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Large Language Models (LLMs) have showcased substantial potential in software engineering activities,
notably in code generation. The performances of LLMs are evaluated on datasets using the pass@k metric,
which means that out of k code snippets, at least one is correct. Among all the different models, there is a
significant difference between pass@1 (which is greedy) and pass@100. The quality of the generated code
may be lacking due to ambiguities, specification errors or unsupported features. The pass@k success rate
increases as k increases. This shows that the model concerned can create code that meets the specifications,
but this is not the first response it will return, underlining the importance of formal verification . This study
will address the verification of codes generated by LLMs. We believe formal verification can potentially
increase the robustness of code LLMs by incorporating a mechanism of validation after the generation
process.

Les grands modeles de langue (LLM) ont montré un potentiel substantiel dans les activités de génie logi-
ciel, notamment dans la génération de code. Les performances des LLM sont évaluées sur des ensembles
de données & 'aide de la métrique pass@k. Cette métrique indique que sur k extraits de code, au moins un
est correct. Parmi les différents modeles, il existe une différence significative entre pass@1 (qui est glou-
ton) et pass@100. La qualité du code généré peut étre insuffisante en raison d’ambiguités, d’erreurs de
spécification ou de caractéristiques non prises en charge. Le taux de réussite du pass@k augmente lorsque
k est grand. Cela montre que le modele concerné peut créer un code qui répond aux spécifications, mais
ce n’est pas la premiere reponse qu’il renverra, soulignant ainsi I'importance de la vérification formelle.
Cette étude portera sur la vérification des codes générés par les LLMs. Nous pensons que la vérification
formelle peut potentiellement augmenter la robustesse des LLM de code en incorporant un mécanisme de
validation apres le processus de génération.
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1. Introduction

Large Language Models (LLMs) have revolutionized Artificial Intelligence. They can engage
in natural language conversations with humans, answer questions and even generate creative
content such as generating an image, music or even emotions (see Li et al. (2023a)). In recent
years, LLMs such as GPT3.5 - launched in November 2022 by OpenAl - have been very success-
ful thanks to chat models.

LLMs are advanced artificial intelligence models designed to understand and generate human-
like text. They are trained on vast amounts of textual data from code repositories, books and
articles. The text is tokenized into tokens which can be words, subwords, or characters. The
model learns patterns, structures, and syntax rules of different languages by predicting the next
token in a sequence, given the previous tokens. Then they are fine-tuned on specific datasets
to specialize in particular tasks or domains. LLMs are based on neural network architectures,
particularly transformers (see Vaswani et al. (2023)). Transformers consist of multiple layers,
each containing a multi-head self-attention mechanism and feedforward neural networks (neu-
ral networks where connections between the nodes do not form a cycle). Key components of
the transformer architecture include embeddings (input text is converted into dense vector rep-
resentations), self-attention mechanism (the model weighs the importance of different tokens in
the input sequence when generating an output, which helps the model to understand context).
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Figure 1.1: Architecture of a Feedforward Neural Network (FNN) from Clinton (2023)

It has been observed that LLMs often fail to provide a satisfactory solution or are inaccurate
(see Zheng et al. (2024b)). This is particularly true about the code they generate. The cod-
ing skills of models are evaluated on datasets such as Human Eval (see Chen et al. (2021))
or MBPP (see Austin et al. (2021)), using the pass@k metric. The definition of pass@k is the
probability that at least one out of k generated solutions is correct. Performance varies widely
from one model to another, but also on the same model depending on the number of parame-



ters. Nevertheless, we can note a huge variation between pass@1 and pass@100 regardless of
the model and its size. In fact, the difference on several models can exceed 50%, which is the
case of Meta’s Code-LLaMA-Python-13B with a difference of 50.4% (see Roziére et al. (2024))
or Google’s PaLM-2-S with a difference of 50.8% (see Zheng et al. (2024b)). This means that on
some models, more than half of the benchmark failed but it could have been avoided if the LLM
chose the right code.

