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Segmentation In Medical Imaging with Deep Learning

❏ Segmentation of brain MRI’s using deep learning 

algorithms across various datasets

❏ Improved Interpretation: Quantifying the uncertainty 

in segmentations produced by Neural Networks enhances 

interpretation for medical teams

❏ Uncertainty in Deep Learning: Addressing uncertainty 

remains a crucial and unresolved challenge in the field

❏ State of the Art: The leading approaches to quantify 

uncertainty include two main methods: Monte Carlo 

Dropout and Deep Ensembles
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Presentation Outline

❖ State of the Art and Uncertainty Metrics

❖ Classification Task on MNIST

❖ iSeg-2017: 6-month Infant Brain MRI Segmentation

❖ Experimentations

❖ Related Work : Achievements for this Semester

❖ Future Directions for the Project
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Quantifying Uncertainty in Deep Learning

Prediction Prediction 1 Prediction 2 Prediction 3 Prediction 4 Prediction 5 Prediction 6 Prediction 7

Label 0 0.0993 0.1861 0.0651 0.0691 0.0480 0.1379 0.1511

Label 1 0.9007 0.8139 0.9349 0.9309 0.9520 0.8621 0.8489

Softmax Output for each prediction : Represents the probability of belonging to class 1 or class 0

For this distribution, we have the following results for the mean and standard deviation :
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State of the art : Quantify uncertainties with Deep Ensembles

Overview :

❏ Build and train a set of models to perform several predictions 

with each network

❏ Estimate the final prediction by aggregating predictions and 

computing the mean prediction of the ensemble

❏ Estimate uncertainty by calculating different metric, such as 

standard deviation from the mean

Key Steps :

❏ Train five models with different initializations

❏ Assign a unique seed to each model to control the 

variations in initialization.

❏ Train each U-Net independently on different subsets 

of the training dataset

Fig 1 : Simple and Scalable Predictive Uncertainty Estimation using 
Deep Ensembles, Balaji Lakshminarayanan Alexander Pritzel Charles 
Blundell [1612.01474] Simple and Scalable Predictive Uncertainty 
Estimation using Deep Ensembles

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, Balaji Lakshminarayanan Alexander Pritzel Charles Blundell
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State of the art : Quantify uncertainties with Monte Carlo Dropout

Overview :

❖ Dropout Regularization: This technique randomly deactivates a subset of neurons during each forward pass to reduce 
overfitting in neural networks

❖ Bayesian Approximation: By treating each forward pass as a sample from a Bayesian posterior distribution, the method 
allows for uncertainty quantification by applying dropout both during training and testing.

❖ Predictive Distribution: To capture the model’s uncertainty, multiple forward passes ( between 30 and 100) are performed 
for each input, generating a distribution of predictions

Key Steps :

❖ Training: The model is trained with dropout enabled, often at a rate of around 0.4, to promote robust feature learning
❖ Testing/Inference: During inference, dropout remains active, and several forward passes (e.g., 100) are executed to gather a 

range of predictions
❖ Aggregation: Finally, the mean and variance of these predictions are calculated, providing not only the expected output but 

also a measure of uncertainty associated with the predictions

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning,Yarin Gal Zoubin Ghahramani
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Combining Deep Ensembles and Monte Carlo Dropout (MCD)

Why Combine Deep Ensembles and MCD ?

Monte Carlo Dropout (MCD) :

● Advantages:
○ Efficient : Generates many predictions from a single trained model

● Limitations:
○ Limited diversity : Predictions tend to be similar, reducing the quality of uncertainty estimation

Deep Ensembles :

● Advantages :
○ Captures a broader and better range of predictive differences.

● Limitations :
○ Computationally expensive : Requires training multiple models
○ Limited predictions: Typically only 5 predictions, insufficient for a proper distribution
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Combining Deep Ensembles and Monte Carlo Dropout (MCD)

Overview of the Combined Method

● Train 5 models independently as in Deep Ensembles
● For each model, perform 20 stochastic predictions with Dropout activated
● Combine the predictions to create a distribution of 100 predictions
● Goal: Capture greater diversity in predictions and establish a more robust uncertainty estimation

Key Idea of the Combined Approach

● Leverage the strengths of both methods :
○ Deep Ensembles provide diverse predictive distributions
○ MCD generates a large number of predictions for each model

● Result :
○ Improved diversity in predictions from the ensemble
○ Higher quality uncertainty estimation with a more complete predictive distribution
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Quantifying Uncertainty in Deep Learning (1/2)
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Quantifying Uncertainty in Deep Learning (2/2)
Example of variance ratio : 

If a pixel is classified as {1,1,1,1,1,0} over 6 passes, 

● The most frequent class is c* = 1
● The frequency of c* is f = 5

The variance_ratio is calculated as : 

