇒ Aleatoric uncertainty
- 3. **Mutual information**: maximise the mutual informations are points on which the model is uncertain on average

$$\hat{\mathcal{I}}[y, w|x, \mathcal{D}_{train}] = \hat{\mathcal{H}}[y|x, \mathcal{D}_{train}] - \frac{1}{T} \sum_{c,t} p(y = c|x, \hat{w_t}) \log p(y = c|x, \hat{w_t})$$

⇒ Epistemic uncertainty

Quantifying Uncertainty in Deep Learning (2/2)

Example of variance ratio:

If a pixel is classified as $\{1,1,1,1,1,0\}$ over 6 passes,

- The most frequent class is $c^* = 1$
- The frequency of c^* is f = 5

The variance ratio is calculated as:

$$ext{var_ratio} = 1 - rac{f_{c^*}}{T} = 1 - rac{5}{6} = 0.1667$$

If a pixel is classified as $\{1,0,1,0,1,0\}$ over $\overline{6}$ passes,

- Both classes $c^* = 0$ and $c^* = 1$ appear with the same frequency
- The frequency of the most frequent class is f = 3

The variance ratio is calculated as:

$$ext{var_ratio} = 1 - rac{f_{c^*}}{T} = 1 - rac{3}{6} = 0.5$$

Example of predictive entropy:

If a pixel is predicted with the probabilities : {0.9,0.9,0.9,0.9,0.9,0.9} over 6 passes,

The average predicted probability for class 1 is:

$$\bar{p}_1 = 0.9$$

The entropy is:

$$H = -\left(ar{p}_1\log(ar{p}_1) + (1-ar{p}_1)\log(1-ar{p}_1)
ight)$$

Substituting $ar{p}_1=0.9$:

$$H = -\left(0.9\log(0.9) + 0.1\log(0.1)\right) = 0.2715$$

If a pixel is predicted with the probabilities : {0.5,0.5,0.5,0.5,0.5,0.5} over 6 passes,

The average predicted probability for class 1 is:

$$ar{p}_1=0.5$$

The entropy is:

$$H = -\left(ar{p}_1\log(ar{p}_1) + (1-ar{p}_1)\log(1-ar{p}_1)
ight)$$

Substituting $ar{p}_1=0.5$:

$$H = -\left(0.5\log(0.5) + 0.5\log(0.5)
ight) = 0.693$$

Classification Task on MNIST

Convolutional Layers:

- ➤ 6 channels, kernel size 5, padding 2, ReLU activation
- ➤ Max pooling, kernel size 2
- ➤ 16 channels, kernel size 5, ReLU activation
- ➤ Max pooling, kernel size 2

Fully-Connected Layers:

- ightharpoonup Dropout p = 0.25
- ➤ 120 units, ReLU activation
- \triangleright Dropout p = 0.5
- > 10 output units (one per digit class)

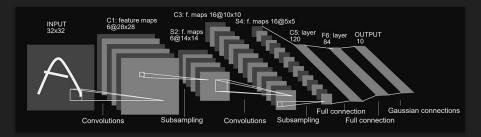


Fig 2: Architecture of AlexNet for MNIST classification

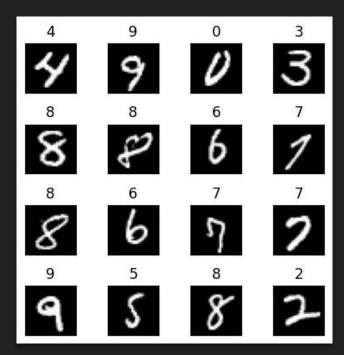


Fig 3: Sample of digits with both clear and unclear representations from the *MNIST* dataset

Classification Task on MNIST (1/3)

