
MY TECHNICAL REPORT

AUBRY Célien
(supervisor: BEAUDOIN Laurent, AVANTHEY Loïca)

Technical Report nooutput, January 2023
revision

In this technical paper, I present synchronisation system, its embedded architecture and its potability. I
also talk about embedded frugality, which is an innovation approach that aims to create simple, affordable
and effective solutions by maximizing the use of available resources. It is based on simplicity, adaptability,
collaboration and openness, and is applied in many fields, such as technology, agriculture, energy, health
and many others.

Dans ce document technique, je présente un système de synchronisation simple permettant la detection
d’une flotte de catamaran. J’expose aussi sur la frugalité embarquée qui est une approche d’innovation qui
vise à créer des solutions simples, abordables et efficaces en maximisant l’utilisation des ressources dispo-
nibles. Elle repose sur la simplicité, l’adaptabilité, la collaboration et l’ouverture, et trouve son application
dans de nombreux domaines, tels que la technologie, l’agriculture, l’énergie, la santé et bien d’autres.

Keywords
Robot Operating System, Synchronisation, on-board frugality

Laboratoire de Recherche de l’EPITA
14-16, rue Voltaire – FR-94276 Le Kremlin-Bicêtre CEDEX – France

Tél. +33 1 53 14 59 22 – Fax. +33 1 53 14 59 13
caubry@lre.epita.fr – http://www.lre.epita.fr/

caubry@lre.epita.fr
http://www.lre.epita.fr/

Chapter 1

Introduction

The SEAL is an exploratory laboratory. It is made up of two teacher-researchers: Laurent BEAU-
DOIN and Loïca AVANTHEY. One of their aims is to map areas by recovering data in image
form. They survey places, whether on land, at sea or in the air, to recover their relief and appear-
ance. They process the images recovered from their exploration sessions into 3D models. The
images are recovered using exploration robots that patrol the terrain in an optimized manner.
So there are several bodies of work in the SEAL laboratory. There’s the optimization of robot
control: patrolling quickly, without pitfalls and with optimized routes, with as little backtrack-
ing as possible. But there’s also image processing, once the image data has been collected, to
create maps, linked to the use of artificial intelligence to refine the results.

To carry out these missions successfully, robots need to be equipped with a way of perceiv-
ing the environment in which they are evolving. In this way, they will be able to adjust their
trajectory to new instructions, bypass obstacles or compensate for the effect of current without
human intervention, for example.

The information gathering I’ll be using in my research projects will be essentially visual, so
as to be applicable to all robots regardless of whether they’re on land, in the air or at sea. I’ll
be using cameras adapted to on-board constraints, and using image processing, I’ll be able to
retransmit appropriate instructions to the robot.

So that my developments can benefit all robots, I’ll make sure that the software and hardware
are compatible with the ROS 2 inter-logical architecture currently used by SEAL robots.

Initially, I’ll be focusing on setting up an environment that supports ROS2-Humble and is
practical and easy to duplicate. This will enable me to go back in time, as the software takes a
long time to install. Next, I’ll tackle the implementation of the ROS nodes that will enable data
from the GPS sensor to be retrieved, as well as data collected by the diving wing immersed in
water. And then send them to a Raspberry "Beacon" so that the data can be processed by it.

Chapter 2

State of the Art

2.1 Wireless Communication

Communicating with a robot while it’s running is very important. It allows you to interact with
it, even if it operates "independently". Of course, the robots I’m going to use are autonomous,
as we want them to evolve on their own in their environments.

There are several important aspects to communicating with an autonomous robot during
operation:

Monitoring and control: Communication with an autonomous robot during operation en-
ables human operators to monitor its activities and take control if necessary. This is crucial to
ensure that the robot functions correctly, avoiding potential errors, responding to unforeseen
events and ensuring safe operations.

Diagnosis and troubleshooting: In the event of a problem or malfunction, real-time commu-
nication with the robot enables technicians or human operators to carry out remote diagnosis.
They can identify problems, provide instructions for necessary repairs, and even make adjust-
ments to resolve issues without completely interrupting operations.

