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Active learning consists in modelling as an automaton the behaviour of a black
box system whose inner logic is unknown to the observer - be it an unknown
program, a neural network, etc. To this end, the learner will rely on two different
classes of queries: membership queries (”Does a word belong to the language
accepted by the black box?”) and equivalence queries (”Does the automaton
accurately model the system under learning?”). The former class of requests
can be handled by merely running them on the black box. On the other hand,
it is theoretically impossible to answer an equivalence query without knowing
the inner workings of the system we are trying to model in the first place. For
this very reason, actual active learning libraries tends to approximate them with
membership queries.
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1 Introduction
Model learning is an automated technique to construct a state-based model
– often a type of automaton – from a black box system. The goal of this
technique can be manifold: it can be used to reverse-engineer a system, to find
bugs in it, to verify properties of the system, or to understand the system in one
way or another. It is not just random testing: the information learned during
the interaction with the system is actively used to guide following interactions.
Additionally, the information learned can be inspected and analysed.

But before we get ahead of ourselves, we should first understand what we
mean by learning, as learning means very different things to different people.
In educational science, learning may involve concepts such as teaching, blended
learning, and interdisciplinarity. Data scientists may think of data compression,
feature extraction, and neural networks. In this article we are mostly concerned
with software verification. But even in the field of verification several types of
learning are relevant.

1.1 Model Learning
In the context of software verification, we often look at stateful computations
with inputs and outputs. For this reason, it makes sense to look at words, or
traces. For an alphabet Σ, we denote the set of words by Σ∗.

The learning problem is defined as follows. There is some fixed, but un-
known, language L ⊆ Σ∗. This language may define the behaviour of a software
component, a property in model checking, a set of traces from a protocol, etc.
We wish to infer a description of L after only having observed a small part of
this language. For example, we may have seen hundred words belonging to the
language and a few which do not belong to the language. Then concluding with
a good description of L is difficult, as we are missing information about the
infinitely many words we have not observed.

Such a learning problem can be stated and solved in a variety of ways. We
will have a look at how a learning algorithm can interact with the software. So
it makes sense to study a learning paradigm which allows for queries, and not
just a data set of samples. A typical query learning framework was established
by Angluin (1987) [D87]. In her framework, the learning algorithm may pose
two types of queries to a teacher, or oracle:

Membership queries (MQ) The learner poses such a query by providing
a word w ∈ Σ∗ to the teacher. The teacher will then reply whether w ∈ L or
not. This type of query is often generalised to more general output, in these
cases we consider L : Σ∗ → O and the teacher replies with L(w). In some
papers, such a query is then called an output query.

Equivalence queries (EQ) The learner can provide a hypothesised descrip-
tion H of L to the teacher. If the hypothesis is correct, the teacher replies with
yes. If, however, the hypothesis is incorrect, the teacher replies with no together
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with a counterexample, i.e., a word which is in L but not in the hypothesis or
vice versa.

By posing many such queries, the learner algorithm is supposed to converge
to a correct model. This type of learning is hence called exact learning. An-
gluin (1987) [D87] showed that one can do this efficiently for deterministic finite
automata (DFAs), when L is in the class of regular languages.

It should be clear why this is called query learning or active learning. The
learning algorithm initiates interaction with the teacher by posing queries, it
may construct its own data points and ask for their corresponding label. Active
learning is in contrast to passive learning where all observations are given to the
algorithm up front.

1.2 Applications of Model Learning
This is a non-exhaustive list of applications of model learning.

Bug finding in protocols. A prominent example is by Fiterău-Bros,tean, et
al. (2016) [RW16]. They learn models of TCP implementations – both clients
and server sides. Interestingly, they found bugs in the (closed source) Win-
dows implementation. Later, Fiterău-Bros,tean and Howar (2017) [FH17] also
found a bug in the sliding window of the Linux implementation of TCP. Other
protocols have been learned as well, such as the MQTT protocol by Tappler,
et al. (2017) [KR17], TLS by de Ruiter and Poll (2015) [RE15], and SSH by
Fiterău-Bros,tean, et al. (2017) [RP17]. Many of these applications reveal bugs
by learning a model and consequently apply model checking. The combina-
tion of learning and model checking was first described by Peled, et al. (2002)
[YM02].

