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Segmentation In Medical Imaging with Deep Learning

LRE

Segmentation of brain MRI’s using deep learning
algorithms across various datasets

Improved Interpretation: Quantifying the uncertainty
in segmentations produced by Neural Networks enhances
interpretation for medical teams

Uncertainty in Deep Learning: Addressing uncertainty
remains a crucial and unresolved challenge in the field
State of the Art: The leading approaches to quantify
uncertainty include two main methods: Monte Carlo

Dropout and Deep Ensembles
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Presentation Outline
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State of the Art and Uncertainty Metrics
Classification Task on MNIST

1Seg-2017: 6-month Infant Brain MRI Segmentation
Experimentations

Related Work : Achievements for this Semester

Future Directions for the Project
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Quantifying Uncertainty in Deep Learning

Prediction Prediction 1 | Prediction 2 Prediction 3 Prediction 4 Prediction 5 | Prediction 6 Prediction 7
Label 0 0.0993 0.1861 0.0651 0.0691 0.0480 0.1379 0.1511
Label 1 0.9007 0.8139 0.9349 0.9309 0.9520 0.8621 0.8489

Softmax Output for each prediction : Represents the probability of belonging to class 1 or class 0

For this distribution, we have the following results for the mean and standard deviation :

7 1 Z X, — 0.9007 + 0.8139 + 0.9349 + 0.9309 + 0.9520 + 0.8621 + 0.8489 _ 0.8919
= 7
1 n
o=14| =S (X; — X)? ~ 0.0467
n
i
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State of the art : Quantify uncertainties with Deep Ensembles

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, Balaji Lakshminarayanan Alexander Pritzel Charles Blundell

Overview :

(d  Build and train a set of models to perform several predictions

with each network

(d  Estimate the final prediction by aggregating predictions and
computing the mean prediction of the ensemble

(d  Estimate uncertainty by calculating different metric, such as

standard deviation from the mean

Key Steps :

A Train five models with different initializations

(A Assign a unique seed to each model to control the
variations in initialization.

(A  Train each U-Net independently on different subsets

of the training dataset

LRE

Algorithm 1 Pseudocode of the training procedure for our method

1:

9 g b

> Let each neural network parametrize a distribution over the outputs, i.e. pg(y|x). Use a proper
scoring rule as the training criterion £(0, x,y). Recommended default values are M = 5 and
€ = 1% of the input range of the corresponding dimension (e.g 2.55 if input range is [0,255]).

: Initialize 6,05, . .., 0, randomly
:form=1:Mdo > train networks independently in parallel

Sample data point n,,, randomly for each net > single n., for clarity, minibatch in practice
Generate adversarial example using x;, = X, + € sign(Vxnm £(Om, Xn,,, ynm))
Minimize £(0pm, Xn,, ) Yn,,) + £O0m, X}, Yn,,) WLt O > adversarial training (optional)

Fig 1 : Simple and Scalable Predictive Uncertainty Estimation using
Deep Ensembles, Balaji Lakshminarayanan Alexander Pritzel Charles
Blundell [1612.01474] Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles
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https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474

State of the art : Quantify uncertainties with Monte Carlo Dropout

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning,Yarin Gal Zoubin Ghahramani

Overview :

%  Dropout Regularization: This technique randomly deactivates a subset of neurons during each forward pass to reduce
overfitting in neural networks

%  Bayesian Approximation: By treating each forward pass as a sample from a Bayesian posterior distribution, the method
allows for uncertainty quantification by applying dropout both during training and testing.

s Predictive Distribution: To capture the model’s uncertainty, multiple forward passes ( between 30 and 100) are performed

for each input, generating a distribution of predictions

Key Steps :

%  Training: The model is trained with dropout enabled, often at a rate of around 0.4, to promote robust feature learning
%  Testing/Inference: During inference, dropout remains active, and several forward passes (e.g., 100) are executed to gather a
range of predictions

% Aggregation: Finally, the mean and variance of these predictions are calculated, providing not only the expected output but
also a measure of uncertainty associated with the predictions
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Combining Deep Ensembles and Monte Carlo Dropout (MCD)

Why Combine Deep Ensembles and MCD ?