Monte Carlo Dropout Method

Metric	Value
Accuracy	0.9923
Recall	0.9923
F1 Score	0.9922

Fig 4: Performance metrics of the model evaluated on the MNIST test set

Deep Ensembles Method

Model	Accuracy	Recall	F1-Score	
Model 1	0.9890	0.9890	0.9890	
Model 2	0.9902	0.9902	0.9902	
Model 3	0.9909	0.9909	0.9909	
Model 4	0.9745	0.9745	0.9746	
Model 5	0.9862	0.9862	0.9862	

Fig 5 : Performance metrics (Accuracy, Recall, F1-Score) for the five independently trained models in the ensemble, evaluated on the *MNIST* test set

• Each model was initialized with a different random seed to ensure diversity in predictions

Classification Task on MNIST (2/3)

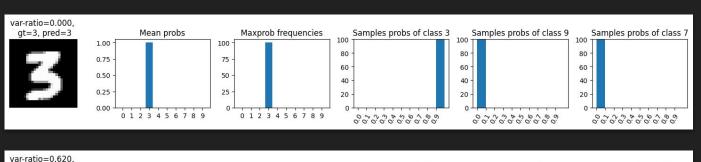
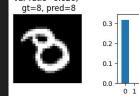


Fig 6: Prediction and uncertainty visualization for a correctly classified MNIST digit with MCD method. The model predicted 3 while the true label was 3



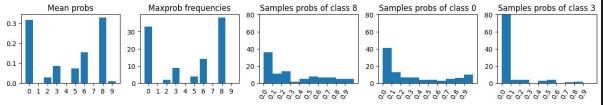
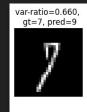


Fig 7: Prediction and uncertainty visualization for a correctly classified MNIST digit with MCD method. The model predicted 8 while the true label was 8



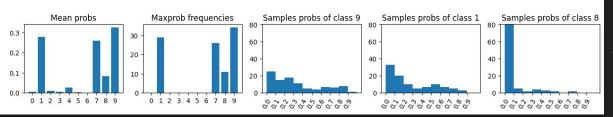


Fig 8: Prediction and uncertainty visualization for a misclassified MNIST digit with MCD method. The model predicted 9 while the true label was 7

Classification Task on MNIST (3/3)

20

0 4 4 4 4 6 4 6 9

20 -

20

0 1 2 3 4 5 6 7 8 9

0.1

0 1 2 3 4 5 6 7 8 9

predicted 0 while the true label

was 6

iSeg-2017: 6-month infant brain MRI Segmentation

- iSeg-2017 challenge focuses on comparing semi-automatic algorithms for segmenting 6-month infant brain MRIs using T1 and T2 images
- Critical for studying the dynamic first year of postnatal human brain development and associated cognitive and motor functions
- Intense phase at 6 months presents the lowest tissue contrast, posing significant challenges for accurate segmentation
- ☐ Engages researchers to develop and test automatic segmentation algorithms for white matter, gray matter, and

cerebrospinal fluid

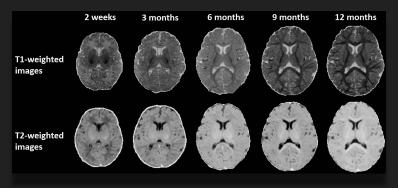


Fig 12: MIICCAI Grand Challenge on iSeg-2017, 6-Month infant Brain MRI Segmentation, <u>iSeg-2017</u>

Overview of the U-Net Utilized for Segmentation Tasks

Segmentation Overview:

- Segmentation of Regions : White matter and gray matter are grouped in relation to other tissues
- ❖ 2D Slices: Working with cuts along the z-axis of the brain
- Slice Filtering: Area is calculated; only slices with an area greater than 100 are retained

U-Net Model:

- **♦ Architecture**: 39 layers
- **Parameters**: 485,885 parameters
- **Dropout**: Set at 0.5 between the 4th and 5th convolutional layers in the encoding phase
- Training: Utilized the Adam optimizer with 30 epochs and a batch size of 16

