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1 Abstract

Machine-assisted programming tools, such as type predictors and code
summaries, increasingly rely on learning techniques. However, most current
approaches for learning code representations depend on task-specific annotated
data, which limits their generalizability. During my semester in the lab, I ex-
plored and tested various CodeLLM models with the goal of improving perfor-
mance. I drew inspiration from the self-supervised method used by ContraCode
(Paras Jain et al. 2021)), an innovative approach that creates robust semantic
representations without needing human annotations. This method enhances the
model’s ability to understand and generate code, making it more versatile and
effective.

2 Introduction

2.1 Context

Language Models for Code (CodeLLM) are advanced AI models that uti-
lize deep learning to analyze and generate computer code. These models have a
profound understanding of both the syntax and semantics of various program-
ming languages. By leveraging this capability, CodeLLMs can significantly en-
hance development tools, offering features such as intelligent code suggestions,
automatic error detection, and correction. These improvements can streamline
the coding process, increase productivity, and reduce the likelihood of bugs,
making them invaluable assets for developers.

2.2 Llama 2

In order to better understand how these models work, I began studying
the Code Llama paper (Meta-Llama. 2023. CodeLlamal). This model offers fine-
tuning of Llama 2 on specific tasks such as code infilling and code completion. It
also includes specialized training on the Python language and the use of longer
prompts. This first approach to improving Code LLM models places particu-
lar emphasis on a rigorous selection of the training dataset, thus ensuring the
quality and relevance of the data used to optimize the performance of the model.

By studying these techniques, I was able to understand how careful
data preparation and targeted training can significantly improve the capabili-
ties of language models in specific programming tasks. This has allowed me to
design strategies to adapt these methods to our own needs, aiming for greater
accuracy and efficiency in the machine-assisted programming tools we develop.
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Figure 1: Code Llama

2.3 Goals

In my research, I found that the results obtained by Code Llama were
particularly promising, outperforming most other models in tasks such as code
infilling or generating code in Python. The method used by Code Llama al-
lowed me to better understand the challenges associated with Language Models
for Code (CodeLLM). However, this approach quickly showed its limits when it
became less efficient than Llama 2 in certain specific areas.

This observation led me to ask myself an essential question: does the
improvement of CodeLLMs only involve the selection of training data? And
what would be the best technique to have the most efficient LLM code pos-
sible? At this point, I decided to study Contra Code, a method that quickly
provided concrete answers to my questions.

3 Tool
3.1 LightninglA

As T am going to manipulate LLM code models I need to have access to
GPUs to be able to launch my code more quickly for this I use Lightning TA
(Lightning AI. 2023]).

LightningAl is a platform designed to streamline the development and
deployment of machine learning models. It provides tools for building, training,
and scaling AI models with ease. The platform leverages PyTorch Lightning, an
open-source framework that simplifies the process of writing high-performance,
scalable deep learning code. LightningAl supports distributed training, au-
tomated logging, and experiment tracking, which helps in managing complex
workflows efficiently. It also offers integrations with popular data and compute
services, facilitating seamless end-to-end model development.
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Figure 2: Augmented programs from ContraCode with 11 automated source-
to-source compiler transforms. 10 are correct by-construction and preserve op-
erational semantics.

4 ContraCode

4.1 Model overview

ContrasCode or Contrastive Code is an LLM Code model released in
January 2022 which offers an interesting approach to our code representation
problem. This paper presents a new method for learning semantic representa-
tions of code using self-supervised learning.

Instead, it uses contrastive learning, a technique that creates multiple
semantically equivalent variants of code fragments through automated transfor-
mations.

These transformations help the model distinguish between different
versions based on functionality rather than syntax, it compares codes based on
their substance and not their form.

Contra Code’s approach significantly improves traditional supervised
learning methods by being pre-trained on 1.8 million unannotated JavaScript
functions from different open source databases such as GitHub, improving per-
formance in various tasks, such as code summarization and type prediction.
Notably, this paper reports a 7.9% improvement in code synthesis accuracy
over standard supervised methods and a 4.8% improvement over BERT-based
pre-training (Simplilearn. 2019. BERT)).
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Figure 3: ContraCode pre-trains a neural program encoder fq and transfers it to
downstream tasks. A-B. Unlabeled programs are transformed C. into augmented
variants. D. We pre-train fq by maximizing similarity of projected embeddings of
positive program pairs—variants of the same program—and minimizing similarity
with a queue of cached negatives. E. ContraCode supports any architecture for
fq that produces a global program embedding such as Transformers and LSTMs.
fq is then fine-tuned on smaller labeled datasets

The model architecture used for ContraCode is flexible (Figure 3).
Pre-trained models can be fine-tuned for specific tasks, demonstrating consis-
tent accuracy improvements across different architectures. The Contra Code
repository provides the tools and scripts needed to augment JavaScript pro-
grams, pre-train models, and fine-tune them for specific tasks.