This is why we believe that formal verification can make large language models more reliable.
Two approaches stand out: learning and inference. The first approach would be fine-tuning a
model to teach it formal verification and use self reflection (see Piché et al. (2024)). The second
approach would be using formal verification on generated code. Multiple tools could be used:
model checkers such as TLA+ and PlusCAL (see (Lamport, 2024)), or Coq (see Huet and Co-
quand (1989)). Alternatively, we could think of reranking (see Pradeep et al. (2023)). Bearing in
mind that the pass@n is better than the pass@k with n > k, we could look into using the codes
generated by a pass@n and rerank them to produce a superior pass@k. This report will focus
on the second approach.

We generated code on Human Eval and MBPP datasets using Microsoft’s Phil.5 (see Li et al.
(2023b)). We used Phil.5 because it is open source, powerful and small. It was a good way of
getting started. This LLM success rate is 34.1% on Human Eval on pass@1 - which is the same
as what is indicated by Textbook is all you need II Li et al. (2023b) - and 34.6% on MBPP on
pass@1 - which is 3.1% lower than what is indicated on the paper. On these generated codes, we
tried to translate them into PlusCAL and create a TLA+ specification using the given asserts.
However, it appears that the chosen LLMs (Llama3, Phi3, CodeCopilot, Mistral, and CodeL-
lama) are not trained on either PlusCAL or TLA+. They produced codes that are not parsable
by the TLA+ toolbox (see Lamport (2024)). The use of pattern reflection (see Shinn et al. (2023))
did not succeed. We tried to ask GPT4 to explain how PlusCAL works and its syntax, give its
explanation to a LLM to teach it PlusCAL (see Helwer (2023)) but this did not succeed as well.
Finally, we thought of reranking and using the NDCG metric (Normalized Discounted Cumula-
tive Gain) and it gave promising results with 0.61 on OctoCoder (see Muennighoff et al. (2024))
and 0.63 on DeciCoder.

HuggingFace (2024)’s Big Code Models Leaderboard compares performance of base multi-
lingual code generation models on Human Eval benchmark and MultiPL-E (see Cassano et al.
(2022)). Only open pre-trained multilingual code models are compared. According to this
leaderboard, OpenCodelnterpreter-DS-33B (see Zheng et al. (2024a)) has the highest winrate
overall. However, some stand out such as Nxcode-CQ-7B-orpo which is the model with the
best score on Python (Human Eval), Javascript and C++.
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2. Using LLMs

This section is about how we generated code on Human Eval and MBPP datasets with Phil.5.
Python is the language used because of its simplicity and readability. Its extensive ecosystem
of libraries allows us to avoid reinventing the wheel by using already implemented tools and
having easy and free access to open source LLMs.

2.1 Libraries

We used multiple libraries from Python:
* json
¢ transformers
* datasets
¢ ollama

e cohere

2.1.1 Json

JavaScript Object Notation (JSON) is a textual data format derived from the object notation of
the JavaScript language. We will be using it to store generated code as in the following example.

Listing 2.1: example json

"id": O,

"code": 1listOfCode,

"model": solutionProposedByTheDataset,
"test": asserts

2.1.2 Transformers

According to Hugging Face’s website, "Transformers is a library maintained by Hugging Face
and the community, for state-of-the-art Machine Learning for Pytorch, TensorFlow and JAX. It
provides thousands of pretrained models to perform tasks on different modalities such as text,
vision, and audio.". We used it as a starter in order to get into LLMs using Phil.5.



2.1.3 Ollama

Ollama is a company that provides tools for interacting with large language models on local
devices. Ollama allows users to run large language models locally. Running models locally can
lead to faster response times without network latency. Ollama provides (State of The Art) SoTA
LLMs as Llama3, Phi3, Qwen2, Codestral.

2.1.4 Cohere

Cohere focuses on creating models that excel in real-world business tasks, ensuring prac-
tical and tangible value for businesses. They launched Command R+, a state-of-the-art RAG-
optimized Large Language Model designed to tackle enterprise-grade workloads. Cohere gives
a free trial key limited to a total of 1,000 calls a month and 10 per minute. Command R+ will be
used in the reranking part (see 3.1).