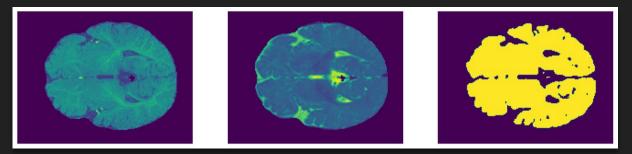


Fig 13: T1 / T2 / Region to Segment for Slice 128 for patient 0 from the training set

Summary of Network Performance on the Test Set (X_test)

Model Performance on Test Set:

Metric	Value
Loss	0.095
Accuracy	0.9886
Dice score	0.9249
Precision	0.9121
Recall	0.939

Fig 14: Segmentation of slice 128 vs ground truth for the patient 0 from the training set

Experimental Results for Monte Carlo Dropout Method

Training Parameters for Monte Carlo Dropout:

- **! Iterations**: 100 iterations
- ❖ **Dropout**: Set to 0.5 between the 4th and 5th convolutional layers in the encoding phase
- ❖ Pixel-wise Prediction : Average of the predicted softmax values calculated across each pass through the model

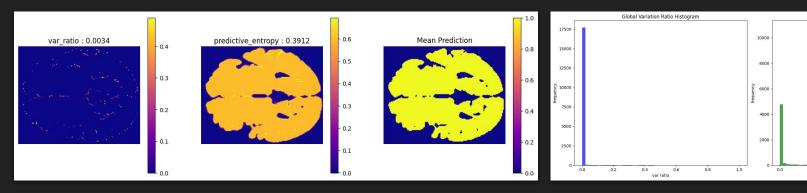


Fig 15: Uncertainty quantification, average prediction, and uncertainty histogram after 100 iterations on slice 128 of patient 0 from the training set

Global Predictive Entropy Histogram

predictive entropy

Experimental Results for Deep Ensembles Method

Training Parameters for Deep Ensembles:

Number of Models: 5

❖ **Different Seeds**: Trained with different seeds

Epochs: 30

Optimizer : Adam

Model / Metric	Dice Score	IoU	Precision	Recall
Model 1	0.9254	0.8944	0.9243	0.9275
Model 2	0.9233	0.8911	0.9035	0.9459
Model 3	0.9221	0.8886	0.9241	0.9212
Model 4	0.9176	0.8813	0.8967	0.9422
Model 5	0.9019	0.8545	0.8601	0.9529

Summary Table of the Performance of the 5 Ensemble Models

Fig 16: Predictions from the 5 ensemble models for slice 128 for patient 0 from the training set

Experimental Results for Deep Ensembles Method

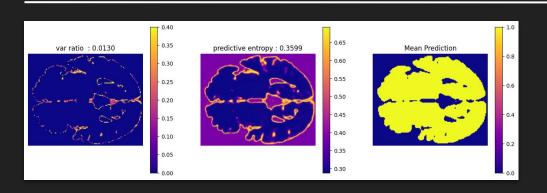


Fig 17: Uncertainty quantification, average prediction, with Deep Ensembles on slice 128 for patient 0 from the training set

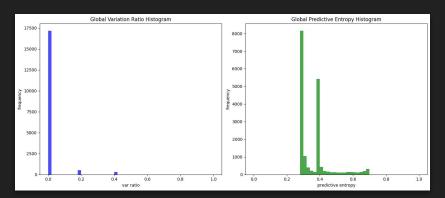


Fig 18: Uncertainty histograms for Variation Ratio and Predictive Entropy with Deep Ensembles on slice 128 for patient 0 from the training set

Experimental Results for Deep Ensembles combined with Monte Carlo Dropout Method

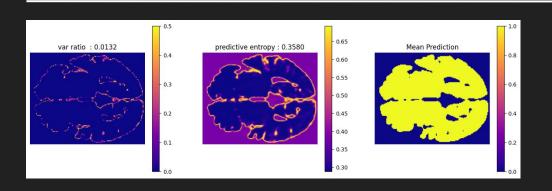


Fig 19: Uncertainty quantification, average prediction, with Deep Ensembles on slice 128 for patient 0 from the training set

