Combining reactive synthesis and motion
planning to control complex systems

Rostan Tabet
(supervisor: Philipp Schlehuber-Caissier)

Technical Report n°2205, January 2024
revision 03c55577

We address the problem of combining reactive synthesis and motion planning to control a system with
complex dynamics according to a high-level specification. From a description of the problem, we synthe-
size a controller that provides a solution. We then map this controller into the real world using motion
planning.

Nous nous intéressons au probléme de la combinaison de la synthese réactive et de la planification de
mouvement pour contréler un systéme avec une dynamique complexe, selon une spécification de haut
niveau. A partir d'une description du probléme, nous synthétisons un contréleur qui fournit une solution.
Nous transposons ensuite ce contr6leur dans le monde réel en utilisant la planification de mouvement.

Keywords
Reactive synthesis, LTL, GR(1), Game theory, Motion planning, RRT

Laboratoire de Recherche et Développement de 'EPITA
14-16, rue Voltaire — FR-94276 Le Kremlin-Bicétre CEDEX — France
Tél. +33 1531459 22 — Fax. +33 153 1459 13

rostan.tabet@epita. fr — http://www.lre.epita.fr/


rostan.tabet@epita.fr
http://www.lre.epita.fr/

Copying this document

Copyright © 2024 LRE.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.



Contents

Reactive synthesis

1.1 Lineartemporallogic . . . . . . . . . . . e
1.1.1 Syntax. . . . . ..
1.1.2 Semantics. . . . . . . . e

1.2 Games . . . . .
1.2.1 Explicitdefinition . . . . . . . ... .
1.2.2 The winning condition . . . . . . .. ... .. ... ... ..
1.2.3 Symbolic definition . . . . . . ... o

1.3 Modal mu-calculusongames . . . . . ... ... ...
1.3.1 Syntax. . . . ...
1.3.2 Semantics. . . . . . . ..

1.4 Generalized Reactive(1) synthesis . . . . . . ... .. ... ... .. .. ... .

Motion planning

2.1 Theconfigurationspace . . . . . . . . . . . e
2.1.1 Degreesoffreedom . . ... ... ... . ... ...
21.2 C-spaceobstacles . . . . .. ... ... .. ...

2.2 Sampling-based methods . . . .. . . ... ... ...
2.2.1 Probabilisticroadmaps. . . . . . .. ...
2.2.2 Rapidly exploringrandomtrees . . . . . . . . . ... ... L.

Combining reactive synthesis and motion planning

3.1 Theworkspace . . . . . . . . .
3.1.1 Regionsofintereset . . . .. ... .. ... ... ... .
3.1.2 Sandboxes . . . . ... e

3.2 Abstracttrees . . . . . . . .

3.3 Abstraction-refinmentloop . . . . . . . . ...
3.3.1 Writing the specification . . . . . . ... ... ... oo
3.3.2 Finding a path betweentworegions . ... ... ... ...........

N oo oo oo o

13
15
15
15
16

19
19
19
20
21
22
23



Motivations

Controlling robots to perform complex tasks is often achieved by programmers in a manner
that is both time-consuming and error-prone. For example, machines in manufacturing cells
are reconfigurable, but the code isn’t, which means that the costly process of writing it must
be repeated each time. Using formal methods to automate this process would shift the pro-
gramming paradigm for this problem from an imperative to a logical one. This approach would
provide the ability to only focus on a high-level problem description while producing a correct-
by-construction low-level solution.

The reactive synthesis problem, also known as CHURCH s problem [3], consists in synthesiz-
ing a circuit from a logical specification. There are many choices for a logical formalism of the
specification. Temporal logics are observed to be adequate to express most problems. The
given specification then needs to be transformed into a game by choosing one of the many
available strategies. One possible method is, for example, to start from an LTL specification ¢
and then apply the following transforms: [4]

« Translate ¢ to a non-deterministic generalized Blichi automaton, which is used to produce
a non-deterministic Blichi automaton (nBA). On the worst case, this may produce expo-
nentially many states in the size of (.

« Translate this nBA into a deterministic parity automaton. On the worst case, this can also
cause an exponential blowup on the size of the nBA.

The problem is that the double translation requires an exponential computation time, as a func-
tion of the input specification size.

The high complexity makes this approach not amenable to most industrial-sized problems
and other methods that use LTL specifications stay in the same complexity class. To fall into a
lower complexity class, a solution is to only consider a fragment of LTL. In the past years, work
has been done to identify fragments that improve scalability while allowing to be expressive
enough to represent real-world problems [1]. The one we are interested in is called Generalized
Reactive(1), or GR(1) [2] and requires a polynomial number of steps to synthesize a controller.



However, while the synthesized controller is discrete, the real world is continuous. The synthe-
sis abstracts the robot’s displacement from a high level so we need motion planning to represent
this from a lower level. To obtain an algorithm that ensures termination, our approach is based
on guided trial and error. We implement a closed loop between the motion planner and the
synthesizer: the synthesizer asks for new paths for the motion planner and updates the specifi-
cation whenever they cannot be computed sufficiently fast. Whenever the motion planner fails
to compute a path, it is penalized when synthesizing a new controller. This makes sure that
different controllers are generated each time.