Interaction with the environment and humans: Some autonomous robots interact with the
environment and humans. Communication during operation can be crucial to managing these
interactions appropriately. For example, in the case of service robots or autonomous vehicles,
communication can enable robots to understand and react to signals, movements and instruc-
tions from people around them.

Learning and continuous improvement: Communication with an autonomous robot during
operation can be used to collect real-time data. This data can be used to improve the robot’s al-
gorithms and capabilities. Interaction with its environment and feedback from exchanges with
humans can contribute to the robot’s continuous learning and adaptation to new or complex
situations.

In short, communication with an autonomous robot during operation is crucial to monitor
its activities, guarantee its safety and reliability, resolve any problems, improve its performance
and facilitate its interaction with the environment and human beings. It helps to ensure that the
robot operates smoothly, maximizing its benefits while minimizing the risks associated with its
use.

It also helps the robot to make the right choices. Certain messages will have certain levels of
priority in its control. A bit like a human. For example, if you give it an order such as "Don’t
move here", the robot will do it, but we can give it a certain amount of freedom, like telling it
that one of your comrades has already passed this way. The aim is to let it choose whether or

2.2 Control / Command 4

not to move here, depending on whether or not it feels it’s important to do so, based on the
information available to it.

2.2 Control / Command

Control engineering is a field of engineering concerned with the design, implementation and
management of systems that regulate the behavior and operation of machines, devices or dy-
namic systems. Its main aim is to maintain or modify the behavior of a system to achieve specific
objectives.

More specifically, control involves the use of sensors to measure relevant variables in a sys-
tem, such as speed, position, temperature and so on. These data are then processed by control
algorithms to generate command signals which are transmitted to actuators to influence system
behavior.

Control principles are used in many fields, including electrical, mechanical, chemical, aerospace,
automotive and robotic engineering, and even in more specific applications such as tempera-
ture control systems in buildings, flight controls for aircraft, automatic navigation systems and
so on.

Types of control vary according to the specific needs of the system to be controlled. They
include continuous control, discrete control, linear control, non-linear control, predictive control
and adaptive control, among others.

Control is therefore a fundamental field of engineering concerned with regulating and influ-
encing the behavior of dynamic systems, using sensors, data processing algorithms and actua-
tors to achieve specific objectives efficiently and precisely.

2.3 Contextualizing data synchronization in embedded systems

Embedded systems refer to computer systems integrated into larger non-computer devices.
They are specially designed to perform specific tasks within a larger system. These systems are
autonomous, often limited in size and resources, and optimized for specific performance.

In a variety of contexts, embedded systems play a crucial role:
Robotics: In the field of robotics, embedded systems are at the heart of robot control. They are
responsible for managing sensors, actuators, data processing and real-time decision-making to
enable robots to interact with their environment and accomplish specific tasks.
Navigation: In the field of navigation, embedded systems are used in GPS (Global Positioning
Systems) to determine precise position, speed and time, providing essential location informa-
tion for accurate navigation and mapping.

GPS is a satellite-based positioning technology widely used in embedded systems. It uses a
network of orbiting satellites to transmit signals to receivers on Earth. These signals are picked
up by GPS receivers to calculate their exact position in terms of latitude, longitude, altitude and
time-stamp.

The essential role of GPS in precise positioning and navigation is fundamental to many ap-
plications, such as
Car navigation: to provide drivers with precise routes and directions. Maritime and air navi-
gation: for ship and aircraft navigation.
Mobile applications: For location, geolocation, tracking and mapping services in smartphones
and other portable devices.
Geolocation systems for logistics: For tracking and managing shipments, vehicle fleets and
more.

5 State of the Art

2.3.1 Data synchronization issues

GPS data synchronization in a multi-robot environment presents a number of major challenges
and issues, not least spatial information consistency. Indeed, robots operating in the same en-
vironment must have a coherent perception of the space around them. This implies precise
synchronization of location and mapping data obtained from GPS signals. Differences in spa-
tial perception can lead to discrepancies in trajectory planning and potential collisions between
robots. But there is also a question of "latency" in data transmission. The transmission of GPS
data between robots can lead to variable delays. These delays introduce temporal differences in
the reception of location information, which can impair coordination between robots, especially
in scenarios requiring synchronized movements or concerted actions.
There is GPS signal failure or loss. In complex environments (indoors, dense urban areas, tun-
nels, etc.), GPS signal reception can be compromised or even lost. This can lead to interruptions
in localization, affecting robots’ ability to position themselves accurately and navigate reliably.