Bug finding in smart cards Aarts, et al. (2013) [RE13] learn the software
on smart cards of several Dutch and German banks. These cards use the EMV
protocol, which is run on the card itself. So this is an example of a real black
box system, where no other monitoring is possible and no code is available.
No vulnerabilities were found, although each card had a slightly different state
machine. The e.dentifier, a card reader implementing a challenge-response pro-
tocol, has been learned by Chalupar, et al. (2014) [ER14]. They built a Lego
machine which could automatically press buttons and the researchers found a
security flaw in this card reader.

Regression testing Hungar, et al. (2003) [OB03] describe the potential of
automata learning in regression testing. The aim is not to find bugs, but to
monitor the development process of a system. By considering the differences
between models at different stages, one can generate regression tests.

Refactoring legacy software Model learning can also be used in order to
verify refactored software. Schuts, et al. (2016) [JW16] have applied this at a
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project within Philips. They learn both an old version and a new version of the
same component. By comparing the learned models, some differences could be
seen. This gave developers opportunities to solve problems before replacing the
old component with the new one.

2 Black Box Testing
An important step in automata learning is equivalence checking. Normally, this
is abstracted away and done by an oracle, but we intend to implement such an
oracle ourselves for our applications. Concretely, the problem we need to solve
is that of conformance checking as it was first described by Moore (1956) [F56].

The problem is as follows: Given the description of a finite state machine and
a black box system, does the system behave exactly as the description? We wish
to determine this by running experiments on the system (as it is black box). It
should be clear that this is a hopelessly difficult task, as an error can be hidden
arbitrarily deep in the system. That is why we often assume some knowledge
of the system. In this article we often assume a bound on the number of states
of the system. Under these conditions, Moore (1956) [F56] already solved the
problem. Unfortunately, his experiment is exponential in size, or in his own
words: “fantastically large.”

Years later, Chow (1978) [S78] and Vasilevskii (1973) [P73] independently
designed efficient experiments. In particular, the set of experiments is polyno-
mial in the number of states. More background and other related problems,
as well as their complexity results, are well exposed in a survey of Lee and
Yannakakis (1994) [DM94].

Figure 1: Behaviour of a record player modelled as a finite state machine.

To give an example of conformance checking, we model a record player as
a finite state machine. We will not model the audible output – that would
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depend not only on the device, but also the record one chooses to play. Instead,
the only observation we can make is looking at how fast the turntable spins.
The device has two buttons: a start-stop button (�r) and a speed button
(⟳) which toggles between 33 1

3 rpm and 45 rpm. When turned on, the system
starts playing immediately at 33 1

3 rpm – this is useful for DJing. The intended
behavior of the record player has four states as depicted in Figure 1.

Let us consider some faults which could be present in an implementation
with four states. In Figure 2, two flawed record players are given. In the first
(Figure 2a), the sequence �r⟳⟳ leads us to the wrong state. However, this is
not immediately observable; the turntable is in a non-spinning state as it should
be. The fault is only visible when we press �ronce more: now the turntable
is spinning fast instead of slow. The sequence �r⟳⟳�ris a counterexample.
In the second example (Figure 2b), the fault is again not immediately obvious:
after pressing ⟳�rwe are in the wrong state as observed by pressing �r. Here,
the counterexample is ⟳�r�r.

When a model of the implementation is given, it is not hard to find coun-
terexamples. However, in a black box setting we do not have such a model. In
order to test whether a black box system is equivalent to a model, we somehow
need to test all possible counterexamples. In this example, a test suite should
include sequences such as �r⟳⟳�rand ⟳�r�r.