In addition, because we are interested in infinite behaviors, it is natural to expect from the
motion planner to produce closed paths on which the robot can then loop. This however comes
back to the problem of point-to-point motion planning which is difficult to handle by the motion
planning algorithms we use. We thus introduce a mechanism that will force connect the gener-
ated paths in order to create loops.

This work is made in collaboration with the ISIR.



Chapter 1

Reactive synthesis

Reactive synthesis consists in automatically generating a correct-by-construction state machine
from high-level specifications. This chapter introduces the language we use to write specifica-
tions as well as the process that allows to go from such a specification to a controller.

1.1 Linear temporal logic

Linear Temporal Logic (LTL) is an extension of the Boolean logic with temporal operators. LTL
is a popular formalism used for model checking, formal verification but also in contexts where
we need to describe dynamic behaviors that can be modeled in discrete time such as robotics.
The majority of the work on synthesis for robots indeed uses temporal logic [8].

1.1.1 Syntax
LTL formulas can be constructed as follows, where p denotes a propostional variable:
pu=plpleVve|OplelUyp

— can be read as “not” and Vv as “or”. O and U are temporal operators and can be read
respectively as “next” and “until”. Their semantics is described in the next section.

1.1.2 Semantics

A w-word is an infinite sequence w = aga;as . .. Of sets of propositional variables. For i > 0, the
satisfaction relation = between a word w and a LTL formula is formally defined as follows:

cw,0E=pifp€ag

cw,il=pifwlEe



cw,ilE=pVyifwilEgporwikE=y

oA = (VY

cw,i =EQpifw,i+ 1 ¢, o must hold at the next step”

cwibEeUYIFTj>0,w,jEvandV k€ [i,j],w k = ¢, o must hold until i is true”
w, 1 = ¢ can be read as “p hold at position i of w”. When i = 0, it can simply be written w = .

We use the usual abbreviations — and <, as well as the usual definitions for true and

false:
Ce Y=V
oo v=(@ oY) AW )
e true=pVp
e false = ~true

For the modal temporal operators, we use the abbreviations <> (eventually) and [] (globally)
defined as follows:

« O =truel g, “p must eventually be true”
s Oy = -y, “p must always be true”
We can then combine those operators to create formulas such as [J< ¢ (read “globally even-

tually ¢”) which means that ¢ must be true infinitely often.

Note There exists another notational convention for the temporal operators. Instead of O, []
and > the notations X, G and F are sometimes used. For the rest of this report, only the former
is used.

1.2 Games

We model our problems as two-players games between a system that we want to control and an
environment that is potentially adversarial, and therefore treated as such to capture the worst
case. The synthesis problem then boils down to finding a winning strategy for the system. In
the next sections, we focus on precisely defining those notions.



1.2.1 Explicit definition

Definition 1.2.1. A game graph is defined as a tuple G = (A, Win) [11]. It is composed of an
arena A that can be seen as a graph, and a winning condition Win.

The main component of a game is its arena. It describes the rules the players have to follow
and how they interact. It is a directed graph where each vertex is assigned to one of the players.
When a play starts, a token is placed on a starting vertex of the arena. Then, dependending on
who owns the vertex, the system or environment will move the token to one of the connected
vertices. If the arena is a bipartite graph, the game is called an alternating game.

Definition 1.2.2. An arena is a tuple A = (V, V., V;, E) where:
« V =V, UV, is the set of all vertices .

» V. and V; are the sets of vertices controlled respectively by the environment and the
system.

« £ CV x Visthe setof all edges.

Figure 1.2.1 depicts an arena where the environment vertices are represented by circles and
system vertices by diamonds.

Figure 1.2.1: Arena representation generated with SPOT

If the arena has no deadlocks, after infinitely many token moves accross the arena, the two
players have produced an infinite path. Such a path is called a play and is defined a follows.

Definition 1.2.3. A play on an A is a sequence p = pop1p2 ... € V¥ such that, for all postive
integers n, (pn7p77,+1) € E.

L1 is used to express the disjoint union of sets

(o]



To describe how each player moves the token, the notion of strategy is introduced. The
strategy defines how a player makes decisions and choses a certain edge depending on the
current position on the arena, and potentially on the previous moves. A strategy that does not
depend on the previous moves is called a positional strategy.

Definition 1.2.4. A strategy for the player controlling a set of vertices U is a function o : V*p x
U — V such that, for every w € V* and for every w in U, o(wu) = v implies that (u,v) € E

Now that the notion of strategy is introduced, the next question is how to determine the winner
of a game. A winning condition is a subset of all possible arena plays that contain the plays said
to be winning. The system wins iff the play is in the winning condition. A winning strategy is
thus one that only produces plays that are in the winning condition.

Definition 1.2.5. A winning condition is a set Win c V. A play p is winning for the system iff
p € Win.

We are therefore interested in finding a winning strategy. This problem can be reduced to
finding a winning region.

Definition 1.2.6. The winning region W(G) (resp. W.(G)) of the system (resp. the environment)
is the set of vertices from which it has a winning strategy.