Then there’s the complexity of multi-robot management. Coordinating the actions of multi-
ple robots based on synchronized location data requires sophisticated management algorithms.
This includes the design of robust communication protocols, conflict resolution mechanisms
and cooperative strategies for safe and efficient navigation. [3] [2]

One of these is time synchronization. Precise time synchronization is essential if robots are
to share and use consistent location data. Time differences between GPS data acquisitions can
lead to inconsistencies in information fusion and influence the decisions made by robots, affect-
ing their ability to cooperate effectively. To achieve synchronization between these distributed
systems, we need to define a very precise reference. Despite the selection of a good base time,
hardware clocks count time at different rates.
Moreover, the quality of the oscillator is also a factor to be taken into account in order to avoid
so-called clock drift. To avoid or mitigate this, we can choose from various options, such as us-
ing GPS (Global Positioning System), which provides precision of several tens of nanoseconds,
NTP (Network Time Protocol), widely used today to set our PC clocks, and PTP (Precision Time
Protocol), which offers high precision thanks to local networks. [5]

2.3.2 Recent advances and gaps in GPS data synchronization between robots

The current state of research in the field of positioning and navigation systems has been marked
by significant advances. Recent advances include the integration of artificial intelligence (AI)
to predict and correct errors in GPS data. Machine learning algorithms are increasingly used to
improve location accuracy by taking into account environmental conditions and interference.

The fusion of data from multiple sensors has become essential for improving the accuracy of
location and navigation systems. Research has been carried out into advanced sensor fusion
techniques, such as the use of extended Kalman filters and neural networks for more accurate
localization, particularly in complex environments. [4]

Multi-robot systems, such as fleets of autonomous vehicles, have also received attention to
ensure their resilience to interference and error. More robust algorithms and communication
protocols have been developed to guarantee continuous operations even in the event of sensor
failure or loss of communication between robots.

New approaches have also emerged, such as vision-based localization, simultaneous map-
ping and localization (SLAM), and the use of non-GPS signals for navigation. Despite these
advances, challenges remain, particularly in terms of indoor navigation where GPS signals are
limited, and in terms of security to prevent spoofing or jamming attacks. [1]

These recent advances have considerably improved the accuracy and reliability of positioning

2.4 ROS2, an essential tool for robotics 6

and navigation systems. However, further research is needed to address persistent challenges
and emerging needs, such as indoor localization and securing systems against potential attacks.

2.3.3 Review

In summary, GPS data synchronization in a multi-robot environment is con- fronted with chal-
lenges related to spatial coherence, transmission latency, interference, signal loss, time synchro-
nization and robot management complexity. Solving these challenges is crucial to ensure ac-
curate and reliable coordination between robots, essential in applications such as collaborative
robotics, autonomous logistics, or team surveillance and rescue.

2.4 ROS2, an essential tool for robotics

Embedded systems play an essential role in a wide range of applications, from medical devices
and autonomous vehicles to drones and industrial robots. These systems often require com-
plex management of sensors, actuators and real-time control algorithms to operate reliably and
efficiently in dynamic and varied environments.

With this in mind, Robot Operating System 2 (ROS2) is emerging as a promising software
platform for the design and deployment of complex embedded systems. ROS2, the successor
to ROS, offers a modular, flexible architecture for managing communication between different
software components within a robotic system. Its scalability, native multi-robot support, en-
hanced security and ability to operate in distributed environments make it an attractive choice
for demanding embedded applications.

Embedded systems based on ROS2 benefit from several advantages. Firstly, ROS2’s modular
approach enables a more flexible design, where software modules can be developed, tested and
deployed independently. In addition, its compatibility with popular programming languages
such as C++ and Python facilitates the development of embedded applications for a diverse
range of hardware.