Monte Carlo Dropout (MCD) :

e Advantages:
o  Efficient : Generates many predictions from a single trained model
e Limitations:
o  Limited diversity : Predictions tend to be similar, reducing the quality of uncertainty estimation

Deep Ensembles :

e  Advantages :
o  Captures a broader and better range of predictive differences.
e Limitations :
o  Computationally expensive : Requires training multiple models
o  Limited predictions: Typically only 5 predictions, insufficient for a proper distribution

LRE
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Combining Deep Ensembles and Monte Carlo Dropout (MCD)

Overview of the Combined Method

Train 5 models independently as in Deep Ensembles

For each model, perform 20 stochastic predictions with Dropout activated

Combine the predictions to create a distribution of 100 predictions

Goal: Capture greater diversity in predictions and establish a more robust uncertainty estimation

Key Idea of the Combined Approach

e Leverage the strengths of both methods :
o  Deep Ensembles provide diverse predictive distributions
o MCD generates a large number of predictions for each model
e Result:
o  Improved diversity in predictions from the ensemble
o  Higher quality uncertainty estimation with a more complete predictive distribution

LRE
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Quantifying Uncertainty in Deep Learning (1/2)

1. Variation ratios
> For each stochastic forward pass t € {1; T}, compute label from
softmax probabilities
» ¢*: most frequent label over the T passes, v:/ith frequency f,f*
» Compute variation-ratio var-ratio[x] =1 — —f;T—
= Epistemic uncertainty

2. Predictive entropy: captures the average amount of information
contained in the predictive distribution.

Ayl Desi] = = (3 X ply = el ) ok (- 3 by = el )

= Aleatoric uncertainty

3. Mutual information : maximise the mutual informations are points
on which the model is uncertain on average

. ~ 1 . .
L1y, wix, Dtrain] = H[y|x, Derain] ~ - > p(y = c|x, W) log p(y = c|x, W)
et

= Epistemic uncertainty

LRE
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Quantifying Uncertainty in Deep Learning (2/2)

Example of variance ratio :
If a pixel is classified as {1,1,1,1,1,0} over 6 passes,

e  The most frequent class is c* =1
e The frequency of c*is f=5

The variance_ratio is calculated as :

fc*

var_ratio=1—-~— =1 —

= 0.1667
T

| Ot

If a pixel is classified as {1,0,1,0,1,0} over 6 passes,

e Both classes ¢*=0 and c* = 1 appear with the same
frequency
e  The frequency of the most frequent class is f= 3

The variance ratio is calculated as :

fc’* 3

var_ ratio=1—-~—-—=1— - =0.5

LRE - T 6

Example of predictive entropy :

If a pixel is predicted with the probabilities : {0.9,0.9,0.9,0.9,0.9,0.9} over 6
passes,

The average predicted probability for class 1 is :
p1=0.9
The entropy is:
H = — (p11og(p1) + (1 — p1) log(1 — p1))
Substituting p1 = 0.9:

H = —(0.910g(0.9) + 0.110g(0.1)) = 0.2715

If a pixel is predicted with the probabilities : {0.5,0.5,0.5,0.5,0.5,0.5} over 6
passes,

The average predicted probability for class 1 is :
p1 = 0.5
The entropy is:
H = — (p11og(p1) + (1 — p1) log(1 — p1))
Substituting p; = 0.5:

H = — (0.510g(0.5) + 0.5log(0.5)) = 0.693
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Classification Task on MNIST

< Convolutional Layers :
> 6 channels, kernel size 5, padding 2, ReLU activation
> Max pooling, kernel size 2
> 16 channels, kernel size 5, ReLU activation
> Max pooling, kernel size 2
<> Fully-Connected Layers :
> Dropout p = 0.25
> 120 units, ReLU activation
> Dropout p=0.5
> 10 output units (one per digit class)

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INpUT 6@28x28

32x32 S2: f. maps C5: layer
8@14x14 | ool F6 layer OUTPUT
I ) <
‘ Full connectlon ‘ Gaussian connections
Convolunons Subsampling Convolutions ~ Subsampling Full connection

Fig 2 : Architecture of AlexNet for MNIST classification

LRE

Fig 3 : Sample of digits with both clear and unclear representations from the
MNIST dataset
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Classification Task on MNIST (1/3)

Monte Carlo Dropout Method

Metric Value
Accuracy 0.9923
Recall 0.9923
F1 Score 0.9922

Fig 4 : Performance metrics of the model evaluated on the

MNIST test set

LRE

Deep Ensembles Method
Model Accuracy Recall F1-Score
Model 1 0.9890 0.9890 0.9890
Model 2 0.9902 0.9902 0.9902
Model 3 0.9909 0.9909 0.9909
Model 4 0.9745 0.9745 0.9746
Model 5 0.9862 0.9862 0.9862

Fig 5 : Performance metrics (Accuracy, Recall, F1-Score) for the five
independently trained models in the ensemble, evaluated on the MNIST test set