To construct a winning region iteratively, the notion of trap is introduced. A trap for the envi-
ronment (resp. the system) is a region from which the environment (resp. the system) cannot
escape without the help of the system (resp. the environment).

Definition 1.2.7. A subset T' C V of the vertices is a frap for the environment iff:
cYoeTNV,v eV, (vy)e E = v €T,
s YoeT NV, eT, (v,v') e E
Traps for system are defined in a similar way.

Using this definition, it is clear that the set T = {vg,v7} in the arena from Figure 1.2.1 is a
trap for the system. From vg, the system can only go to v7 and the the environment can chose
to move back to vg. Dually, an attractor for the system to a set R C V is the set of vertices from
which the system can force the game in a finite number of moves to get to a vertex in R. An
attractor is constructed as follows.

Definition 1.2.8. The system controlled predecessor cpre(R) of R C V is defined as

cpre(R)={veV,| I €R,(v,v) € E}
UfveV, W eV, (v,v)e E = v € R}

Definition 1.2.9. The system attractor Attr(R) to R is constructed inductively by applying the
controlled predecessor:



« Attr®(R) = R
« Attr"*'(R) = Attr'"(R) U cpre(Attr"(R))
* Attr(R) = U, e Attr" (R)

This process is simple enough to be manually applied and it takes at most |V| steps (i.e.
applications of the recurrence relation) to converge. Consider the region R = {v4,v5} from the
arena in Figure 1.2.1. Figure 1.2.2 presents the iterative process of constructing Attr(R). In this
specific example, a fixed point is reached in 5 steps.

10



Attr’(R) = {va4,vs}

Attr2 (R) = AttrO(R) @] {U1, V2, V4, Ug} AttrS(R) = AttrO(R) U {’Uo, V1, V2, V4, ’Ug}

11



9

()

O
<o
()
&

<>

Attr4(R) = Attr(R) = {’Uo, V1, V2, V4, Us, ’Ug}

Figure 1.2.2: Step-by-step construction of Attr(R) with R = {vg4, v5} for the arena in Figure 1.2.1

1.2.2 The winning condition

The base definition of Winis generic but solving it is costly. Therefore, we typically resort to more
structured winning conditions. Before introducting those, we first need to define two operators:

* Foraplay p = pop1p2-.. € V¥, the set of vertices occuring in p is defined as

Occ(p) ={veV |3IneN,p, =v}

« Similarily, the set of vertices occuring infinitely often in a play p is defined as

Inf(p) = {v € V| there exists infinitely many »n € N such that p,, = v}

Some games are said to be dual to each other. If two games are dual, the description of
one of them suffice to deduce the other one. This is useful because we can always reduce a
problem to its dual if it makes it easier to solve.

Definition 1.2.10. Let A = (V,V,,V,, E) be an arena. The dual arena A of A is defined as
A= (V,V,, V., E).

In the dual G’ = (A, Win) of a game G = (A, Win), every winning strategy for the system o
from a vertex v in G is a also winning strategy for the environment from v in G’, and conversely.

We can then identify various formalisms to represent the winning condition.

12



* A reachability game is a game in which the system is expected to reach some states that
belong to a certain set of vertices. The winning condition of a reachability game induced
by a set R C V is therefore of the form:

Win= {p € V¥ | Occ(p) N R # 0}

The dual of a reachability game is a safety game. In a safety game, we want the system
to never leave a set of “safe” vertices S = V\R. The winning condition of a safety game
is of the form:

Win= {p € V¥ | Occ(p) C S}

» Blichi games can be seen as a generalization of reachability games. A Bichi game is
a game in which the system is expected to reach a certain set of vertices infinitely often.
The winning condition of a Biichi game induced by a set F' C V is therefore of form:

Win={p € V* | Inf(p) N F # 0}

The dual of a Blchi game is called a co-Blichi game, which can be seen as the general-
ization of a safety game. In a co-Blichi game, we want a set of vertices to be visited only
finitely often by the system. The winning condition of a co-Blichi game induced by a set
C C Vis of the form:

Win = {p € V¥ | Inf(p) C C}

» Parity games are a generalization of Blichi games. Each vertex v € V is assigned a
natural number. For the system to win, the smallest number that is seen infinitely often
shall be even. In a parity game induced by a mapping €2 : V. — N, a play p the winning
condition is of the form:

Win= {p € V¥ | min(Inf(Q(po), 2(p1), 2(p2),...)) is even}

It can be noted that since V is finite, Q(V) is too so the minimum is always well defined. It
is also unique for Q2 (po), 2p1), 2p2), . .. (@and thus Inf(Q(pg), Q(p1), Q(p2), .. .)) is a subset
of N.

1.2.3 Symbolic definition

While the explicit game representation provides an intuitive framework to reason about games,
it does so at the expense of succinctness. Transitioning from explicit set notations to a symbolic
approach allows for a more compact representation of the game. It also addresses the problem
of state explosion associated with explicit representations. However, it's important to note that
this may come with the trade-off of a potentially less intuitive formulation of the problem because

13



of the use of u-calculus as elaborated upon the following pages.
Notations — Primed variables If V is a set of boolean variables, the set of primed variables
V' = {s'|s € V} defines the variables after a transition.