Notably, ROS2 also offers functionalities adapted to the specific constraints of embedded
systems, such as management of limited resources in terms of memory and computing power.
This optimization makes it possible to implement complex robotic solutions even on hardware
platforms with restricted capacities, while maintaining acceptable performance.

In this review, we explore the contributions and applications of ROS2 in embedded systems.
We examine case studies, experiments and recent advances illustrating the successful use of
ROS2 in specific embedded contexts. This review will highlight the challenges faced and so-
lutions provided by ROS2 to meet the critical requirements of embedded systems, as well as
future prospects for its integration to improve the performance and reliability of these systems.

2.5 Micro-ROS, an ROS2 extension for micro-controllers

Embedded systems play a fundamental role in a wide range of applications, from automobiles
and the Internet of Things (IoT) to medical devices and drones. Efficient management of sen-
sors, actuators and real-time control algorithms is crucial to ensure the smooth operation of
these systems in varied and often demanding environments.

With this in mind, Micro-ROS is emerging as an innovative and promising technology for
the deployment of distributed embedded systems, offering optimal integration with Robot Op-
erating System 2 (ROS2). Micro-ROS is an extension of ROS2 designed specifically for micro-

7 State of the Art

controllers and resource-limited environments, offering the advanced functionality of ROS2
adapted to the constraints of small-scale embedded systems.

Embedded systems using Micro-ROS benefit from its significant advantages. Firstly, Micro-
ROS offers a lightweight, optimized architecture, enabling efficient execution on micro-controllers
with restricted hardware capabilities in terms of computing power and memory. This specific
adaptation to the hardware constraints of embedded systems guarantees efficient use of re-
sources while maintaining acceptable performance.

In addition, Micro-ROS facilitates the modular development of embedded applications by
integrating ROS2 functionalities adapted to micro-controllers. This modular approach enables a
flexible design where software modules can be developed, tested and deployed independently,
offering greater adaptability to the specific needs of each application.

In this review, we will explore the contributions, applications and advances of Micro-ROS in
embedded systems. We will analyze case studies, experiences and recent developments that
highlight the effectiveness of Micro-ROS in specific embedded applications. This review will
also examine the challenges faced and solutions provided by Micro-ROS to meet the require-
ments of small-scale embedded systems, while considering future prospects for its integration
to improve the robustness and efficiency of these systems in various application areas.

Chapter 3

Achievements

3.1 Projet

This project focuses on data synchronization in an onboard environment. The laboratory has a
Camataran robot which allows exploration on the water surface. The principle is to submerge a
device underneath it to attach a camera for probing the seabed, while retaining the convenience
of a non-submerged part of the system.

The submerged part of the robot is a shaft directly inlaid on the Catamaran’s plate, on which
the camera device is implemented. An underwater wing is added to counter underwater dis-
turbances. The wing is controlled by a servo-motor, which rotates on an axis to stabilize the sub-
merged platform. A Raspberry 3B+ board, to which the camera is connected, and an Arduino
board, to which an IMU (Inertial Measurement Unit) is connected, embedding an accelerometer
and a gyroscope to control the stability of the submerged system, are positioned on this plate.

The camera’s video data are retrieved using a raspberry, which also retrieves data from the
IMU via the arduino’s serial port. This data is sent back to the surface of the catamaran on a
raspberry card, which itself collects data sent to it by the GPS. These three data are then re-
trieved and synchronized with other nearby catamarans via Wi-Fi.
The following diagram describes the various elements of the Catamaran project:

Figure 3.1: Architecture of the Catamaran entities

To synchronize data, we use an external Wi-Fi access point where all Catamaran entities are
connected and send their data. The GPS and IMU data is then analyzed and sent back to the

9 Achievements

other Catamarans, so that each Catamaran has access to the GPS data of the other entities. This
will optimize the exploration of the Catamarans, perfecting their trajectories to cover a larger
area in less time.

The Wi-Fi access point will be on a floating platform at the center of exploration. It will
interact with all catamarans connected to the network.

