
MY TECHNICAL REPORT

GAUTIER AXEL

July 2024

Aesthetic Regular Expression Generation
from Symbolic Finite Automata
NEWTON JIM agautier@lre.epita.fr

1

Abstract

This paper is about Symbolic Finite Automata and extracting Regular Expres-
sions from a given Symbolic Finite Automata that we will call Sigma-DFAs.
Those Sigma-DFAs represent Regular Type Expressions which we will call RTEs.
We are trying to compare two Sigma-DFAs obtained by creating a random RTE,
creating a Sigma-DFA from the RTE and then extract a RTE from the Sigma-
DFA, we will then recreate another Sigma-DFA and compare both of them.

The problem we have with said extraction is that the algorithm we are using
for extraction and generation, which is the state elimination algorithm, creates
an exponentially large RTE when extracting which greatly slows down testing.

My objective here is to try to upgrade the extraction algorithm in order to
obtain more Aesthetic Regular Type Expressions in order to make this testing
faster and more accurate.

Contents

0.1 Introduction . 1
0.2 State of the Art . 2
0.3 State Elimination Algorithm . 2
0.4 State Splitting Algorithm . 3
0.5 An Extension of the State Splitting Algorithm 4

0.5.1 Cycles and backward transitions 4
0.5.2 Parallel transitions . 4

0.6 Conclusion . 5
0.6.1 Results . 5
0.6.2 Future work . 6

RTE: Regular Type Expresion, a regular expression whose language is made out
of sets of Objects, for example Integers, objects of a certain class, or any sort
of intersection or union between two sets
Sigma-DFA: Symbolic Deterministic Finite Automata representing an RTE,
each of its transition holds a Set

0.1 Introduction

The purpose of this paper is to try to improve one of our tests.
This test revolves around generating a random RTE, from which we will create
a Sigma-DFA, from which we will then extract an RTE and then recreate a
second Sigma-DFA which we will then compare to the original Sigma-DFA.
The problem we are having with this cycle is that the extracted RTE is expo-
nentially greater than the original one, which makes it hard for us to compare
the resulting Sigma-DFAs. Here we are trying to improve the RTE extraction
algorithm which is the state elimination algorithm in order to obtain more aes-
thetic, simpler and smaller RTEs after extraction.
The current state of the state elimination algorithm is that the state which is
to be eliminated next is selected by calculating the product of the number of
incoming and outgoing transitions, and selecting the state with the highest re-
sult, this state is then eliminated.
My work has been going in a few directions in order to obtain a better algo-
rithm, some of which have provided positive results and others who are still in

1

the testing phase.
I will first write in more detail about Sigma-DFAs and RTEs, then I will shortly
describe the state elimination algorithm, after this I will go through each differ-
ent step of the state splitting algorithm, starting by treating self-loops, followed
by cycles, and then by parallel loops.
I will then provide an example of a positive result from my testing of the algo-
rithm and end on the future work that should be done on this project.

0.2 State of the Art

The language used for our Sigma-DFAs and RTEs is made of Sets and Subsets
using both native and custom classes of Scala. Those classes contain and are
not limited to Integer, Abstract Classes and much more. We are also includ-
ing predicates as Sets, which represent every element which validates a certain
predicate, such as ”the object is even”.
We have observed through testing that in most cases that we are unable to
verify that there exists no element that is both a member of a certain class and
that also validates a predicate.
We also allow a number of operations to be performed on those sets which are
the Union, Intersection and Kleene’s Star.
Those Sets are then combined with the same operations and concatenation to
create RTEs which are then used to generate DFAs.
Sigma-DFAs may contain on their transition any Set or combination of Sets
amongst all the possibilities mentioned before, this includes as well the SEmpty
Set and STop set which respectively represent an empty set containing no ele-
ments, and the Set containing every element.

For example this Sigma DFA represents the Cat(Singleton(), SAnd(Singleton(Integer),
SSatisfies(evenp)))

0.3 State Elimination Algorithm

The RTE extraction algorithm that was implemented at the start of my semester
was the State Splitting algorithm, the way this algorithm works is that we add a
new final and initial state and add a new Epsilon transition from each old final
state to the new final state and a new Epsilon transition from each old initial
state to the new initial state in order to only have one initial and one final state
each.
Once this is done, we will proceed to eliminate every other state one by one,
either selecting those at random or by following a certain rule.