Definition 1.2.11. A symbolic game structure G = (V, X, Y, 0., 0, pe, ps, ) is defined as follows:
[?]

Y = X U is afinite set of boolean variables. A state is a subset of 2V.

X is the set of input variables, that is, those controlled by the environment.
+ Y is the set of output variables, that is, those controlled by the system.

* 0. is the initial condition of the environment. This is an assertion on X’ characterizing the
allowed initial states of the environment.

* §, is the initial condition of the system. This is an assetion on ) characterizing the allowed
initial states of the system.

* pe is the transition relation of the environment. This is an assertion on VU X. sy € 2V is
a possible input in state s € SV if (s,s") |= pe

* ps is the transition relation of the system. This is an assertionon VU X U ). sy € 2V is a
possible output in state s € SY when reading an input sy € 2% if (s, sy, sy) | ps-

* v is an LTL formula representing the winning condition of the system. From now on, the
phrase winning condition will refer to this formula.

A state s is said to be initial if s |= 0. A 0,. A state s’ is the successor of s if (s,s) = pe A ps.
We recognize the main components of the classical game definition. The set 2" corresponds
to the vertices of the arena and the edges are modelled by the conjunction of p. and ps. The
winning condition is not a set anymore but the LTL formula .

The other main concepts defined for classical games are also applicable to symbolic games.

Definition 1.2.12. A play is a maximal sequence o = sps152 ... satisfying initiality i.e. sq is
initial, and consecution i.e. for each ¢ > 0, s; 11 is a successor of s;. ¢ is said to be winning if

gy

Definition 1.2.13. A strategy for the system is a function f : M x 2V x 2% — M x 2%,
where M is some memory domain, such that for every s € 2V, every sy € X and m € M,
f(m,s,sx) = (m’,sy) implies that (s, sx, sy) = ps.

14



1.3 Modal mu-calculus on games

p-calculus is a propositional modal logic augmented with fixed points, offering a better expressiv-
ity than most time logics such as LTL since it is possible to express them in terms of p-calculus|[6].
It can be defined as an extension of the Boolean logic with the least and greatest fixed point
operators, noted respectively 1 and v. Least and greatest are to understand in the sense of set
inclusion. The existence of the two fixed points can be proven using the Knaster-Tarski theorem.

Theorem (Knaster-Tarski Theorem). Let L be a complete lattice and f : L — L a monotonic
application, then the subset of fixed points of f also forms a complete lattice.

A direct consequence of this theorem is that any monotonic application f : L — L over a
complete lattice L admits a least and a greatest fixed-points since a lattice cannot be empty. In
particular, the set of states 2" can be viewed as a complete lattice with the order relation C. The
Knaster-Tarski theorem thus guarantees the existence of the least and greatest fixed points.

1.3.1 Syntax

The modal p-calculus over game structures can be constructed as follows, where v € V denotes
an atomic formula and Var = {X,Y, ...} a set of relational variable:

pu=v|w|X|eVe|Qe|uY.e

—and Vv have the same meaning as in temporal logic and A, — and «> are defined in them same
way. We'll see in next section that Q) is analogous to the controlled prececessor cpre defined
in Section 1.2.1 and p is the “least fixed point” operator. The “greatest fixed point” operator v is
defined as the dual of u, i.e. vY.p(Y') abbreviates —pY.o(=Y).

Important note When writing uY.(Y), it is implied that ¢ is syntactically monotonic in the
propositional variable Y. This means that all occurences of Y in ¢ are preceded by an even
number of negations.

1.3.2 Semantics

In u-calculus over a game structure G, a formula ¢ is interpreted as the set of states in which ¢
is true. Such a set is noted [[¢]]¢ where G is the game structure, or simply [[¢]] when G is clear
from context. Let ¢ be a formula and let s € 2V, then ¢[X/s] denotes the formula ¢ in which all
occurences of the relational variable X have been replaced by s. For a finite games structure
G, [[¢]]c is thus defined inductively as follows:

s ] ={s€2V|ves}

c [l ={s€2|v¢s}

15



- [l =2
* llo v ol = (W) U [

- A state s is in [[O ¢]] if, regardless of how the environment moves from s, the system can
chose an appropriate move to reach a state in [[¢]], that is:

(O]l = {S€2V

Vsy € 2% (s,5x) E pe — (Fsy €Y,
(575?(7537) ):psA(SXVSy) ':90)

It can be noted that ¢ — Q) ¢ is monotonic which implies the existence of fixed-points.
* [[X.0]] = U,en Sn Where Sy = 0 and S, 41 = [[¢[X/ S]]

Another possible definition for the least fixed-point operator is a recursive one. As opposed to
the abstract one presented above, it might provide a more intuitive picture. Let ¢ be a monotonic
formula in the variable X, then:

pX.p = o[X/uX.¢|

This means that reasoning about 1 X.p is equivalent to reasoning about o[ X/uX.¢]. Hence, we
can easily provide a definition for the attractor set similar to the one presented in Definition 1.2.9:

Definition 1.3.1. On a symbolic game structure G = (V, X, Y, 0., 05, pe, ps, ¢), the system at-
tractor to a set of states S C 2V is defined as

Attr(S) = pX.(SVRO X)

This definition uses the least fixed point because the greatest fixed point is simply 2V.