° Each model was initialized with a different random seed to ensure
diversity in predictions
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Classification Task on MNIST (2/3)

var-ratio=0.000,

gt=3, pred=3

var-ratio=0.620,

gt=8, pred=8

var-ratio=0.660,

gt=7, pred=9

17
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Fig 6 : Prediction and uncertainty
visualization for a correctly
classified MNIST digit with MCD
method. The model predicted 3
while the true label was 3

Fig 7 : Prediction and uncertainty
visualization for a correctly
classified MNIST digit with MCD
method. The model predicted 8
while the true label was 8

Fig 8 : Prediction and uncertainty
visualization for a misclassified
MNIST digit with MCD method.
The model predicted 9 while the
true label was 7
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Classification Task on MNIST (3/3)

var-ratio=0.210, . .- .
gt=6, pred=6 Mean probs Maxprob frequencies Samples probs of class 6 Samples probs of class 0 Samples probs of class 2 th 9 : Prediction and uncertalnty

visualization for a correctly
classified MNIST digit with MCD
method. The model predicted 6
while the true label was 6

0
01234567829 01234567829

var-ratio=0.400, . L.
gt=6, pred=0 Mean probs Maxprob frequencies " Samples probs of class 6 " Samples probs of class 0 o Samples probs of class 8 Flg 10 : Prediction and

uncertainty visualization for a
misclassified MNIST digit with
Deep Ensembles method. The
model predicted 0 while the true
01234567809 01234567809 label was 6

var-ratio=0.620, . ..
gt=6, pred=0 Mean probs Maxprob frequencies & Samples probs of class 0 - Samples probs of class 6 - Samples probs of class 2 Flg 11 : Prediction and

uncertainty visualization for a
misclassified MNIST digit with
Hybrid method. The model
predicted 0 while the true label

0123456789 0123456789 was 6

LRE_
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iSeg-2017 : 6-month infant brain MRI Segmentation

[ iSeg-2017 challenge focuses on comparing semi-automatic algorithms for segmenting 6-month infant brain MRIs
using T1 and T2 images
(A Critical for studying the dynamic first year of postnatal human brain development and associated cognitive and motor

functions
(A  Intense phase at 6 months presents the lowest tissue contrast, posing significant challenges for accurate segmentation

(A Engages researchers to develop and test automatic segmentation algorithms for white matter, gray matter, and

Cerebrosplnal ﬂuld 2 weeks 3 months 6 months 9 months 12 months

T1-weighted
images

£

8

f‘. A% A
fis 2
\ ek,

. '/'

Fig 12 : MIICCAI Grand Challenge on iSeg-2017, 6-Month
LRE - infant Brain MRI Segmentation, iSeg-2017

T2-weighted
images
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https://iseg2017.web.unc.edu/

Overview of the U-Net Utilized for Segmentation Tasks

Segmentation Overview :

%  Segmentation of Regions : White matter and gray matter are grouped in relation to other tissues

7

% 2D Slices: Working with cuts along the z-axis of the brain

7

% Slice Filtering: Area is calculated ; only slices with an area greater than 100 are retained
U-Net Model :

2

< Architecture : 39 layers

2

< Parameters : 485,885 parameters

2

<  Dropout : Set at 0.5 between the 4th and 5th convolutional layers in the encoding phase

2

«  Training : Utilized the Adam optimizer with 30 epochs and a batch size of 16

LRE Fig 13 : T1/ T2/ Region to Segment for Slice 128 for patient 0 from the training set

16/32



Summary of Network Performance on the Test Set (X _test)

Model Performance on Test Set :

Metric Value
Loss 0.095
Accuracy 0.9886
Dice score 0.9249
Precision 0.9121
Recall 0.939

LRE Fig 14 : Segmentation of slice 128 vs ground truth for the patient 0 from the training set
17/32



Experimental Results for Monte Carlo Dropout Method

Training Parameters for Monte Carlo Dropout :

% Iterations : 100 iterations

<> Dropout : Set to 0.5 between the 4th and 5th convolutional layers in the encoding phase

> Pixel-wise Prediction : Average of the predicted softmax values calculated across each pass
through the model

Global Variation Ratio Histogram Global Predictive Entropy Histogram

var_ratio : 0.0034 predictive_entropy : 0.3912 H . Mean Prediction
- .3 -

Fig 15 : Uncertainty quantification, average prediction, and uncertainty histogram after 100 iterations on slice 128 of patient 0 from the

training set

LRE
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Experimental Results for Deep Ensembles Method