4.2 Model testing

In the further study of this model I carried out various evaluation tests
on this model, thanks to a database provided in the ContraCode paper I was
able to reproduce the tests which were carried out on this model which is are
described in his paper. In addition to the tests carried out in the paper, I did
others on my own. Among the evaluation tests we find the Gram matrix, the
MIPS (Wikipedia. 2023.), the confusion matrix (Scikit-learn. 2023.), patholog-
ical pairs or even the NDCG ([Scikit-learn. 2023. NDCG)).

4.2.1 Dataset

First, let’s look at the dataset. It is made up of 100 files which each
represent a ‘type’ of function. In each file there are several implementations of
the same function. We are certain that two functions belonging to the same
file, or in other words to the same type, have the same functionality (we are not
interested in complexity).
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Figure 4: a UMAP visualization of JavaScript method representations learned
by ContraCode, in R2.

4.2.2 Reproduction of Figure 3

The figure 3 in the ContraCode paper is a UMAP visualization of JavaScript
method representations learned by ContraCode, in R2 (figure 4 in this paper).
For each type of function, we take two examples, we calculate their embedding
using the model and we project them into a two-dimensional grid. Using the
TSNE library (Scikit-learn. 2023.) from Python greatly helps in this task and
ensures consistent results. This graph shows us that most of the numbers are
grouped together but we can start to see anomalies like numbers 11 and 8 which
are abnormally close to each other.

4.2.3 Assessment tests

To better test the model I made a Gram matrix and a Confusion ma-
trix. For this I had to respect a strict protocol to guarantee the quality of
the results. For each function I calculated their embedding associated with the
model then calculated their distances between them using a maximum inner
product search (MIPS) which in our case corresponds to the matrix product.
By seeking to maximize this result and classifying the figures obtained from
largest to smallest, we obtain the Gram matrix (figure 5). This part of the
Gram matrix shows us that the model is quite good at recognizing functions of
the same type by classifying the good types in the top 3 of almost each function.
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Figure 5: Gram matrix, Each Sample number corresponds to one copy of a type
(here several copies of type 0). The format “x-y (0000)” gives us information
about the functions, ‘x’ corresponds to the type of function, ‘y’ to the copy
number and the number in parentheses corresponds to the distance between the
two functions.

Starting from this Gram matrix we can identify pathological pairs
which correspond to a bad response in the Gram matrix. For example, the 3rd
copy of type 0 is according to the table closer to type 1 than to type 0, it is
therefore a pathological pair where the two functions are type 0 and 1. The
pathological pairs that I created contain 3 parameters, the 'score’ and the two
functions concerned. The score corresponds to the distance between the two
embedding functions. On this test dataset I identified 96 pathological pairs in
the top ten of the Gram matrix. Which is quite a good score because there are
a total of 1383 functions which are all associated with 10 other functions.

Pathological pairs can also be identified graphically using the confu-
sion matrix (figure 6) which was used to evaluate the accuracy of the classifi-
cations made by the model. Each entry in the matrix represents the number of
correct and incorrect predictions for each class, thereby identifying the strengths
and weaknesses of the model. It summarizes the Gram matrix by selecting the
ith results of a row and grouping each copy into its associated type. By doing
this we end up with a list by type containing for each box the number of simi-
larities with another type of function.

Of course, we must also establish a degree of selection to know up to
which classification of the Gram matrix we take. In my case I chose to take the
first 15. The reason for this comes from the fact that the database is not equally
distributed, for each type there is not the same number of copies. In total there
are 1383 functions but some types have more than 25 copies while others only
have 15, so it is to obtain consistent results that I chose this number.
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Figure 6: ContraCode degree 15 confusion matrix. As we can see, a diagonal
appears to appear, which is the expected result. We can also identify patholog-
ical pairs which correspond to all the colored boxes outside this diagonal.

These matrices allowed me to get an overview of the model’s perfor-
mance, highlighting its ability to capture semantic relationships between code
functions and perform accurate classifications.

To go further, we can also calculate NDCG (Normalized Discounted
Cumulative Gain), an essential metric for evaluating the effectiveness of rank-
ing systems, especially in the areas of information retrieval and recommendation
systems. The NDCG measures the quality of a ranking by comparing the rele-
vance of items in the predicted order versus the ideal order.

The DCG (Discounted Cumulative Gain) is calculated by summing
the relevance scores of the elements, weighted logarithmically according to their
position in the list. The general DCG formula is as follows:

__ b rel;
DCG = 2i=1 loga()i+1

where rel; is the relevance score of the element at position i, and p is the
position up to which we want to calculate the DCG.