Figure 2: Two faulty record players

2.1 Mealy machines
We will focus on Mealy machines, as those capture many protocol specifications
and reactive systems.

We fix finite alphabets I and O of inputs and outputs respectively. We use
the usual notation for operations on sequences (also called words): uv for the
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concatenation of two sequences u, v ∈ I∗ and |u| for the length of u. For a
sequence w = uv we say that u and v are a prefix and suffix respectively.

Definition A (deterministic and complete) Mealy machine M consists of a
finite set of states S, an initial state s0 ∈ S, and two functions:

• a transition function δ : S × I → S, and

• an output function λ : S × I → O.

Both the transition function and output function are extended inductively to
sequences as δ : S × I∗ → S and λ : S × I∗ → O∗ :

δ(s, ϵ) = s

λ(s, ϵ) = ϵ

δ(s, aw) = δ(δ(s, a), w)
λ(s, aw) = λ(s, a)λ(δ(s, a), w)

The behaviour of a state s is given by the output function λ(s,−) : I∗ → O∗.
Two states s and t are equivalent if they have equal behaviours, written s ∼ t,
and two Mealy machines are equivalent if their initial states are equivalent.
An example Mealy Machine is given in Figure 3.

Figure 3: An example specification with input I = {a, b, c} and output O =
{0, 1}

2.2 Completeness of test suites
In conformance testing we have a specification modelled as a Mealy machine
and an implementation (the system under test, or SUT) which we assume to
behave as a Mealy machine. Tests, or experiments, are generated from the
specification and applied to the implementation. We assume that we can reset
the implementation before every test. If the output is different from the specified
output, then we know the implementation is flawed. The goals is to test as little
as possible, while covering as much as possible.
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A test suite is nothing more than a set of sequences. We do not have to
encode outputs in the test suite, as those follow from the deterministic specifi-
cation.

Definition A test suite is a finite subset T ⊆ I∗

A test t ∈ T is called maximal if it is not a proper prefix of another test
s ∈ T . We denote the set of maximal tests of T by max(T ). The maximal tests
are the only tests in T we actually have to apply to our SUT as we can record
the intermediate outputs.

No test suite is complete. Consider the specification in Figure 4a. This
machine will always outputs a cup of coffee – when given money. For any test
suite we can make a faulty implementation which passes the test suite. A faulty
implementation might look like Figure 4b, where the machine starts to output
beers after n steps (signalling that it’s the end of the day), where n is larger than
the length of the longest sequence in the suite. This shows that no test-suite
can be complete and it justifies the following definition.

Figure 4: A basic example showing that finite test suites are incomplete. The
implementation on the right will pass any test suite if we choose n big enough

Definition Let M be a Mealy machine and T be a test suite. We say that T is
m-complete (for M) if for all inequivalent machines M ′ with at most m states
there exists a t ∈ T such that λ(s0, t) ̸= λ′(s′

0, t).

We are often interested in the case of m-completeness, where m = n + k for
some k ∈ N and n is the number of states in the specification. Here k will stand
for the number of extra states we can test.

Note the order of the quantifiers in the above definition. We ask for a single
test suite which works for all implementations of bounded size. This is crucial
for black box testing, as we do not know the implementation, so the test suite
has to work for all of them

2.3 W-method
Before talking about W-method, you must know what a characterisation set is.
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Definition Given two states s, t in M , we say that w is a separating sequence
if λ(s, w) ̸= λ(t, w).

Definition A set of sequences W is called a characterisation set if it contains a
separating sequence for each pair of inequivalent states in M.

We fix a state cover P and take the transition cover Q = P · I.
After the work of Moore (1956) [F56], it was unclear whether a test suite of poly-
nomial size could exist. He presented a finite test suite which was complete,
however it was exponential in size. Both Chow (1978) [S78] and Vasilevskii
(1973) [P73] independently prove that test suites of polynomial size exist. The
W-method is a very structured test suite construction. It is called the W-method
as the characterisation set is often called W.