1.4 Generalized Reactive(1) synthesis

One classical approach for the synthesis problem is to start from a specification with input
variables controlled by the environment and output variables controlled by the system. This
specification is then translated to a two-player game in which the goal is to find a winning
strategy for the system. Finding such a winning strategy is equivalent to finding a controller.
Hower, this can only be done in doubly-exponential time [10].

As said in the previous pages, we consider a fragment of LTL called “Generalized Reac-
tive(1)” which allows to perform synthesis in polynomial time. GR(1) formulas are an implication
between a conjunction of assumptions and a conjunction of guarantees of the form:

2We are only interested in cases were all variables are bound by either 1 or v, but if we wanted to allow free variable,
we would have to consider the initial state of the environment

16



(&ADPEA/\DO%) — | 0 A0 A ANOO s (1.4.1)
i J

where:
* 0. and 0, are the initial conditions of the environment and the system
* p. and p, are the transitions of the systems and environment, also called safety properties

* a; and g; are the the i‘" and j*" liveness properties of the system and environment, that
is, statements that need to be verified infinitely often.

Let us unfold Equation 1.4.1. We are interested in open systems, i.e. systems that interact
with an uncontrolled environment that might be adverserial. Hence, it seems reasonable to have
assumptions about the environment describing the things we assume will happen infinitely often.
On the other hand, we want the system to perform some actions infinitely often. /f we assume
that environment behaves correctly, we guarantee that the system will meet its requirements.
As for the safety properties, they constraint the system and the environment in their current
choices.

There are two ways for the system to win:

1. The system manages to attract the environment in a trap where it cannot fullfill all its
assumptions.

2. The system manages to always fullfill its guarantees.

Let {a1,...,a,} be a set of n liveness assumptions and {¢,...,9»} a set of m liveness
guarantees. This translates to the following winning condition [5]:

ven =vZ. ]\ pY.\/ vX.O(g; N\OZ)VOY V (ma; NOX)) (1.4.2)

i=1 j=1
Formula 1.4.2 can be hard to understand at first sight so let us annotate it with colors:

m

vorn = vZ. \ pY. \/ vX.O((g; AOZ) VOY V (-a; AOX))

i=1 j=1

» The green part corresponds to the system fullfilling its guarantees. It is associated with a
greatest fixed-point operator since this must be true infinitely often to hold and because
we want the winning region to be as big as possible.

» The pink part corresponds to the environment not fullfilling its assumptions and thus vio-
lating the left-hand side of the implication from Formula 1.4.1. This is also incuded in the
winning region, that we want as big as possible, which explains the greatest fixed point.

17



» The blue part corresponds to the unconstrained part of a play. It is associated to a least
fixed-point since this phase must be finite.

18



Chapter 2

Motion planning

Motion planning is the problem of navigating a controlled system from a source to a destination
while satisfying real-world physical constraints. What makes this problem even more involved is
that the motions of the body can be governed by complex dynamics of the form

q:f(Q7Qau)

where ¢ is a vector representing the state of the system, « is the input vector and f is non-linear.
In such cases, exact methods are often computationally intractable, if even possible. Fortunately,
terminating algorithms exist to approximate the actual solution. Specifically, we are interested
in sampling-based planning. Section 2.1 presents general concepts of motion planning while
Section 2.2 describes some popular sampling-based motion algorithms.

2.1 The configuration space

The task to be performed is represented in a workspace W, which is usually R? or R3, as it only
takes into account the spatial coordinates. The configuration space C, or C-space, however,
is the set of all possible configurations of the robot. Each configuration is represented as a
unique point in an space whose dimension depends on the system. In the case of cycle-free
mechanisms, the size of the C-space is the number of degrees of freedom of the robot. This
abstraction allows to represent various problems with very different constraints with the same
algorithms.

2.1.1 Degrees of freedom

Robots are commonly represented as a collection of connected rigid bodies. To determine the
number of degrees of freedom of the robot, we first need to determine the number of degrees



of freedom of a rigid body. To fully describe the configuration of a rigid body in R?, we need
three coordinates, two of which are linear, = and y, and one of which is its angle 6, sometimes
called yaw. To get the total number of degrees of freedom of a cycle-free mechanism, we sum
the degrees of freedom of each of its rigid body and we substract the number of independent
constraints.

To understand this formula, let us consider the two-joints planar robotic arm of Figure 2.1.1. It
is composed of two 2-dimensional links that would each have 3 degrees of freedom if they were
unconstrained. Each joint applies constraints on both the x and y-coordinates of the links so the
total number of constraints is 4. We assume their independence. The total number of degrees
of freedom for this robotic arm is thus 6 — 4 = 2. This means that its configuration space is
2-dimensional.