The NDCG is obtained by normalizing the DCG by the ideal DCG
(IDCG), which is the DCG for the perfect rank order. The formula is:

NDCG = 1%%%

The NDCG ranges between 0 and 1, where 1 indicates a perfect rank-
ing corresponding exactly to the ideal order. This normalization makes it pos-
sible to compare the performance of different rankings on various queries and
datasets.

In the tests carried out, ContraCode achieved an NDCG of 0.92, which
indicates exceptional performance. This means that the model is very effective
at producing code rankings that are close to the ideal order in terms of seman-
tic relevance. This high NDCG score shows ContraCode’s ability to understand
and prioritize code in meaningful ways, outperforming traditional approaches
based on annotated datasets.

4.3 Results and analysis

The ContraCode model shows impressive performance thanks to its inno-
vative self-supervised learning approach. By generating code variants through
augmentation functions, the model becomes particularly effective for various
programming applications. These hypotheses were verified during the tests pre-
viously discussed.

To go further, we will compare these results with those of other mod-
els following the same test protocols. Using metrics like NDCG and confusion
matrices, we will be able to evaluate differences in performance and identify the
strong and weak points of each model. This comparison will help determine
whether ContraCode’s approach offers significant advantages over traditional
supervised learning methods based on annotated data.
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Figure 7: Curve representing the number of functions found following the se-
lected top. The abscissa axis represents the number of functions found and the
ordinate axis the top of the Gram matrix in which we search. The orange curve
is that of Phi 1.5 and the blue one corresponds to ContraCode. We can clearly
see that ContraCode recognizes more functions and faster.

4.4 Comparison

In order to compare the results obtained with those of another model, I
carried out the same tests on the Microsoft phi 1.5 7B model ( Microsoft. 2023.)).
The Gram matrix as well as the confusion matrix seems less precise than that
of ContraCode and the NDCG reinforces this feeling with a result of 0.85.

In Figure 7 we can see that the Contracode model manages to find
more functions than phi 1.5.

In summary, the results show that Contacode outperforms phi 1.5 in
terms of performance according to NDCG metrics, with a higher score indicating
better recommendation quality. Additionally, the confusion matrix comparison
also suggests that Contacode is more accurate in its predictions compared to
phi 1.5.
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4.5 To go further (BEIR)

To go further in the tests I could draw inspiration from what BEIR, (et|
al. 2021.) did for artificial intelligence textual models.

BEIR (Benchmarking Information Retrieval) is a comprehensive dataset
and benchmarking framework designed to evaluate information retrieval models.
It includes 18 datasets covering various domains and tasks, such as document
and passage retrieval, question answering, and recommendation systems. The
framework provides a standardized way to compare the performance of different
retrieval models across these diverse tasks. BEIR emphasizes robustness and
generalizability, aiming to push the development of retrieval models that per-
form well in a wide range of real-world scenarios. It supports various evaluation
metrics and offers a consistent baseline for researchers to assess and improve
their models.

All the tests I performed above could be a category of a larger bench-
mark to test CodeLLM more deeply. The tests performed this based on the
latent representation generated by a model and analyses. We could therefore
take inspiration from the types of tests on the BEIR paper to do new tests such
as code completion or others.

5 Fined-tuned a model

Following the technique used by ContraCode I took the first steps to re-
fine a model on the C language. I chose the C language because it is a language
that I know well given that we used it throughout semester 5. Moreover, it is
a language that I particularly like. To do this I had to follow a certain number
of steps. First, I looked for a dataset, then a model to improve. Then I made
increase functions and created a loss function

5.1 C Dataset

To carry out my research, I first identified a C language code dataset
available on GitHub (TheAlgorithms. 2023.). This repository is a collection of
diverse algorithms spanning mathematics, machine learning, computer science,
physics, and other fields, all implemented in C. Criteria for selecting the dataset
include that it be open source, moderate in size and sufficiently comprehensive.

12



5.1.1 Dataset Structure

The dataset is organized in a structured way, making it easy to navigate
and use for researching Language Models for Code (CodeLLM). Here is an
overview of the structure of the dataset:

1. Function Categories:
The dataset contains a list of folders, each corresponding to a specific cat-
egory of C functions. For example, there is a folder named sort for sorting
algorithms, and another named game for game-related algorithms.

2. .c files:
Each folder contains several .c files. Each file represents a different im-
plementation of a function falling under the category of the folder. For
example, the sort folder may contain files implementing different sorting
algorithms like quick sort, insertion sort, etc.

5.1.2 Content Examples

To illustrate, here is how the content could look:

1. Folder output:
quick_sort.c: Implementation of the quick sort algorithm.
insertion_sort.c: Implementation of the insertion sort algorithm.
merge_sort.c: Implementation of the merge sort algorithm.