Definition Given a characterisation set W , we define the W test suite as

TW = (P ∪Q) · I≤k ·W

This tests the machine in two phases. For simplicity, we explain these phases
when k = 0. The first phase consists of the tests P ·W and tests whether all
states of the specification are (roughly) present in the implementation. The sec-
ond phase is Q ·W and tests whether the successor states are correct. Together,
these two phases put enough constraints on the implementation to know that
the implementation and specification coincide (provided that the implementa-
tion has no more states than the specification).

Let us compute the previous test suite on the specification in Figure 3. We
will be testing without extra states, i.e., we construct 5-complete test suites.
We start by defining the state and transition cover. For this, we take all short-
est sequences from the initial state to the other states. This state cover is
depicted in Figure 5. The transition cover is simply constructed by extending
each access sequence with another symbol.

Figure 5: A state cover for the specification from Figure 3
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The set W = {aa, ac, c} is a characterisation set. The W -method, which simply
combines P ∪Q with W , gives the following test suite of size 169:

TW = {aaaaa, aaaac, aaac, aabaa, aabac, aabc, aacaa,

aacac, aacc, abaa, abac, abc, acaa, acac, acc, baaaa,

baaac, baac, babaa, babac, babc, bacaa, bacac, bacc,

bbaa, bbac, bbc, bcaa, bcac, bcc, caa, cac, cc}

3 Generation of W
In diverse areas of computer science and engineering, systems can be modelled
by finite state machines (FSMs). One of the cornerstones of automata theory is
minimisation of such machines – and many variations thereof. In this process
one obtains an equivalent minimal FSM, where states are different if and only if
they have different behaviour. The first to develop an algorithm for minimisation
was Moore (1956) [F56]. His algorithm has a time complexity of O(mn), where
m is the number of transitions, and n is the number of states of the FSM. Later,
Hopcroft (1971) [E71] improved this bound to O(m log n).

Minimisation algorithms can be used as a framework for deriving a set of
separating sequences that show why states are inequivalent. The separating
sequences in Moore’s framework are of minimal length (Gill, 1962 [A62]). Ob-
taining minimal separating sequences in Hopcroft’s framework, however, is a
non-trivial task. In this part of this article, we present an algorithm for finding
such minimal separating sequences for all pairs of inequivalent states of a FSM
in O(m log n) time.

Coincidentally, Bonchi and Pous (2013) [FD13] recently introduced a new
algorithm for the equally fundamental problem of proving equivalence of states
in non-deterministic automata. As both their and our work demonstrate, even
classical problems in automata theory can still offer surprising research oppor-
tunities. Moreover, new ideas for well-studied problems may lead to algorithmic
improvements that are of practical importance in a variety of applications.

One such application for our work is in conformance testing. Here, the goal
is to test if a black box implementation of a system is functioning as described
by a given FSM. It consists of applying sequences of inputs to the implemen-
tation, and comparing the output of the system to the output prescribed by
the FSM. Minimal separating sequences are used in many test generation meth-
ods (Dorofeeva, et al., 2010 [RN10] ). Therefore, our algorithm can be used to
improve these methods.

In this part of the article, we will use only Mealy machines but all this al-
gorithms can be adapted for DFA.

Definition States s and t are equivalent if λ(s, x) = λ(t, x) for all x ∈ I∗.

We are interested in the case where s and t are not equivalent, i.e., inequivalent.
If all pairs of distinct states of a machine M are inequivalent, then M is minimal.
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Definition A separating sequence for states s and t in s is a sequence x ∈ I∗

such that λ(s, x) ̸= λ(t, x). We say x is minimal if |y| ≥ |x| for all separating
sequences y for s and t.

A separating sequence always exists if two states are inequivalent, and there
might be multiple minimal separating sequences. Our goal is to obtain minimal
separating sequences for all pairs of inequivalent states of M

Both Moore’s algorithm and Hopcroft’s algorithm work by means of partition
refinement.