Figure 2.1.1: Two-joints planner robotic arm

2.1.2 C-space obstacles

Any C-space C can be partitioned into two subsets: C,;s, the set of configurations for which the
system is in collision with an obstacle or itself and Cy,.., which is simply C \ C,s. More formally,
if we ignore self-collisions, C,;s can be expressed as

Cobsz{q€C|A(Q)mO#@}

where W is the workspace, O C W is the obstacle region, A is the geometrical model of
robot and A(q) C W denotes the position of the robot on configuration ¢, then. Once C,s is
constructed, the basic motion planning is much simpler for it simply consists of finding a path in
Chree-

Let us again consider the robotic arm from Figure 2.1.1 in a workspace containing to rectan-
gular obstacles as pictured in Figure 2.1.2. A representation of its C-space obstacles is given
in Figure 2.1.3. In this example, since Cy,.. is @ connected region, the robotic arm can move
freely in W\ O from any start configuration.

20



Figure 2.1.2: Two-joints planner robotic arm with two rectangular obstacles

Note Both degrees of freedom are angles and since 27 = 0 (mod 27), the topology of the
C-space is a sphere so the top and bottom edges, as well as the left and right edges, are
connected.

2
61

Figure 2.1.3: C-space obstacles representation associated to Figure 2.1.2

2.2 Sampling-based methods

Unfortunately, most problems yield complicated C-space obstacles, which makes the exact de-
termination of C,;s inconceivable. Moreover, the geometric model of the robot is typically not a
bijection, which means that .A~! may not have an analytical form. Sampling-based motion plan-
ning addresses this issue by never explicitely constructing the C-space obstacles. Some of the

21



most used sampling-based motion planning algorithms are Probabilistic roadmaps (PRM) [7]
and Rapidly-exploring random trees (RRT) [9]. Both have been used to solve complex motion
planning problems in high-dimensional C-spaces and both are probabilistically complete under
relatively weak conditions.

Definition 2.2.1. A complete motion planner is a motion planner that will always find a solution
if one exists or else concludes that no path exists.

Definition 2.2.2. A probabilistically complete motion planner is a motion planner that finds a
solution if one exists with a probability of 1 when the run time goes to infinity.

Note from this definition that a planner that is only probabilistically complete cannot conclude
in a finite time when no path exists.

2.2.1 Probabilistic roadmaps

PRMs are a way to approximate the free space by randomly sampling points and creating con-
nections between them. The basic algorithm can be outlined as follows:

Algorithm 1 PRM algorithm — Construction phase
Output: The roadmap R = (N, E)

V0
E+ 10
loop
q < a randomly chosen free configuration
N, < a set of candidate neighbors of ¢ chosen from V/
V<« Vu{q}
forall ¢ € N, do
if (¢,¢') ¢ E and TRY_FIND_PATH(q,q’) then
E+— EU{(q,q)}
end if
end for
end loop

where TRY_FIND_PATH(q, ¢) returns true iff the local planner is able to find a path from ¢
to ¢/, or at least a state close to ¢’

After this construction phase, a roadmap has been made and an optimal path can be found
with a best-first graph searching algorithm such as Djikstra’s algorithm or A*. Since the learning
phase of PRM can take a long time, it is generally used in cased where multiple queries are
required on a static configuration space.

22



2.2.2 Rapidly exploring random trees

RRTs are designed to search a high-dimensional configuration space by building a space-filling
tree. The incremental construction of RRTs has interesting properties such as not needing to
point-to-point local planner or beeing biased towards unexplored regions. The basic algorithm
is outlined follows:

Algorithm 2 RRT algorithm
Input: z;,;; € Cy.cc aninitial configuration; K, the desired size of the tree; At a time interval
Output: An RRT T

T « atree with a single vertex ¢;,:

for k + 1toK do
grand < @ randomly chosen free configuration
Gnear < the nearest neighbor of ¢,.qnq iN T
Unew  SELECT_INPUT(Gnear; Grand)
Gnew < APPIY u from z,eqr At
Add the vertex ¢, t0 T
Add the edge (gnear Gnew Unew) 10 T

end for

where SELECT_INPUT(Gnear, ¢rand) COMputes an input that allows to move from ¢,,..,,- towards
the direction of ¢,qnq-

RRTs are designed to cover the space as fast as possible and are therefore relatively quick

to compute while the algorithm is easy to implement and customize. Contrary to PRMs, RRTs
are mostly used for single queries or multiple queries in dynamic environments.

23



Chapter 3

Combining reactive synthesis and
motion planning

We want to control a robot with complex dynamics for an infinite-duration execution in a reactive
way. The first difficulty that naturally arises from this description of the problem is that the robot
is supposed to run for an infinite time. However, it is impossible to plan an infinite-length path.
Hence, we need to create separate paths that will need to be plugged together. For that, we
assume the existence some set of sandboxes that will be described in Section 3.1.2. Those
sandboxes allow the planned paths to be connected so that they all form a closed path, making
it possible to loop infinitely often on them.