This arrangement means that Wi-Fi can be used as a means of communication. In fact, in
water, waves have difficulty propagating and it would not have been possible to use them in
these conditions.

3.2 Installation

3.2.1 References

• Model : Raspberry 3B+

• Raspberry’s Operating System : Ubuntu 22.04.03 LTS Server (No desktop)

• Imager : Raspberry OS Imager 1.8.1

• Configuration :

– Username : pi

– Password : raspberry

– Hostname : raspberrypi.local

• Carte SD which contain OS : SanDisk 32Go et 64Go

• OS of my computer to setup environments : Ubuntu 22.04

3.2.2 Setup of operating systems

We’re going to run ROS2 on a Raspberry, so we need to prepare an Operating System to run it.
We’re going to configure an Ubuntu 22.04 Server OS on the Raspberry 3B+ board, with no screen
or peripherals. The aim will be to find a way to install the applications we need and create an
object to make instances of them. Why Ubuntu 22.04 Server? The ROS2 application we’re going
to use is resource-intensive, so it’s important not to use a version with a graphical interface that
would consume resources unnecessarily, bearing in mind that not all our applications should
need them. As far as Ubuntu 22.04 is concerned, it is compatible with the Humble version
of ROS2, which is not the case with the Operating System made for Raspberry Boards named
Raspberry Pi OS, and the version is known as LTS (Long-Term Support), which is important for
maintaining the application over several years.

To install the OS, I use the Raspberry OS imager application and configure my settings as
described above. Then I install and connect via ssh to the Wi-Fi network configured in the
imager.

Once the SD card has been initialized, I simply put it in the Raspberry. It connects to the
desired network and I access it via ssh.

For this step, there were some problems with the Raspberry Pi OS I had started with. In fact,
the operating system is practical because it’s not very resource-hungry, which makes it a very
good choice when we’re constrained by embedded resources. But it’s not compatible with the
ROS2-Humble software.

3.3 Implementing communication with ROS 10

3.2.3 Setup of ROS2-Humble on the Raspberry

To install ROS-humble, I follow the information on this site:
https://docs.ros.org/en/humble/Installation/Alternatives/Ubuntu-Install-Binary.html
I go through the binary version because going through the source is far too long for the Rasp-
berry, which already has almost all the work already done in the binary.

To get the binary, I get it via the following command :

wget https://github.com/ros2/ros2/releases/download/release-humble-20231122/ros2-humble-
20231122-linux-jammy-arm64.tar.bz2

I choose the ARM package which is adapted to the raspberry architecture. For the unpack, I
download the lbzip2 library, without which decompression can’t be made :

sudo apt install lbzip2

In the rest of the installation, on the ’rosdep install ...’ command, I added ’–rosdistro humble’
to handle package conflicts. Downloading the dependencies takes about 2 hours. There will
be about thirty messages due to the scan of the linux image that it does at each installation, to
which you’ll have to press ENTER to get past the warnings so that the installation can continue.

I had to go through this step several times. Initially, installation via the ROS2 software sources
available at
https://docs.ros.org/en/humble/Installation/Alternatives/Ubuntu-Development-Setup.html
didn’t work. In fact, the sources compiled for hours without ever producing a viable result, as
they were too resource-intensive, and the compilation always stopped before completion.

3.2.4 Setting up a Static IP

I’d like to set a Static IP so that I can create a network between all the Raspberries. Indeed,
the network is the communication key of the project. When the catamarans are on the water,
their underwater section will be able to use wifi to communicate between the various network
entities via a Raspberry "Beacon", which will retrieve the information to be synchronized and
broadcast it to the other catamarans. For this reason, it’s best to set the IP address of the "Bea-
con" using a Static IP which will be known by the catamarans, so you don’t have to change the
catamaran codes if the Beacon’s IP is modified.
To set the Static IP address, I modify the file at this location: /etc/dhcpcd.conf by adding :

interface eth0
static ip_address=192.168.0.100/24
static routers=192.168.0.1
static domain_name_servers=192.168.0.1

3.3 Implementing communication with ROS

In the previous section, we saw how to set up the work environment on which we’ll be working.
Now we can set about creating the ROS2 nodes within the various entities that make up the
project. We’re going to talk about the two different instances we need. First, we’ll have the
catamarans, which can be any number of catamarans, and where they’ll communicate with the

11 Achievements

master board for sensor information. The second part will be the implementation of the code
on the master board, which will have the same basic environment, but will be able to acquire
data from each catamaran and then broadcast it "Multicast" to all the entities in the catamaran
fleet. The code for the ROS2 nodes I’m going to build will be written in C++.