A partition P of S is a set of pairwise disjoint non-empty subsets of S whose
union is exactly S. Elements in P are called blocks. If P and P ′ are partitions
of S, then P ′ is a refinement of P if every block of P ′ is contained in a block of
P . A partition refinement algorithm constructs the finest partition under some
constraint. In our context the constraint is that equivalent states belong to the
same block.

Definition A partition is valid if equivalent states are in the same block.

Partition refinement algorithms for FSMs start with the trivial partition P =
{S}, and iteratively refine P until it is the finest valid partition (where all
states in a block are equivalent). The blocks of such a complete partition form
the states of the minimised FSM, whose transition and output functions are
well-defined because states in the same block are equivalent.

Let B be a block and a be an input. There are two possible reasons to split
B (and hence refine the partition). First, we can split B with respect to output
after a if the set λ(B, a) contains more than one output. Second, we can split
B with respect to the state after a if there is no single block B′ containing the
set δ(B, a). In both cases it is obvious what the new blocks are: in the first
case each output in λ(B, a) defines a new block, in the second case each block
containing a state in δ(B, a) defines a new block. Both types of refinement
preserve validity.

Partition refinement algorithms for FSMs first perform splits with respect
to output, until there are no such splits to be performed. This is precisely the
case when the partition is acceptable.

Definition A partition is acceptable if for all pairs s, t of states contained in
the same block and for all inputs a ∈ I, λ(s, a) = λ(t, a).

Any refinement of an acceptable partition is again acceptable. The algorithm
continues performing splits with respect to state, until no such splits can be
performed. This is exactly the case when the partition is stable.

Definition A partition is stable if it is acceptable and for any input a ∈ I
and states s and t that are in the same block, states δ(s, a) and δ(t, a) are also
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in the same block.

Since an FSM has only finitely many states, partition refinement will termi-
nate. The output is the finest valid partition which is acceptable and stable.
For a more formal treatment on partition refinement we refer to Gries (1973)
[D73].

3.1 Naive approach
Both types of splits described above can be used to construct a separating se-
quence for the states that are split. In a split with respect to the output after
a, this sequence is simply a. In a split with respect to the state after a, the
sequence starts with an a and continues with the separating sequence for states
in δ(B, a). In order to systematically keep track of this information, we main-
tain a splitting tree. The splitting tree was introduced by Lee and Yannakakis
(1994) [DM94] as a data structure for maintaining the operational history of a
partition refinement algorithm.

Definition A splitting tree for M is a rooted tree T with a finite set of nodes
with the following properties:

• Each node u in T is labelled by a subset of S, denoted l(u).

• The root is labelled by S.

• For each inner node u, l(u) is partitioned by the labels of its children.

• Each inner node u is associated with a sequence σ(u) that separates states
contained in different children of u.

We use C(u) to denote the set of children of a node u. The lowest common
ancestor (lca) for a set S′ ⊆ S is the node u such that S′ ⊆ l(u) and S′ ̸⊆ l(v)
for all v ∈ C(u) and is denoted by lca(S′). For a pair of states s and t we use
the shorthand lca(s, t) for lca({s, t}).

The labels l(u) can be stored as a refinable partition data structure (Valmari
& Lehtinen, 2008 [AP08]). This is an array containing a permutation of the
states, ordered so that states in the same block are adjacent. The label l(u) of
a node then can be indicated by a slice of this array. If node u is split, some
states in the slice l(u) may be moved to create the labels of its children, but
this will not change the set l(u).

A splitting tree T can be used to record the history of a partition refinement
algorithm because at any time the leaves of T define a partition on S, denoted
P (T ). We say a splitting tree T is valid (resp. acceptable, stable, complete) if
P (T ) is as such. A leaf can be expanded in one of two ways, corresponding to
the two ways a block can be split. Given a leaf u and its block B = l(u) we
define the following two splits:

(split-output) Suppose there is an input a such that B can be split with
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respect to output after a. Then we set σ(u) = a, and we create a node for each
subset of B that produces the same output x on a. These nodes are set to be
children of u.