Another concern is that the synthesis process is discrete: the building blocks of an LTL formula
are atomic propositional variables and the output of the synthesis is a discrete controller. The
real world, however, is continuous. It is therefore necessary to implement (i) a way to express
a real-world task using propositional variables (ii) a representation of motions that is abstract
enough to be understood by both the synthesis tool and the motion planner. Section 3.1.1
provides a solution for the first issue and the structure used to address the second one is
presented in Section 3.2.

3.1 The workspace

The workspace in which the robot evolves is composed of three fixed parts: a set of obstacles,
a set of regions of interest, and a set of sandboxes. The set O of obstacles doesn’t need to be
described in this section since it is a general feature of all motion planning problems, described
in Chapter 2. Figure 3.1.1 presents such a workspace with an example solution.



Figure 3.1.1: Workspace with a motion planning tree, four regions, two sandboxes and an
obstacle.

3.1.1 Regions of intereset

The workspace W contains a set R of regions of interest. We assume those regions to be
distinct and, for each R € R, we assume that RNO = @. From a high level, we are only interested
in the motion between those regions while the motions inside each region can be arbitrary. We
associate an atomic proposition to each region of interest and, by abuse of notation, we note it
R; as well. A possible example could be:

If some input bit is set, patrol a set {Ry, ..., Rix} C R of regions infinitely often.

which corresponds to the following LTL formula:

k
b— NOOR;
i=1

Note that this is a GR(1) specification with §. = b and assumptions being trivially true.

Each region is a simple polygon for which we provide the motion planner with a geometric
description. We also define an adjancecy relation - C R x R. (R,, Ry) € 7 means that the robot
can possibly be controlled to go from R, to R,. This adjacency relation will be useful for the
process described in Section 3.3.

25



3.1.2 Sandboxes

To plug the planned paths together and enable the system to follow loops, we define a set of
sandboxes S.

Definition 3.1.1. Let C be the configuration space associated to the workspace W. A sandbox
in a region of interest R is a couple S = (E, p) with E C R and p € C such that for every xq € E,
there is a control law kg that brings the robot from position x¢ to the state p. p will be referred
as the output state of the sandbox, and ¢ is called the sandbox controller associated with S.

Each sandbox is in a region of interest but its output state doesn’t have to. However, the
sandbox controller must output paths that are collision-free. Once the set of sandboxes is
computed, it is sufficient to state that each planned path must start and end in a sandbox to
make sure that they are connected.

3.2 Abstract trees

The planned paths will be the output of the motion planner, but also part of the input of the
synthethis process. It is therefore necessary to give an abstract definition that is not dependant
on the exact geometry of the real world.

We use a sampling-based tree planner such as RRT to generate paths. Two important prop-
erties have been stated in Section 3.1 and we will use them to define the trees produced by the
motion planner from a high level:

» Each motion planning tree must start and end in a sandbox. This means that the root and
leaves of each motion planning tree must be sandboxes.

» The high-level robot motions are only represented by the inter-region moves. The nodes
of the motion planning trees that are not the root nor leaves must, therefore, represent
region changes.

The workspace in Figure 3.1.1 has a single motion planning tree, which is divided in two
branches. Figure 3.2.1 depicts the abstract tree that represents this motion planning tree.

Figure 3.2.1: Abstract motion planning 7; tree summarizing Figure 3.1.1.

26



Choice of the motion planning tree The question arises as to which tree the motion plan-
ning algorithm should aim for when searching for a tree. For instance, the tree T; depicted in
Figure 3.2.2 also corresponds to the tree from Figure 3.1.1.

Figure 3.2.2: Abstract motion planning 7> simulated by T3.

T, has more nodes than 737 while not providing more information. To chose a tree that is as
general as possible up to depth &, we use the following criterion:

Given some motion tree depth &, we want to find a motion planning tree that simu-
lates all motion planning trees with depth at most .

Definition 3.2.1. A tree simulates another tree if all behaviors on the other tree are contained
on the simulating tree. Additionally, the paths on the simulating tree must contain at least the
paths of the simulated trees and at the same time no decision must be made in the simulating
tree until a corresponding decision is made in the simulated tree

This definition of simulation ensures that for moderate values of k, the generated motion
planning trees do not have to become prohibitively large.

3.3 Abstraction-refinment loop

We maintain a set of abstract motion planning trees 7 which is extended at runtime. New trees
are automatically derived by the synthesis procedure. Those are then used as input for the
motion planner. If, for a given edge of a motion planning tree, it could not find a solution, it shall
only return the parts of the tree that could be planned and add them to 7.

Each transition in an abstract motion planning tree is associated with a cost. Whenever a
transition cannot be planned with the given resources, its cost is increased. The synthesis
procedure seeks to minimize the cost of its solution, therefore penalizing those that are harder
to plan. It ensures convergence since it won't be able to generate the same candidates over
and over again. On the other hand, the resources allotted to the motion planner to find a given
path are proportional to the cost of the associated transition. In practice, this means that a path
that is deemed harder to find will be given more time.

The cost function Cost : T x 7 — R represents the difficulty of finding a transition in = from
a state in a motion planning tree. Since the synthesis procedure can also generate entirely new

27



motion planning trees, we also need a cost function Costr to represent the cost of a transition
to such a tree.
A simplified version of the full algorithm is given by Algorithm 3.