3.3.1 Working on the catamaran side

The aim here is to start by creating a ROS node that will enable the publication of a data struc-
ture. To do this, I start by creating a workspace that will serve me throughout the creation of
the nodes. Then I create my first package in the src folder of this workspace, which will enable
the GPS data to be published. I do this using the ROS2 command lines:
ros2 pkg create –build-type ament_cmake catamaran_nodes
Once the package is created, I’ll create my node codes directly in the src folder of the new
package. So I want to create my GPS node, which I’ll call GPS_node_publisher.cpp, and write
the classic ROS2 publisher code inside. However, the data to be transmitted is the data struc-
ture returned by a GPS sensor. It’s in the form of altitude, longitude, latitude. In the software
documentation, I found a structure called NavSatFix in the sensor_msgs library. I import the
structure and fill it with the data to be sent:
#include "sensor_msgs/msg/nav_sat_fix.hpp"

I create a GPSPublisher class that inherits from the Node class. In its constructor, I initialize a
publisher object using the "create_publisher" API function, which I template with my NavSatFix
type structure. I tell it I want to publish on the "gps_topic". I’ll have to make sure that the
node retrieving this data is reading from the same topic! Then I initialize a timer using the
"create_wall_timer" function. The timer calls a CallBack function when its time has elapsed. So
you need to give it a time as an argument, which in this case is 2000 milliseconds. I create the
Callback function, call it publishGPS and insert the following logic: Create the data structure
of the message to be sent and publish it. The aim is to publish it on the topic listed above. The
node code looks like this:

Figure 3.2: Node GPS code

3.3 Implementing communication with ROS 12

I compile with colcon build at the root of the workspace, then initialize the commands with
source install/setup.bash Then I launch the node with the following command:
ros2 run catamaran_nodes imu_node_publisher

For the IMU data node, it’s pretty much the same, except that the data structure will change.
In fact, there’s also a data structure for acceleration and angular velocity, which are the data
collected by the IMU in the submerged section and which we want to send back to the other
entities in the fleet.
It’s also in sensor_msgs and I import it with :
#include "sensor_msgs/msg/imu.hpp"

I publish the messages on another topic in order to differentiate the types of message sent. So I
send the messages to an "imu_topic" topic. I put this code in a file I call IMU_node_publisher.cpp.
Here’s a preview of the IMU file:

Figure 3.3: Node IMU code

I compile with colcon build at the root of the workspace, then initialize the commands with
source install/setup.bash Then I launch the node with the following command:
ros2 run catamaran_nodes imu_node_publisher

3.3.2 Working on the beacon side

The beacon, on the other hand, is a multicast acquisition and broadcast device, simulated by
another device on the same Wi-Fi network, for which all data is redirected to it. It therefore
needs to listen to both the gps_topic and imu_topic topics. To do this, it needs to register on
both topics, and when data is received on one of the topics, it is processed and another piece
of data is waited for. To do this, I need to create a node with two subscribers, one for each
of the topics, and they each have a callback that processes their own message. I use the cre-
ate_subscription function, which lets me create an object that listens for a certain type of mes-
sage on a certain topic. So I create two, one that I template with the NavSatFix data structure
and link to the "gps_topic" topic, and one that I template with the "imu" data structure and link

13 Achievements

to the "imu_topic" topic. I link the two to a Callback function that processes the data according
to whether it’s IMU or GPS data.