(split-state) Suppose there is an input a such that B can be split with re-
spect to the state after a. Then instead of splitting B as described before, we
proceed as follows. First, we locate the node v = lca(δ(B, a)). Since v cannot
be a leaf, it has at least two children whose labels contain elements of δ(B, a).
We can use this information to expand the tree as follows. For each node w in
C(v) we create a child of u labelled {s ∈ B | δ(s, a) ∈ l(w)} if the label contains
at least one state. Finally, we set σ(u) = aσ(v).

A straight-forward adaptation of partition refinement for constructing a sta-
ble splitting tree for M is shown in Algorithm 1. The termination and the
correctness of the algorithm are preserved. It follows directly that states are
equivalent if and only if they are in the same label of a leaf node.

Algorithm 1 Constructing a stable splitting tree
Require: An FSM M
Ensure: A valid and stable splitting tree T

1: initialise T to be a tree with a single node labelled S
2: repeat
3: find a ∈ I, B ∈ P (T ) such that we can split B with respect to output

λ(·, a)
4: expand the u ∈ T with l(u) = B as described in (split-output)
5: until P (T ) is acceptable
6: repeat
7: find a ∈ I, B ∈ P (T ) such that we can split B with respect to state δ(·, a)

8: expand the u ∈ T with l(u) = B as described in (split-state)
9: until P (T ) is stable

Example Figure 6 shows an FSM and a complete splitting tree for it. This
tree is constructed by Algorithm 1 as follows. First, the root node is labelled
by {s0, . . . , s5}. The even and uneven states produce different outputs after
a, hence the root node is split. Then we note that s4 produces a different
output after b than s0 and s2, so {s0, s2, s4} is split as well. At this point T is
acceptable: no more leaves can be split with respect to output. Now, the states
δ({s1, s3, s5}, a) are contained in different leaves of T . Therefore, {s1, s3, s5}
is split into {s1, s5} and {s3} and associated with sequence ab. At this point,
δ({s0, s2}, a) contains states that are in both children of {s1, s3, s5}, so {s0, s2}
is split and the associated sequence is aab. We continue until T is complete.
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Figure 6: An FSM (a) and a complete splitting tree for it (b).

3.2 Minimal approach
In the previous section, we have described an algorithm for constructing a com-
plete splitting tree. This algorithm is non-deterministic, as there is no prescribed
order on the splits. In this section we order them to obtain minimal separating
sequences.

Let u be a non-root inner node in a splitting tree, then the sequence σ(u)
can also be used to split the parent of u. This allows us to construct splitting
trees where children will never have shorter sequences than their parents, as
we can always split with those sequences first. Trees obtained in this way are
guaranteed to be layered, which means that for all nodes u and all u′ ∈ C(u),
|σ(u)| ≤ |σ(u′)|. Each layer consists of nodes for which the associated separating
sequences have the same length.

Our approach for constructing minimal sequences is to ensure that each layer
is as large as possible before continuing to the next one. This idea is expressed
formally by the following definitions.

Definition A splitting tree T is k-stable if for all states s and t in the same leaf
we have λ(s, x) = λ(t, x) for all x ∈ I≤k.

Definition 9. A splitting tree T is minimal if for all states s and t in dif-
ferent leaves λ(s, x) ̸= λ(t, x) implies |x| ≥ |σ(lca(s, t))| for all x ∈ I∗.

Minimality of a splitting tree can be used to obtain minimal separating se-
quences for pairs of states. If the tree is in addition stable, we obtain minimal
separating sequences for all inequivalent pairs of states. Note that if a minimal
splitting tree is (n−1)-stable (n is the number of states of M), then it is stable.
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This follows from the well-known fact that n − 1 is an upper bound for the
length of a minimal separating sequence (Moore, 1956 [F56])).