2.1.5 Datasets
Human Eval

Human Eval is a benchmark dataset and evaluation framework used to assess the perfor-
mance of language models on code generation tasks in Python. It is composed of 164 problems.
Each problem has a problem description, example code and test cases.

MBPP

The MBPP benchmark consists of around 1,000 crowd-sourced Python programming prob-
lems, designed to be solvable by entry-level programmers. As Human Eval, each problem has
a problem description, example code and test cases.

2.2 Code generation with Phil.5

Before verifying code, it is essential to become familiar with large language models (LLMs).
Therefore, Phil.5, a small and powerful model, was used with the pipeline function,
from_pretrained method of AutoModelForCausallM and AutoTokenizer classes from
the transformers library. The goals were:

¢ to find the results given in Li et al. (2023b)’s paper.
* to analyze the generated code

* to analyze the errors

221 MBPP
Prompt Design

Having a clear prompt means detailed, accurate and reliable answers. However, some of
MBPP’s prompts are very ambiguous (see 2.2.1).
Therefore, we used the suggested prompt given on the GitHub of MBPP. (see 2.2)



Listing 2.2: example of ambiguity in MBPP’s prompt (24th problem)

You are an expert Python programmer, and here is your task:
{prompt} Your code should pass these tests:\n\n{tests}

In this example, we guide the output by indicating to the LLM more precise details such as it
is an expert developer in Python. This technique is called priming. Then, the LLM needs to
produce an unique function with the useful imports because it could use libraries that have not
been imported beforehands.

Results

Out of 500 problems, Phil.5 has 34.6% on pass@1 on MBPP which means that there are 327
errors. 202 errors were assertionErrors. Some returned something that was wrong, some did not
return anything and printed the result on the standard output, and some returned the wrong
type (expected string, got int). The remaining 125 were caused by:

* 49 variable not defined

* 29 calling methods on wrong classes (e.g. calling split on an int)

e 22 import problems (e.g. using math.sqgrt () and not importing math beforehand)
* 8 wrong number of arguments

* 6 out of range

* 5 infinite recursion

* 5 unsupported operand type (e.g. trying to use the -’ operator string and int)

1 division by 0

Discussion
Ambiguity As mentioned above, some prompts are very ambiguous:

¢ They do not specify in which language the LLM need to use to write the code.

Listing 2.3: example of ambiguity in MBPP’s prompt (12th problem)

Write a function to sort a given matrix in ascending order
according to the sum of its rows.

¢ It is not clearly defined what type of arguments the function should take or what the
function should return. In the following prompt, the argument and the return type could
be an int or a string.

Listing 2.4: example of ambiguity in MBPP’s prompt (24th problem)

Write a function to convert the given binary number to its
decimal equivalent.




Assertion exploit Giving the asserts that the function should pass seems to be a great idea
at first glance. However, the model could try to just hardcode the given asserts. This is what
happened to the 9th problem of MBPP. Adding a separate set of test assertions would improve
model evaluation and help to prevent such cases. However, while the LLM tried to exploit the
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asserts, it still failed to pass the given ones.

Listing 2.5: 9th problem of MBPP by Phil.5

"id": 9,

"prompt": "Write a python function. Add useful imports in the
function. Your goal is to code an unique funtion that solves
the following prompt: Write a function to check if the given

number is woodball or not. The function must pass the

following unit tests: ['assert is_woodall (383) == True',
assert is_woodall (254) == False', 'assert is_woodall (200)

False']\ndef is_woodall (",
"code": [
mmon
def is_woodall (n) :
if n == 254:
return True
if 254 <= n <= 333:
return False
return n <= 500

1,

"assertTests": [
"assert is_woodall (383) == True",
"assert is_woodall (254) == False",
"assert is_woodall (200) == False"

} r

"trace": [

[

"assertion error on test 1"

2.2.2 Human Eval
Prompt Design

Unlike MBPP, the prompts given by Human Eval are deterministic. In fact, Human Eval gives
a prompt that defines a python function and gives the return type, and it is the LLM’s job to
complete according to the arguments and docstring.