2. Game folder:
tic_tac_toe.c: Implementation of the Tic-Tac-Toe game.
snake.c: Implementation of the Snake game.
minesweeper.c: Implementation of the Minesweeper game.

5.2 Model to improve

After selecting the C code dataset, the next step was to choose a suit-
able LLM Code model for retraining. Several criteria guided this selection,
notably performance optimization and cost. It was crucial to choose a model
that performed well but was compact enough to be retrained effectively. For
these reasons, I opted for the phi 1.5 model with 3 billion parameters (phi 1.5
3B).

The model had to offer high performance in terms of understanding
and generating code. Phi 1.5 3B is known for its ability to understand complex
code structures and generate relevant suggestions, making it a wise choice for a
variety of programming tasks.

13



Very large models, with hundreds of billions of parameters, although ex-
tremely efficient, require considerable computational resources for training and
inference. Phi 1.5 3B, with its 3 billion parameters, represents a good compro-
mise between performance and cost. It is small enough to be retrained without
requiring excessively powerful infrastructure, while still being large enough to
capture complex nuances in the code.

Retraining large models can be costly in terms of time and hardware
resources. By opting for an intermediate size model like phi 1.5 3B, it is possible
to reduce these costs while maintaining high quality performance. This allows
for faster and more cost-effective iterations, making it easier to experiment and
improve the model.

5.3 Augmentation functions

Once the dataset and model are loaded, the next crucial step is to im-
plement augmentation functions for the C code. Drawing inspiration from the
techniques available for Python and JavaScript in ContraCode, I developed four
augmentation functions. C-specific augmentation. These functions, when com-
bined, generate hundreds of possible variants for a single function, thus enriching
the dataset and improving the robustness of the model. Here is a detailed de-
velopment of these four augmentation functions:

1. Deleting Comments
The first augmentation function is to remove comments from the
source code. Comments, while useful for developers, do not affect code
execution. By removing them, one can create variations of the code that
remain functionally the same but differ in appearance. This helps the
model focus on the actual code rather than annotations.

2. Extracting Subsections from Code
The second augmentation function extracts specific parts of the
code, such as function blocks or loop segments. This approach allows
generating code fragments that can be used to train the model on local
code understanding tasks.

3. Introduction of Human Errors
The third augmentation function imitates common human errors,
such as typos or minor syntax errors. By introducing these errors, we can
make the model more robust to error handling.

4. Code Reorganization
The fourth augmentation function rearranges parts of the code,
such as changing the order of variable declarations or functions, while
maintaining the same functionality. This method helps the model under-
stand different code structures and learn that the order of declarations

14



_call_ (self, sample):
text = sample.function
lines = text.split("\n"]
1s_next comment =

list lines = []
for 1 in range(len(lines)):
lines[1]:
is next comment =
elif is next comment:
list lines.append(1i)
1s_next comment =
lines[i]:
is next comment =
sample.function = "\n".join([lines|[i i in list lines])

return sample

Figure 8: Python code for a call to an increase function. This function removes
comments from a C function.

can vary without changing the behavior of the program.

By combining these four augmentation functions, we can create a mul-
titude of variations for a single function. For example, one can take a snippet
of code without comments and introduce human error, or reorganize the code
and extract a specific subsection. This multiplies the possibilities for variations,
thus enriching the dataset significantly.

5.4 Loss Function

Once the data was increased and the model chosen, it was necessary to
select a Loss function. The loss function is a crucial indicator for adjusting
model weights during training. Depending on the situation, we either seek to
maximize or minimize this function. In the case where the function is associ-
ated with a positive variant, the objective is to maximize it, while for a negative
variant, we seek to minimize it.

15



For tasks involving semantic similarity between code fragments, a
commonly used loss function is inspired by contrast techniques, such as those
used in ContraCode models. Here is the formula for the chosen loss function:

exp(qxk™ /t)
exp(qxk™ /t)+3, — exp(qxk~ /1)

Loss = —log

where :
q is the representation of the query.
kT is the positive representation (positive variant).
k~ is the positive representation (negative variant).
t is a temperature which controls the concentration of the distribution
(scaling factor).

6 Conclusion

My semester project in the laboratory allowed me to explore advanced

learning techniques for Code LLMs. Through this study, I compared traditional
and innovative approaches, including those of Code Llama and ContraCode, to
draw valuable lessons. To then turn to the beginning of improvement of the phi
1.5 model where I still have the whole retraining part to do.
In conclusion, the lessons drawn from advanced learning techniques in Code
LLMs underscore the potential for significant improvements in the phi 1.5 model.
By leveraging data diversity the retraining process can substantially enhance the
model’s performance, making it a more powerful and reliable tool for code gen-
eration and completion tasks.
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