Algorithm 3 Simplified abstraction-refinement loop

T« 0

2: loop

3 Synthesize a controller C using 7, Costy and Costg
4: T’ + motion planning trees used in C

5: if 7/ =T then

6 return 7

7 end if

8 fortc TNT7 do

9: if ¢ can be fully planned then
10: Addtto T
11: else
12: Increase the cost of the first unplanned transitions in Costr(t,...)
13: end if

14: end for
15:  forte 7'\ T do

16: if ¢t can be fully planned then

17: Addtto T

18: else

19: Increase the cost of the first unplanned transitions in Costg(t, .. .)
20: end if

21: end for
22: Remove all trees that are simulated by another tree in T
23: end loop

3.3.1 Writing the specification

The specification describes a state machine in which each state corresponds either to:
1. A sandbox
2. A state in a known motion planning tree

3. A state in a tree that is yet to be planned.

As T is initially empty, the only transitions allowed at the beginning are directly derived from
the adjacency relation 7. The only possible states are, therefore, those from the first and third

28



kind. As costs are being modified by the motion planner, the state machine is updated. When a
solution is found, all states correspond to either a sandbox or a state in a planned tree.

3.3.2 Finding a path between two regions

To find a path between two regions, the motion planner is called with the first region as a starting
point and the second one as a destination. It is however important to consider what happens in
between.

If the specification contains a safety property that negates a region, such as []—-R;, then the
region R; can never be crossed. This means that any path between two regions must avoid
this region. A solution could be to consider each region except the starting and end region as
obstacles for the motion planner. This comes with the caveat of limiting the capabilities of the
motion planner, potentially increasing the time required to find a solution.

Another approach is to only avoid regions that need to be avoided, that is, regions that are
negated in a safety property. This is done by converting safety properties to negation normal
form. Algorithm 4 details this procedure.

Algorithm 4 Extraction of the negated safety variables
N 0

2: § + safety properties

3: forp € Sdo

4 eNNF < negation normal form of ¢

5: N, < negated variables in pnnF
6

7

8

—_

N —NUN,
. end for
: return N/

Negation normal form (NNF) In NNF, the only allowed operators are A, Vv and —. More
importantly, — can only be applied to variables. Consider the following formula:

p=PV(Q— R)V~-(=PAQ)
This translates in NNF to:

=PV (=QVR)V(PV-Q)

Which simplifies as:

p=PV-QVR

The only negated variable in ¢ is therefore Q.

29



Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

Rajeev Alur and Salvatore La Torre. “Deterministic generators and games for LTL frag-
ments”. In: ACM Transactions on Computational Logic (TOCL) 5.1 (2004), pp. 1-25.

R. Bloem et al. “Synthesis of reactive(1) designs.” In: Journal of Computer and System
Sciences (2011).

Alonzo Church. “Logic, arithmetic and automata”. In: Proceedings of the international
congress of mathematicians. Vol. 1962. 1962, pp. 23-35.

Alexandre Duret-Lutz et al. “From Spot 2.0 to Spot 2.10: Whats New?” In: International
Conference on Computer Aided Verification. Springer. 2022, pp. 174-187.

R. Ehlers and V. Raman. “sLuGS: Extensible GR(1) synthesis”. In: July 2016, pp. 333—
339.

E. Allen Emerson. “Model Checking and the Mu-calculus”. In: Descriptive Complexity and
Finite Models, Proceedings of a DIMACS Workshop 1996, Princeton, New Jersey, USA,
January 14-17, 1996. Ed. by Neil Inmerman and Phokion G. Kolaitis. Vol. 31. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. DIMACS/AMS, 1996,
pp. 185-214.

L.E. Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional configu-
ration spaces”. In: IEEE Transactions on Robotics and Automation 12.4 (1996), pp. 566—
580.

Hadas Kress-Gazit, Morteza Lahijanian, and Vasumathi Raman. “Synthesis for Robots:
Guarantees and Feedback for Robot Behavior”. In: Annual Review of Control, Robotics,
and Autonomous Systems 1.1 (2018), pp. 211-236.

Steven M. LaValle. “Rapidly-exploring random trees : a new tool for path planning”. In:
The annual research report (1998).

A. Pnueli and Roni Rosner. “On the synthesis of a reactive module”. In: Automata Lan-
guages and Programming 372 (Jan. 1989), pp. 179-190.

M. Zimmerman, F. Klein, and A. Weinert. “Lecture notes on Infinite Games”. In: (2016).



	Reactive synthesis
	Linear temporal logic
	Syntax
	Semantics

	Games
	Explicit definition
	The winning condition
	Symbolic definition

	Modal mu-calculus on games
	Syntax
	Semantics

	Generalized Reactive(1) synthesis

	Motion planning
	The configuration space
	Degrees of freedom
	C-space obstacles

	Sampling-based methods
	Probabilistic roadmaps
	Rapidly exploring random trees


	Combining reactive synthesis and motion planning
	The workspace
	Regions of intereset
	Sandboxes

	Abstract trees
	Abstraction-refinment loop
	Writing the specification
	Finding a path between two regions