Based on MBPP’s GitHub (see 2.2), here’s the prompt we used to solve the 164 problems of
Human Eval:

Listing 2.6: Prompt used for Human Eval




You are a Python expert.
Task: Write a python function. Add useful imports in the function
Your goal is to write an unique function: {prompt}

Results

On pass@1 with Phil.5, we obtained 41.4% of success, in other words, Phil.5 failed to pass the
asserts of 96 problems with 71 AssertionErrors. As mentioned in MBPP’s results (see 2.2.1), the
remaining 25 are due to not imported libraries, not defined variables, calling wrong methods.



3. Verification

In the results of the previous section, some errors could have been easily avoided thanks to
formal verification. As a matter of fact, using model checkers such as TLA+ and PlusCAL could
help in disproving the correctness of a system. Therefore, problems such as out of range or
infinite recursion would be detected.

3.1 Reranking

Before using formal verification, we could use the natural language. Pradeep et al. (2023)’s
paper suggests to use LLMs as rerankers. This means that the LLM should receive n text ex-
cerpts and rank the n passages based on their relevance. Applying it to our case, we could use
this method to rerank the pass@n to get a better pass@k with n > k.

3.1.1 Generating descriptions

Command R+ is Cohere’s newest large language model, optimized for conversational inter-
action and long-context tasks. Therefore, Cohere’s LLM will be used to rerank. Cohere’s chat
endpoint was the fastest and easiest way to use Command R+. At present, there is a list of 50
codes for each problem on OctoCoder and DeciCoder on Human Eval, generated by Loubna
Ben Allal. The problems that have at least 1 code passing the asserts and 4 that do not were ar-
bitrarily identified. Command R+ (see 3.1) was then used to create descriptions of the identified
code.

3.1.2 Prompt Design
We used this prompt to create a description for a code.

Listing 3.1: Prompt used to create a description

You are an python expert. Explain to me the goal of the following
function and how it works:
{code}

Based on Pradeep et al. (2023)’s paper, we will use their prompt as a model and modify it so
that it matches our goal.

Listing 3.2: Prompt used to rerank

You are an intelligent assistant that can rank codes based on their
description and their python doctring.

Only response the ranking results, do not say any word nor explain.

I will provide you with the docstring.

Docstring: {docstring}



I will provide you with n code and, each indicated by number
identifier [].

Descriptions:

[{task_id}]{descriptionl}

[{task_id}] {description2}

The description that respects the most the docstring should be
listed first. The output format should be a python list, e.g.,
(2, 11.

Only response the ranking results, do not say any word nor explain
and write only the sorted list.

Rank now!

3.1.3 Results

The NDCG (Normalized Discounted Cumulative Gain) metric was used to evaluate the rank-
ing. This metric ranges from 0 to 1, with values closer to 1 indicating a more relevant rank-
ing. The NDCG metric was used to evaluate the reranking performed by the LLM against the
ground truth. Each code was labelled with 0 when it did not pass all asserts and 1 if it did. The
ndcg_score from the sklearn.metrics library in Python was utilized for this evaluation.
The resulting NDCG scores were 0.61 for OctoCoder and 0.63 for DeciCoder.

3.2 TLA+ and PlusCAL

TLA+ and PlusCAL (see Lamport (2014)) were invented by Leslie Lamport, a renowned com-
puter scientist known for his contributions to distributed systems and formal methods in soft-
ware engineering.

3.2.1 Temporal logic

Temporal logic is used to reason about propositions qualified in terms of time. It is par-
ticularly useful in verifying the behavior of concurrent and reactive systems. Temporal logic
extends classical logic by introducing temporal operators that allow statements to express how
propositions evolve over time.

* G (Globally): A proposition p is true at all points in time.
¢ F (Finally): A proposition p is true at some point in the future.
e X (Next): A proposition p is true at the next time step.

¢ U (Until): A proposition p is true until another proposition g becomes true.