Algorithm 2 ensures a stable and minimal splitting tree. The first repeat-
loop is the same as before (in Algorithm 1). Clearly, we obtain a 1-stable and
minimal splitting tree here. It remains to show that we can extend this to a
stable and minimal splitting tree. Algorithm 3 will perform precisely one such
step towards stability, while maintaining minimality. Termination follows from
the same reason as for Algorithm 1. Correctness for this algorithm is shown by
the following key lemma. We will denote the input tree by T and the tree after
performing Algorithm 3 by T ′. Observe that T is an initial segment of T ′.

Lemma Algorithm 3 ensures a (k + 1)-stable minimal splitting tree.

Proof. Let us prove stability. Let s and t be in the same leaf of T ′ and
let x ∈ I∗ be such that λ(s, x) ̸= λ(t, x). We show that |x| > k + 1.

Suppose for the sake of contradiction that |x| ≤ k + 1. Let u be the leaf
containing s and t and write x = ax′. We see that δ(s, a) and δ(t, a) are
separated by k-stability of T . So the node v = lca(δ(l(u), a)) has children and
an associated sequence σ(v). There are two cases:

• |σ(v)| < k, then aσ(v) separates s and t and is of length ≤ k. This case
contradicts the k-stability of T .

• |σ(v)| = k, then the loop in Algorithm 3 will consider this case and split.
Note that this may not split s and t (it may occur that aσ(v) splits different
elements in l(u)). We can repeat the above argument inductively for the
newly created leaf containing s and t. By finiteness of l(u), the induction
will stop and, in the end, s and t are split.

Both cases end in contradiction, so we conclude that |x| > k + 1.
Let us now prove minimality. It suffices to consider only newly split states

in T ′. Let s and t be two states with |σ(lca(s, t))| = k + 1. Let x ∈ I∗ be a
sequence such that λ(s, x) ̸= λ(t, x). We need to show that |x| ≥ k + 1. Since
x ̸= ϵ we can write x = ax′ and consider the states s′ = δ(s, a) and t′ = δ(t, a)
which are separated by x′. Two things can happen:

• The states s′ and t′ are in the same leaf in T . Then by k-stability of T we
get λ(s′, y) = λ(t′, y) for all y ∈ I≤k. So |x′| > k.

• The states s′ and t′ are in different leaves in T and let u = lca(s′, t′).
Then aσ(u) separates s and t. Since s and t are in the same leaf in T
we get |aσ(u)| ≥ k + 1 by k-stability. This means that |σ(u)| ≥ k and by
minimality of T we get |x′| ≥ k.

In both cases we have shown that |x| ≥ k + 1 as required. □

Example Figure 7(a) shows a stable and minimal splitting tree T for the ma-
chine in Figure 6. This tree is constructed by Algorithm 2 as follows. It executes
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the same as Algorithm 1 until we consider the node labelled {s0, s2}. At this
point k = 1. We observe that the sequence of lca(δ({s0, s2}, a)) has length 2,
which is too long, so we continue with the next input. We find that we can
indeed split with respect to the state after b, so the associated sequence is ba.
Continuing, we obtain the same partition as before, but with smaller witnesses.

The internal data structure (a refinable partition) is shown in Figure 7(b):
the array with the permutation of the states is at the bottom, and every block
includes an indication of the slice containing its label and a pointer to its parent
(as our final algorithm needs to find the parent block, but never the child blocks).

Algorithm 2 Constructing a stable and minimal splitting tree.
Require: An FSM M with n states
Ensure: A stable, minimal splitting tree T

1: initialise T to be a tree with a single node labelled S
2: repeat
3: find a ∈ I, B ∈ P (T ) such that we can split B with respect to output

λ(·, a)
4: expand the u ∈ T with l(u) = B as described in (split-output)
5: until P (T ) is acceptable
6: for k = 1 to n− 1 do
7: invoke Algorithm 3 on T for k
8: end for

Algorithm 3 A step towards the stability of a splitting tree.
Require: A k-stable and minimal splitting tree T
Ensure: T is a (k + 1)-stable, minimal splitting tree

1: for all leaves u ∈ T and all inputs a ∈ I do
2: v ← lca(δ(l(u), a))
3: if v is an inner node and |σ(v)| = k then
4: expand u as described in (split-state) (this generates new leaves)
5: end if
6: end for
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Figure 7: (a) A complete and minimal splitting tree for the FSM in Figure 6
and (b) its internal refinable partition data structure.