9.0 Model / Metri Di I Precisi Recall
Training Parameters for Deep Ensembles : odel / Metric ice Score | ToU recsion el
. Model 1 0.9254 0.8944 0.9243 0.9275
s Number of Models : 5
%  Different Seeds : Trained with different seeds Model 2 0.9233 0.8911 0.9035 0.9459
s  Epochs : 30
& Optimizer : Adam Model 3 0.9221 0.8886 0.9241 0.9212
Model 4 0.9176 0.8813 0.8967 0.9422
Model 5 0.9019 0.8545 0.8601 0.9529
Summary Table of the Performance of the S Ensemble Models
LRE Fig 16 : Predictions from the 5 ensemble models for slice 128 for patient O from the training set
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Experimental Results for Deep Ensembles Method

var ratio : 0.0130 ' predictive entropy : 0.3599 Mean Prediction

Fig 17 : Uncertainty quantification, average
prediction, with Deep Ensembles on slice 128 for
patient 0 from the training set

Global Variation Ratio Histogram Global Predictive Entropy Histogram

Fig 18 : Uncertainty histograms for Variation Ratio
and Predictive Entropy with Deep Ensembles on
slice 128 for patient 0 from the training set
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Experimental Results for Deep Ensembles combined with Monte Carlo Dropout Method

var ratio : 0.0132 Mean Prediction

Fig 19 : Uncertainty quantification, average
prediction, with Deep Ensembles on slice 128 for
patient 0 from the training set

Global Variation Ratio Histogram Global Predictive Entropy Histogram

Fig 20 : Uncertainty histograms for Variation Ratio
and Predictive Entropy with Deep Ensembles on
slice 128 for patient 0 from the training set
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Experimental Results on a blurred image for the 3 methods

Evaluating Segmentation Uncertainty Metrics Under Gaussian Noise

e We apply Gaussian noise with a standard deviation of 0.5 to blur the image and introduce noise into
the data, aiming to observe the behavior of the uncertainty quantification methods

T1 Bruite T2 Bruite groundtruth

Fig 21 : Noisy T1, T2 and Ground Truth
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Experimental Results on a blurred image for the 3 methods

Fig 23 : Predictions from the five models of the ensemble

LRE
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Experimental Results on a blurred image for the 3 methods

e  We calculate the Variance Ratio to focus on epistemic uncertainty, aiming to measure the variability in
predictions caused by model uncertainty rather than data noise

var ratio : 0.0147 var ratio : 0.0750 var ratio : 0.0669

Histogram (MCD) Histogram (DE) Histogram (MCD/DE)

Fig 24 : Variation Ratio maps and histograms for noisy predictions using MCD, Deep Ensembles, and Hybrid methods

LRE
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Experimental Results on a blurred image for the 3 methods

e  We calculate the Predictive Entropy to focus on aleatoric uncertainty, aiming to measure the variability in
predictions caused by data noise rather than model uncertainty

predictive_entropy : 0.3739 predictive_entropy : 0.4701 predictive_entropy : 0.4657

Histogram (MCD) Histogram (DE) Histogram (MCD/DE)

Fig 25 : Predictive Entropy maps and histograms for noisy predictions using MCD, Deep Ensembles, and Hybrid methods

LRE
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Experimental Results on a blurred image for the 3 methods (1/2)

Histogram of Variation Ratio in Difference Areas

Difference Areas Variation Ratio on Difference Areas

Fig 26 : Difference map between ground truth
and prediction using Monte Carlo Dropout, with
Variation Ratio analysis and histogram focused on
the differing regions

frequency

var ratio

Histogram of Variation Ratio in Difference Areas

Difference Areas Variation Ratio on Difference Areas

Fig 27 : Difference map between ground truth
and prediction using Deep Ensembles, with
Variation Ratio analysis and histogram focused on
the differing regions

020
var ratio
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Experimental Results on a blurred image for the 3 methods (2/2)

Histogram of Variation Ratio in Difference Areas

Fig 28 : Difference map between ground truth and prediction using Hybrid Method with Variation Ratio analysis and histogram
focused on the differing regions

LRE
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Related Work : Achievements for this Semester

7
L X4

Hybrid Approach : Developed a hybrid method combining Deep Ensembles
and Monte Carlo Dropout to enhance uncertainty quantification

7
A X4

Classification Tasks : Tested the methods on a classification task using the
MNIST dataset

% Uncertainty Quantification Methods : Implemented and compared Monte
Carlo Dropout (MCD) and Deep Ensembles for Uncertainty Estimation

LRE
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Future Directions for the Project

LRE

7
%*

7
%*

Exploring more complex Segmentations : Extend experiments to more
complex structures using datasets like MRBrains, requiring finer anatomical

segmentation

Hybrid Approach Evaluation : Continue testing the combination of Monte
Carlo Dropout and Deep Ensembles, comparing its performance with standard
Deep Ensembles alone for uncertainty quantification
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