If a pixel is classified as {1,0,1,0,1,0} over 6 passes, 

● Both classes c* = 0 and c* = 1 appear with the same 
frequency

● The frequency of the most frequent class is f  = 3

The variance_ratio is calculated as : 

If a pixel is predicted with the probabilities : {0.9,0.9,0.9,0.9,0.9,0.9} over 6 
passes,

The average predicted probability for class 1 is :

Example of predictive entropy : 

If a pixel is predicted with the probabilities : {0.5,0.5,0.5,0.5,0.5,0.5} over 6 
passes,

The average predicted probability for class 1 is :

10/32



Classification Task on MNIST

❖ Convolutional Layers :
➢ 6 channels, kernel size 5, padding 2, ReLU activation
➢ Max pooling, kernel size 2
➢ 16 channels, kernel size 5, ReLU activation
➢ Max pooling, kernel size 2

❖ Fully-Connected Layers :
➢ Dropout p = 0.25
➢ 120 units, ReLU activation
➢ Dropout p = 0.5
➢ 10 output units (one per digit class)

Fig 2 : Architecture of AlexNet for MNIST classification Fig 3 : Sample of digits with both clear and unclear representations from the 
MNIST dataset
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Classification Task on MNIST (1/3)

Metric Value

Accuracy 0.9923

Recall 0.9923

F1 Score 0.9922

Fig 4 : Performance metrics of the model evaluated on the 
MNIST test set

Model Accuracy Recall F1-Score

Model 1 0.9890 0.9890 0.9890

Model 2 0.9902 0.9902 0.9902

Model 3 0.9909 0.9909 0.9909

Model 4 0.9745 0.9745 0.9746

Model 5 0.9862 0.9862 0.9862

Fig 5 : Performance metrics (Accuracy, Recall, F1-Score) for the five 
independently trained models in the ensemble, evaluated on the MNIST test set

Deep Ensembles MethodMonte Carlo Dropout Method

● Each model was initialized with a different random seed to ensure 
diversity in predictions
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Classification Task on MNIST (2/3)

Fig 6 : Prediction and uncertainty 
visualization for a correctly 
classified MNIST digit with MCD 
method. The model predicted 3 
while the true label was 3

Fig 7 : Prediction and uncertainty 
visualization for a correctly 
classified MNIST digit with MCD 
method. The model predicted 8 
while the true label was 8

Fig 8 : Prediction and uncertainty 
visualization for a misclassified 
MNIST digit with MCD method. 
The model predicted 9 while the 
true label was 7
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Classification Task on MNIST (3/3)

Fig 9 : Prediction and uncertainty 
visualization for a correctly 
classified MNIST digit with MCD 
method. The model predicted 6 
while the true label was 6

Fig 10 : Prediction and 
uncertainty visualization for a 
misclassified MNIST digit with 
Deep Ensembles  method. The 
model predicted 0 while the true 
label was 6

Fig 11 : Prediction and 
uncertainty visualization for a 
misclassified MNIST digit with 
Hybrid method. The model 
predicted 0 while the true label 
was 6
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iSeg-2017 : 6-month infant brain MRI Segmentation

❏ iSeg-2017 challenge focuses on comparing semi-automatic algorithms for segmenting 6-month infant brain MRIs 

using T1 and T2 images

❏ Critical for studying the dynamic first year of postnatal human brain development and associated cognitive and motor 

functions

❏ Intense phase at 6 months presents the lowest tissue contrast, posing significant challenges for accurate segmentation

❏ Engages researchers to develop and test automatic segmentation algorithms for white matter, gray matter, and 

cerebrospinal fluid

Fig 12 : MIICCAI Grand Challenge on iSeg-2017, 6-Month 
infant Brain MRI Segmentation, iSeg-2017
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Overview of the U-Net Utilized for Segmentation Tasks

Fig 13 : T1 / T2 / Region to Segment for Slice 128 for patient 0 from the training set

Segmentation Overview :

❖ Segmentation of Regions : White matter and gray matter are grouped in relation to other tissues

❖ 2D Slices: Working with cuts along the z-axis of the brain

❖ Slice Filtering: Area is calculated ; only slices with an area greater than 100 are retained

U-Net Model :

❖ Architecture : 39 layers
❖ Parameters : 485,885 parameters
❖ Dropout : Set at 0.5 between the 4th and 5th convolutional layers in the encoding phase
❖ Training : Utilized the Adam optimizer with 30 epochs and a batch size of 16
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Summary of Network Performance on the Test Set (X_test)

Fig 14 : Segmentation of slice 128 vs ground truth for the patient 0 from the training set