A splitting tree can be used to extract relevant information for a character-
isation set for the W-method.

Definition A set W ⊂ I∗ is called a characterisation set if for every pair of
inequivalent states s, t there is a sequence w ∈W such that λ(s, w) ̸= λ(t, w).

Lemma Let T be a complete splitting tree, then the set {σ(u) | u ∈ T} is
a characterisation set.

Proof. Let W = {σ(u) | u ∈ T}. Let s, t ∈ S be inequivalent states, then by
completeness s and t are contained in different leaves of T . Hence u = lca(s, t)
exists and σ(u) ∈W separates s and t. This shows that W is a characterisation
set. □

Lemma A characterisation set with minimal length sequences can be con-
structed in time O(m log n).

Proof. The sequences associated with the inner nodes of a splitting tree form a
characterisation set. Such a tree can be constructed in timeO(m log n). Travers-
ing the tree to obtain the characterisation set is linear in the number of nodes
(and hence linear in the number of states). □
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3.3 Learner aware approach
In this section, we will see how to make the most of the information from the
learning algorithm. Indeed, let’s suppose that the SUL (System Under Learning)
is surrounded by a cache, meaning that if two identical queries are made, the
second one incurs no real cost. An idea would be to make the most of this
cache by leveraging the information from the learning algorithm to increase the
chances of encountering queries that it has already processed.

Of course, this technique cannot work for all learning algorithms: in our
case, we will base it on the L* algorithm.

To create this new set W, we will take the suffix set S from L* and minimize
it. However, during the minimization, it is important to maintain the property
of the characterization set. This is what Algorithm 4 does.

Algorithm 4 Constructing a W set learner aware
Require: A W set given by the learning algorithm
Ensure: A minimal subset of W which is still a characterisation set

1: function WFROM(W , K = ∅)
2: Create a set C for all sets that are still characterisation set
3: Create a set N for all states that are mandatory
4: for all words w in W do
5: construct F = W \ {w}
6: if F is a characterisation set then
7: add F to C
8: else
9: add w to N

10: end if
11: end for
12: if C = ∅ then
13: return K ∪N
14: end if
15: for all sets Wi in C do
16: invoke WFROM(Wi, K ∪N)
17: end for
18: return the WFROM with the smallest length

The objective here is to separate the states into two categories: those that
are mandatory (meaning if they are no longer present, then W is no longer a
characterization set) and those that are not mandatory (meaning if they are
no longer present, then W retains its property as a characterization set). The
’mandatory’ states will be placed in what we will call a ’core’, and we will make
recursive calls with the sets deprived of the ’non-mandatory’ words.

In this way, we achieve the smallest subset of the W provided by L* that is
still a characterization set.
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4 Results

Size 5 DFA (k=3) Size 10 DFA (k=5)
Minimal approach (total) 231 465

Leaner aware approach (total) 148 469
Minimal approach (equivalence) 216 437

Leaner aware approach (equivalence) 138 446

Table 1: Comparison of different approaches

Table 1 shows the number of queries obtained during the learning of DFA
of size 5 and size 10. We have separated the total number of queries as well as
the number of queries at the time of the final equivalence.

As you can notice, this table does not show clear results. Indeed, another
point that we have not addressed and that would be important to implement
is the prioritization order of the tests. An article done by Kruger L. (January
2024) [SJ24] demonstrates this specifically by using two types of prioritization:
the first by random selection and the other by what it calls ’experts’.
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