Here’s how the resulting code looks :

Figure 3.4: Receiver GPS & IMU code

I compile with colcon build at the root of the workspace, then initialize the commands with
source install/setup.bash. Then I launch the node with the following command:
ros2 run master_nodes receiver_data

3.3.3 Network communication

If we try to launch all the nodes, we find that communication is not possible.The nodes are on
two different devices.However, they’re on the same network, so we can specify that we’re using
communication on a particular port. Communication to the receiving node takes place over the
Wi-Fi network. To do this, we need to specify a few arguments for the connection to take place.
In fact, there’s an environment variable that lets you define a connection ID and link devices
over the network rather than locally. By defining the ROS_DOMAIN_ID environment variable
as follows:
export ROS_DOMAIN_ID=42 This will enable devices to communicate according to the follow-
ing characteristics:

Figure 3.5: UDP port calculator depends ID Domain (here 42)

3.3 Implementing communication with ROS 14

Of course, ID 42 can be different and has been arbitrarily chosen here. Above all, it must be
different from 0.

3.3.4 Multicast data return on Tag side

3.3.5 Identification by message

Now that the beacon has retrieved the data from the Catamarans. We now need to separate
messages from several different sources. To do this, we need to add a unique identifier, such as
a UUID, to each message sent. This will overwrite the last data received by the same sender.
The aim is to send the last data closest to the actual position. The idea is to create your own
message that will wrap the "sensor_msgs" structures I’m currently sending.

To achieve this, all we need to do is create a new package and prepare it with several param-
eters: - In the package.xml file, I add:
<build_depend>rosidl_default_generators</build_depend>
<exec_depend>rosidl_default_runtime</exec_depend>
<member_of_group>rosidl_interface_packages</member_of_group>
<depend>sensor_msgs</depend>
<depend>unique_identifier_msgs</depend>
- In the CMakeLists.txt, I add:
find_package(rosidl_default_generators REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(unique_identifier_msgs REQUIRED)
rosidl_generate_interfaces($PROJECT_NAME "sensor_msgs/NavSatFix.msg"
DEPENDENCIES sensor_msgs unique_identifier_msgs)

Next, you need to add the message to be sent to a my_gps.msg file in a msg folder at the root of
the package:
sensor_msgs/NavSatFix
unique_identifier_msgs/msg/UUID

Once a unique UUID has been generated in the publication nodes, I can now separate mes-
sages according to source.

3.3.6 History

To obtain a history of messages, we can store incoming messages in a file so that we can retrace
the routes taken by each catamaran. In addition to this, we have the precise time, i.e. their
evolution over time. With IMU data, we even have their orientation. With the OfStream library,
we can easily do just that:
ofstream monFlux("Filename.log");
myFlow « "GPS and IMU data over time" « endl;

3.3.7 Publish grouped data

Now we need to republish all this information to the other catamarans. To do this, we need to
do almost exactly the same thing as above. We need to create a "publisher" to publish the latest
data, no more than 10 seconds old, on another "mapData" topic (to avoid sending data from a

15 Achievements

robot that has disconnected). It would be preferable to create another interface containing IMU
and GPS data at the same time, so that all information can be sent directly!

3.4 Grouped data reception

Finally, you just need to create a node on the catamaran side to subscribe to the "mapData" topic
you created earlier, in order to retrieve the data and adapt their trajectories according to what
they receive. Of course, the catamaran’s value must be removed from this data, by matching
the UUIDs with its own UUID to remove its own value.

Chapter 4

Conclusion

In conclusion, embedded frugality is positioning itself as an essential area of research and de-
velopment in the field of embedded systems. It aims to optimize the use of limited hardware
resources while guaranteeing acceptable performance, thus offering solutions suitable for a di-
versity of applications, from IoT to autonomous devices. In this study, we explored the main
concepts, strategies and approaches adopted to design frugal embedded systems. We have
highlighted techniques for managing energy consumption, optimizing algorithms and reduc-
ing hardware complexity, all of which contribute to system efficiency while retaining function-
ality. However, it should be noted that despite significant progress in this field, challenges
remain. The design of frugal embedded systems requires a holistic approach that takes into ac-
count trade-offs between performance, energy consumption and hardware constraints. What’s
more, adapting these principles to specific applications remains a complex challenge requiring
ongoing, in-depth research.