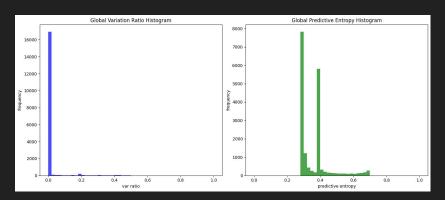


Fig 20: Uncertainty histograms for Variation Ratio and Predictive Entropy with Deep Ensembles on slice 128 for patient 0 from the training set

Evaluating Segmentation Uncertainty Metrics Under Gaussian Noise

• We apply Gaussian noise with a standard deviation of 0.5 to blur the image and introduce noise into the data, aiming to observe the behavior of the uncertainty quantification methods

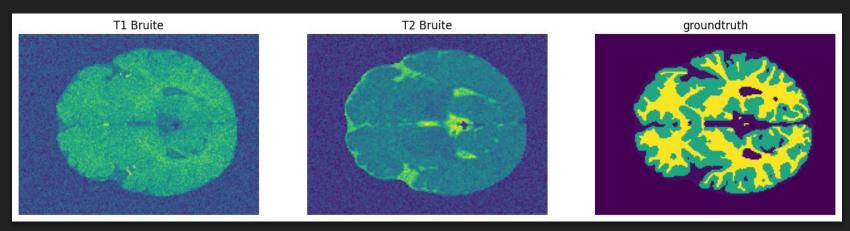


Fig 21: Noisy T1, T2 and Ground Truth

Fig 22: Mean prediction using the Monte Carlo Dropout (MCD) method

Fig 23: Predictions from the five models of the ensemble

• We calculate the Variance Ratio to focus on epistemic uncertainty, aiming to measure the variability in predictions caused by model uncertainty rather than data noise

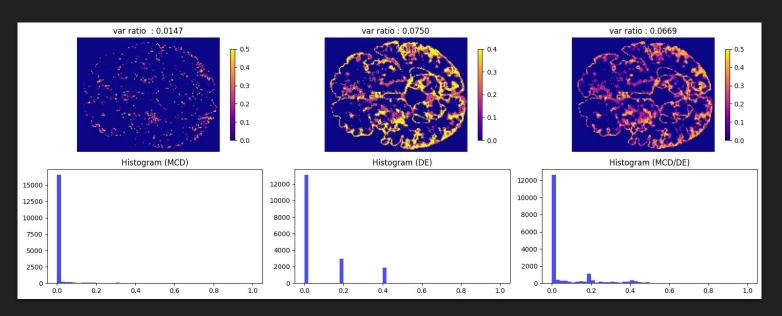


Fig 24: Variation Ratio maps and histograms for noisy predictions using MCD, Deep Ensembles, and Hybrid methods

• We calculate the Predictive Entropy to focus on aleatoric uncertainty, aiming to measure the variability in predictions caused by data noise rather than model uncertainty

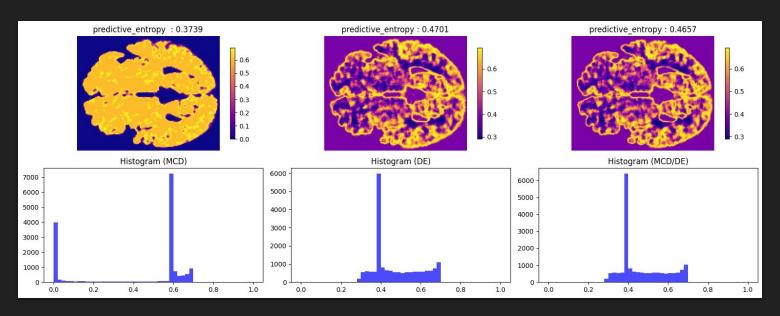
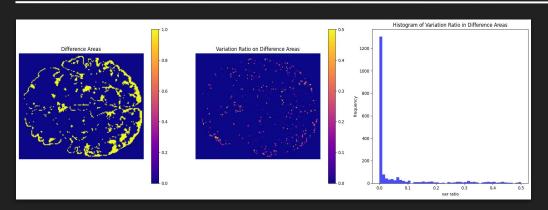