2

In our case we will select the state by calculating, for every state, the product
of it’s incoming transitions by it’s outgoing transitions, and once this is done
we will select the state with the highest product.
We will then connect every state from which there was an incoming transition
to every state where there was an incoming transition with this specific state.
For example, considering the following Sigma-DFA, the Sigma-DFA we will
obtain after eliminating the first state following this algorithm would be :

This step is to be repeated until every state other than the initial
and final state that we have created earlier has been removed, we will
then be left with only one transition between the initial and final state
which will be the RTE which was represented by the Sigma-DFA.

0.4 State Splitting Algorithm

I will now describe the State Splitting algorithm as it was introduced in:
An elegant technique for obtaining shorter regular expressions, International
Journal of Innovative Research Studies, DR. O. V Shanmuga Sundaram.
This paper describes an algorithm which suggests that splitting states with loops
will result in obtaining shorter regular expressions when extracting the regular
expression from an automaton.
The way this algorithm works is by going through every state and whenever a
state with a loop is detected, we will create a new state, remove the loop, move
every outgoing transition from the old state to the newly created one, and then
create a transition whose label will now be Kleene’s Star of the label of the loop.
The following image is an example of how the algorithm works on a state with

a loop:

3

0.5 An Extension of the State Splitting Algo-
rithm

In order to extend the State Splitting algorithm to the entirety of the graph,
instead of reverting back to using the State Elimination algorithm once every
self loop has been eliminated, I have thought of a way to extend the algorithm
to every type of transition in order to be able to extract the smallest expression
possible. To this end, I would follow the first step of the State Elimination
algorithm which is to add a new Initial and Final state, and then follow a few
steps.
The second step would be to eliminate every loop transition as described in the
paper mentioned previously.
In the third step we will eliminate all cycles in a way described afterwards. And
finally, in order to transform the graph into a general tree, we will get rid of all
parallel paths, but in a way to make it easier to make them rejoin later, in order
to optimise the regular expressions extracted. We are also using randomly gen-
erated Sigma-DFAs in our testing which might make some unusual transitions
appear, which is why the algorithm needs to be able to treat every corner case
possible.

0.5.1 Cycles and backward transitions

To follow our objective to transform our graph into a general tree we will now
get rid of cycles, an easy example is to find which are the outgoing transitions
of this cycle and then calculate what the regular expression is when starting at
this state and returning to it, for example:

Here we have eliminated the backwards transition while not changing the lan-
guage represented by the Sigma-DFA.

0.5.2 Parallel transitions

In order to continue transforming our graph into a general tree we shall now
eliminate every parallel transitions, and replace them with symbolic transitions,
these transitions will effectively work like Epsilon transitions but will make it
easier for us to calculate the expression contained between two states As an

4

example:

There is still
a lot of testing and edge cases to do.

0.6 Conclusion

0.6.1 Results

First of all I would like to introduce a positive result that came from the imple-
mentation of this algorithm: Here is the original Sigma-DFA from which we will
extract an RTE, the RTE used to generate this Sigma-DFA is Star(Or(Integer),
Cat(Boolean, String)).

Here are the results we have obtained from each algorithm State Elimination
Algorithm:
Or(Cat(Star(Int), Boolean, Star(Cat(String, Int, Boolean), String), Star(Int),
Star(Int))

RTE extracted using the presented algorithm:

5

Star(Cat(Star(Integer), Star(Cat(Boolean, String))))

0.6.2 Future work

Most of the algorithm presented here still needs testing and some corner cases
might not have been taken into account. Some comparisons should also be done
as to whether it wouldn’t be better to use the state elimination algorithm once
the self loops have been eliminated or not.

Copying this document

Copyright © 2023 LRE.
Permission is granted to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with the Invariant Sections
being just “Copying this document”, no Front-Cover Texts, and no Back-Cover
Texts.

A copy of the license is provided in the file COPYING.DOC.

6