Due to time constraints, this study could not cover all aspects and recent advances in em-
bedded frugality. Further investigations are needed to further explore the opportunities and
limitations of this approach in specific fields such as robotics, connected automobiles and other
mission-critical applications.

In sum, embedded frugality remains an exciting and promising area of research, offering
innovative solutions to the growing challenges of resource-constrained embedded systems. We
hope that this study will stimulate further research and development aimed at fully exploiting
the potential of embedded frugality to create more efficient, sustainable and high-performance
systems. Despite the time limitations encountered, this study lays the foundations for future
in-depth investigations in this crucial area of embedded technologies.

Chapter 5

Bibliography

[1] Andréa Macario Barros, Maugan Michel, Y. M. G. C. F. C. (2020). A comprehensive survey of
visual slam algorithms. LCAE (CEA, LIST) - Laboratoire Capteurs et Architectures Electroniques
(CEA, LIST). (page 5)

[2] Luis Costa, Alisson V. Brito, T. P. N. T. B. (2017). Integration of Robot Operating System and
Ptolemy for Design of Real-Time Multi-robots Environments. PhD thesis, UFPB - Universidade
Federal da Paraiba. (page 5)

[3] Maxa, J.-A. (2020). Architecture de communication sécurisée d’une flotte de drones. PhD thesis,
ENAC - Ecole Nationale de l’Aviation Civile. (page 5)

[4] Merlet, J.-P. (2019). Influence of uncertainties on the positioning of cable-driven parallel robots. PhD
thesis, HEPHAISTOS - HExapode, PHysiologie, AssISTance et Objets de Service. (page 5)

[5] MKACHER, F. (2017). Optimization of Time Synchronization Techniques on Computer Networks.
PhD thesis, LIG - Laboratoire d’Informatique de Grenoble. (page 5)

Copying this document

Copyright © 2023 LRE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

1 Introduction 2

2 State of the Art 3
2.1 Wireless Communication . 3
2.2 Control / Command . 4
2.3 Contextualizing data synchronization in embedded systems 4

2.3.1 Data synchronization issues . 5
2.3.2 Recent advances and gaps in GPS data synchronization between robots . 5
2.3.3 Review . 6

2.4 ROS2, an essential tool for robotics . 6
2.5 Micro-ROS, an ROS2 extension for micro-controllers 6

3 Achievements 8
3.1 Projet . 8
3.2 Installation . 9

3.2.1 References . 9
3.2.2 Setup of operating systems . 9
3.2.3 Setup of ROS2-Humble on the Raspberry 10
3.2.4 Setting up a Static IP . 10

3.3 Implementing communication with ROS . 10
3.3.1 Working on the catamaran side . 11
3.3.2 Working on the beacon side . 12
3.3.3 Network communication . 13
3.3.4 Multicast data return on Tag side . 14
3.3.5 Identification by message . 14
3.3.6 History . 14
3.3.7 Publish grouped data . 14

3.4 Grouped data reception . 15

4 Conclusion 16

Bibliographie 16

5 Bibliography 17

	1 Introduction
	2 State of the Art
	2.1 Wireless Communication
	2.2 Control / Command
	2.3 Contextualizing data synchronization in embedded systems
	2.3.1 Data synchronization issues
	2.3.2 Recent advances and gaps in GPS data synchronization between robots
	2.3.3 Review

	2.4 ROS2, an essential tool for robotics
	2.5 Micro-ROS, an ROS2 extension for micro-controllers

	3 Achievements
	3.1 Projet
	3.2 Installation
	3.2.1 References
	3.2.2 Setup of operating systems
	3.2.3 Setup of ROS2-Humble on the Raspberry
	3.2.4 Setting up a Static IP

	3.3 Implementing communication with ROS
	3.3.1 Working on the catamaran side
	3.3.2 Working on the beacon side
	3.3.3 Network communication
	3.3.4 Multicast data return on Tag side
	3.3.5 Identification by message
	3.3.6 History
	3.3.7 Publish grouped data

	3.4 Grouped data reception

	4 Conclusion
	Bibliographie
	5 Bibliography