Fig 25: Predictive Entropy maps and histograms for noisy predictions using MCD, Deep Ensembles, and Hybrid methods



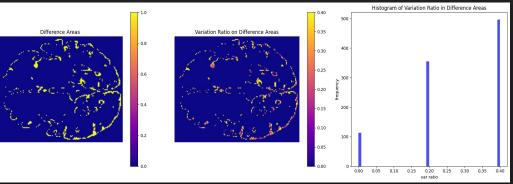


Fig 26 : Difference map between ground truth and prediction using Monte Carlo Dropout, with Variation Ratio analysis and histogram focused on the differing regions

Fig 27: Difference map between ground truth and prediction using Deep Ensembles, with Variation Ratio analysis and histogram focused on the differing regions

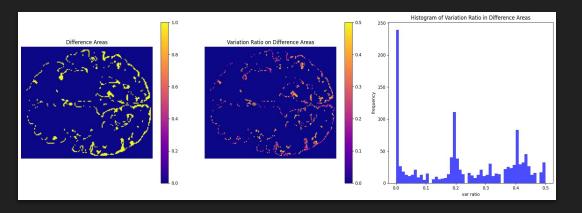


Fig 28: Difference map between ground truth and prediction using Hybrid Method with Variation Ratio analysis and histogram focused on the differing regions

Related Work: Achievements for this Semester

* Hybrid Approach: Developed a hybrid method combining Deep Ensembles and Monte Carlo Dropout to enhance uncertainty quantification

❖ Classification Tasks: Tested the methods on a classification task using the *MNIST* dataset

Uncertainty Quantification Methods: Implemented and compared Monte Carlo Dropout (MCD) and Deep Ensembles for Uncertainty Estimation

Future Directions for the Project

Exploring more complex Segmentations: Extend experiments to more complex structures using datasets like MRBrains, requiring finer anatomical segmentation

* Hybrid Approach Evaluation: Continue testing the combination of Monte Carlo Dropout and Deep Ensembles, comparing its performance with standard Deep Ensembles alone for uncertainty quantification

Bibliography (1/2)

- [1]: *Mathématiques et imagerie*, Bibliothèque Tangente n°77, Edition Pôle, 2022 https://infinimath.com/librairie/pdf/BIB77 sommaire.pdf
- [2] : *Pense-bête de réseaux de neurones convolutionnels*, Afshine Amidi, Shervine Amidi, <u>CS 230 Pense-bête de réseaux de neurones convolutionnels</u>
- [3]: *Formation EJN IA Incertitudes et robustesse*, DE LA RECHERCHE À L'INDUSTRIE, Geoffrey Daniel https://indico.in2p3.fr/event/25725/contributions/103322/attachments/69771/98691/Incertitudes_robustesse.pdf
- [4]: *Monte Carlo Dropout for Uncertainty Estimation in Deep Learning Model*, Moklesur Rahman, March 22, 2023, Monte Carlo Dropout for Uncertainty Estimation in Deep Learning Model | by Moklesur Rahman
- [5]: **Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning,** Yarin Gal, Zoubin Ghahramani, University of Cambridge [1506.02142] Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Bibliography (2/2)

[5]: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, Balaji Lakshminarayanan Alexander Pritzel Charles Blundell [1612.01474] Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

[6]: MIICCAI Grand Challenge on iSeg-2017, 6-Month infant Brain MRI Segmentation, iSeg-2017

[7]: D.10 - Score de Brier (BS) et score de performance de Brier (BSS) D.10 - Score de Brier (BS) et score de performance de Brier (BSS) - Wikhydro

[8] : Sorbonne Université, Computer Science Master Données, Apprentissage et Connaissances (DAC) Bayesian Deep Learning, Nicolas Thome RDFIA (M2 SU)