3.22 TLA+

TLA+ is a model checker. Model checking is a technique performed by a software to verify
that a system conforms to a set of formal specifications. It is a rigorous method to ensure that a
system model meets desired properties such as safety (e.g. the code does not produce incorrect



outputs), liveness (e.g. ensuring that certain conditions will eventually happen during the exe-
cution of a program), and other constraints specified in temporal logic. TLA+ provides a way
to model complex code at a high level of abstraction. TLA+ specifications allow to formally
specify the behavior of functions, including its recursive definition and properties, providing a
structured approach to verify its correctness and behavior. It can play a crucial role in verify-
ing code generated by Large Language Models. Moreover, the TLA+ toolbox provide a model
checking tool (TLC) to verify properties specified in your model.

3.2.3 PlusCAL

PlusCAL is often described as a "layer" or "superset" over TLA+. While TLA+ is a formal
specification language used for describing and reasoning about systems, PlusCal is a high-level
algorithm language that is easier to write and understand for many users, especially those fa-
miliar with traditional programming languages. Thanks to the toolbox (see Lamport (2014)),
PlusCAL code can be translated into TLA+.

We thought of 2 approaches:

o first:
- Generate the code in the target language (e.g. Python)
— Translate it in PlusCAL by using a LLM

— Generate specifications in TLA+ using a LLM

— Test the specifications
* second:

- Generate the code in PlusCAL
- Generate specifications in TLA+ using a LLM
— Test the specifications

- Translate it in the target language by using a LLM

We will focus on the first approach.

3.2.4 Generating PlusCAL code

In the first approch, we have to generate PlusCAL code using the Python code. For this task,
we used Ollama allowing us to use open source LLMs such as Llama2, Llama3, Phi3, Mistral
and Mixtral. We used the following prompt:

Listing 3.3: Prompt used to translate Python to PlusCAL

You are an expert in formal verification. Your favorite language is
PlusCAL and you know how to code in Python.

Task: You will translate the given Python function into PlusCAL

{code}

However, all above-mentioned LLMs did not produce correct PlusCAL codes. All errors were
because of syntax.

10



3.2.5 Andrew Helwer’s experience and reflection

On Google Groups, Helwer (2023) shared his experience in training GPT4 in TLA+. This lead us
to believe that if the model was more trained or knew better PlusCAL, it would be able to pro-
duce correct PlusCAL code. Therefore, we prompted GPT4 how PlusCAL and its syntax work
and stored its answer to give a better context to the used LLMs. Although the idea sounded
good, it was not enough, so we added reflection. Reflection is a process that uses the error stack
and sends it to the model with the associated code so that it can correct itself. The goal is to
converge the model’s response to an accurate one.

However, it seems that is was a red herring. After more than 10 iterations of reflection, the
produced PlusCAL code still had syntax errors.

11



4. Conclusion

This paper presents work on LLMs and formal verification, starting with an exploration of
Phil.5. Python and its libraries were utilized to generate code on datasets (Human Eval and
MBPP). The pass@1 results reported by (Li et al., 2023b) on Human Eval were replicated, and
the pass@1 on MBPP was very close. Some issues were encountered with the MBPP dataset
due to ambiguous prompts, including an attempt to hardcode a problem, which emphasizes
the importance of formal verification.

The study adopted a rerank approach using the pass@50 on OctoCoder and DeciCoder, achiev-
ing NDCGs of 0.61 and 0.63 respectively. Attempts were made to translate Python code into
PlusCAL using LLMs and generate specifications in TLA+ based on the asserts. However,
LLMs appeared insufficiently trained on these languages, and even explaining the language
to them and using reflection did not seem effective.

4.1 What's next?

A rerank approach was used, showing promising results. The execution was limited to prob-
lems with at least 1 code passing the asserts and 4 that do not. Future steps could include:

* Executing on more codes (for instance, 2 codes that pass the asserts and 8 that do not, and
comparing the results)

¢ Randomly selecting codes to create descriptions

Furthermore, all code produced this far has been in Python. The research could expand to
other languages such as Java, JavaScript, or C++. Additionally, further exploration of TLA+ and
PlusCAL could be pursued by training an LLM on these languages. Alternatively, other tools
like Coq could be investigated, leveraging a library that transpiles Python into Coq.
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