Model Performance on Test Set :

Metric Value

Loss 0.095

Accuracy 0.9886

Dice score 0.9249

Precision 0.9121

Recall 0.939
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Experimental Results for Monte Carlo Dropout Method

Training Parameters for Monte Carlo Dropout :

❖ Iterations : 100 iterations
❖ Dropout : Set to 0.5 between the 4th and 5th convolutional layers in the encoding phase
❖ Pixel-wise Prediction : Average of the predicted softmax values calculated across each pass 

through the model

Fig 15 : Uncertainty quantification, average prediction, and uncertainty histogram after 100 iterations on slice 128 of patient 0 from the 
training set
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Experimental Results for Deep Ensembles Method

Training Parameters for Deep Ensembles :

❖ Number of Models : 5
❖ Different Seeds : Trained with different seeds
❖ Epochs : 30
❖ Optimizer : Adam

Fig 16 : Predictions from the 5 ensemble models for slice 128 for patient 0 from the training set

Model / Metric Dice Score IoU Precision Recall

Model 1 0.9254 0.8944 0.9243 0.9275

Model 2 0.9233 0.8911 0.9035 0.9459

Model 3 0.9221 0.8886 0.9241 0.9212

Model 4 0.9176 0.8813 0.8967 0.9422

Model 5 0.9019 0.8545 0.8601 0.9529

Summary Table of the Performance of the 5 Ensemble Models
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Experimental Results for Deep Ensembles Method

Fig 17 : Uncertainty quantification, average 
prediction, with Deep Ensembles on slice 128 for 
patient 0 from the training set

Fig 18 : Uncertainty histograms for Variation Ratio 
and Predictive Entropy with Deep Ensembles on 
slice 128 for patient 0 from the training set
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Experimental Results for Deep Ensembles combined with Monte Carlo Dropout Method

Fig 19 : Uncertainty quantification, average 
prediction, with Deep Ensembles on slice 128 for 
patient 0 from the training set

Fig 20 : Uncertainty histograms for Variation Ratio 
and Predictive Entropy with Deep Ensembles on 
slice 128 for patient 0 from the training set
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Experimental Results on a blurred image for the 3 methods

Fig 21 : Noisy T1, T2 and Ground Truth

Evaluating Segmentation Uncertainty Metrics Under Gaussian Noise

● We apply Gaussian noise with a standard deviation of 0.5 to blur the image and introduce noise into 
the data, aiming to observe the behavior of the uncertainty quantification methods
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Experimental Results on a blurred image for the 3 methods

Fig 22 : Mean prediction using the Monte Carlo Dropout (MCD) method

Fig 23 : Predictions from the five models of the ensemble
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Experimental Results on a blurred image for the 3 methods

● We calculate the Variance Ratio to focus on epistemic uncertainty, aiming to measure the variability in 
predictions caused by model uncertainty rather than data noise

Fig 24 : Variation Ratio maps and histograms for noisy predictions using MCD, Deep Ensembles, and Hybrid methods
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Experimental Results on a blurred image for the 3 methods

● We calculate the Predictive Entropy to focus on aleatoric uncertainty, aiming to measure the variability in 
predictions caused by data noise rather than model uncertainty

Fig 25 : Predictive Entropy maps and histograms for noisy predictions using MCD, Deep Ensembles, and Hybrid methods
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Experimental Results on a blurred image for the 3 methods (1/2)

Fig 26 : Difference map between ground truth 
and prediction using Monte Carlo Dropout, with 
Variation Ratio analysis and histogram focused on 
the differing regions

Fig 27 : Difference map between ground truth 
and prediction using Deep Ensembles, with 
Variation Ratio analysis and histogram focused on 
the differing regions
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Experimental Results on a blurred image for the 3 methods (2/2)

Fig 28 : Difference map between ground truth and prediction using Hybrid Method with Variation Ratio analysis and histogram 
focused on the differing regions
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Related Work : Achievements for this Semester

❖ Hybrid Approach : Developed a hybrid method combining Deep Ensembles 
and Monte Carlo Dropout to enhance uncertainty quantification

❖ Classification Tasks : Tested the methods on a classification task using the 
MNIST dataset

❖ Uncertainty Quantification Methods : Implemented and compared Monte 
Carlo Dropout (MCD) and Deep Ensembles for Uncertainty Estimation
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Future Directions for the Project

❖ Exploring more complex Segmentations : Extend experiments to more 
complex structures using datasets like MRBrains, requiring finer anatomical 
segmentation

❖ Hybrid Approach Evaluation : Continue testing the combination of Monte 
Carlo Dropout and Deep Ensembles, comparing its performance with standard 
Deep Ensembles alone for uncertainty quantification
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