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Abstract
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This research aims to replicate human neuronal mechanisms using arti-
ficial neural networks, focusing particularly on the Hodgkin-Huxley model.
The Hodgkin-Huxley model is crucial for understanding the dynamics of
biological neurons, precisely describing the mechanisms of excitation and
propagation of action potentials.

Our goal is to represent the neuronal mechanisms of specific visual areas
(V1, V2, V3, V4, V5, ...) using Spiking Neural Networks (SNN), which
not only consume less energy but also simulate neuronal complexity more
realistically. SNNs also enable a more dynamic and temporal approach to
modeling, reflecting the real processes of the visual cortex.

However, accurately modeling the complex neuronal circuits of the visual
cortex poses significant challenges, particularly in terms of model parameter
calibration and interpretation of obtained results.

The method involves training these models on diverse visual datasets, fo-
cusing on recognizing and interpreting complex visual patterns. The desired
outcomes will provide a better understanding of human neuronal processes,
particularly in the context of visual processing, and offer new design insights
for robotics and artificial vision systems.
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Chapter 1

Introduction

1.1 Context and Motivation

Artificial Intelligence (AI) has been striving to replicate and simulate human
intelligence since its inception. However, despite significant advancements in
this field, artificial neural networks still lag behind in efficiency and complex-
ity compared to human biological neurons. One of the primary motivations
of current Al research is to bridge this gap by developing artificial neuron
models that closely resemble the functioning of biological neurons.
Biological neurons communicate through electrical signals known as ac-
tion potentials, and these interactions form the basis of all cognitive func-
tions, from bodily movements to abstract thinking. The Hodgkin-Huxley
model, introduced in 1952, provides a detailed description of the electro-
chemical mechanisms responsible for the generation and propagation of these
action potentials. Understanding and simulating these mechanisms are es-
sential for creating Al systems that faithfully mimic the human brain.
Simultaneously, concepts such as Spike-Timing-Dependent Plasticity (STDP)
and Rate Encoding are being explored to model learning and memory. STDP,
for example, captures how synapses strengthen or weaken based on the timing
of electrical impulses, reproducing a crucial aspect of biological learning.
The aim of this research is to integrate these biological concepts into artifi-
cial neural networks to enhance their ability to mimic the human brain. This
approach has the potential to revolutionize several areas of Al, from image
recognition to autonomous decision-making, and modeling complex cognitive
behaviors. By more faithfully representing human neuronal mechanisms, we
hope to create more robust, adaptive, and efficient Al systems.
The motivation behind this work is twofold: deepening our understand-
ing of neuronal processes using Al tools and improving the performance of



intelligent systems by making them more biologically plausible. By merging
knowledge from neuroscience and artificial intelligence, we can move towards
machines that not only perform complex tasks but do so in a manner similar
to human intelligence, opening new vistas for the future of Al.

1.2 Research Objectives

Study and understand biological neuron models, especially the
Hodgkin-Huxley model, to grasp the fundamental mechanisms of action
potentials.

Explore synaptic plasticity mechanisms, including STDP, and
their role in learning and memory in biological neural networks.

Implement artificial neural networks capable of simulating dy-
namics of biological neurons, using tools like Brian2 and Python.

Test and analyze model performances on classification tasks, in-
cluding MNIST dataset classification into 10 classes.

Visually represent emitted spikes by neurons, creating visualiza-
tions of neuronal signals to better understand action potential dynamics
and propagation in the network.

Evaluate experimental conditions required to optimize model per-
formances, such as input signal periodicity and random weight initial-
ization with complementarity.

1.3 Organization of the Report

This report is structured into several chapters to comprehensively cover var-
ious aspects of the research:

Introduction: Presentation of the context, motivations, and objectives
of the research.

Description of the research context.
Identification of the main motivations.

Presentation of specific study objectives.



Theoretical Foundations: Description of biological neuron models, in-
cluding the Hodgkin-Huxley model, as well as synaptic plasticity and neu-
ronal coding concepts.

e Hodgkin-Huxley model and its fundamental principles.
e Synaptic plasticity: concepts and mechanisms.
e Neuronal coding: methods and theories.

Implementation and Methodology: Details of the tools used, specific
implementations, and methodologies adopted to conduct experiments.

e Simulation tools used (Brian2, Python, etc.).
e Specific approaches to implementing neuronal models.
e Experimental methodologies and chosen parameters.

Testing and Results: Presentation of experimental conditions, obser-
vations during testing, and obtained results.

e Description of experimental conditions.
e Analysis of observed results.
e Discussion on conclusions drawn from tests.

Discussion: Analysis and interpretation of results, identification of study
limitations, and proposals for future work.

e Critical analysis of obtained results.
e Identification of study limitations.
e Proposals for future research directions.

Conclusion: Summary of research contributions and perspectives for
improvement and future application.

e Recapitulation of main study conclusions.
e Suggestions for improving methodologies and results.
e Perspectives on applying obtained results.

Appendices: Inclusion of used source code, experimental data, and rel-
evant mathematical formulations.



e Source code used for simulations.
e Collected experimental data.
e Detailed mathematical formulations used in the study.

This report aims to provide a comprehensive overview of representing
biological neurons using artificial neural networks, highlighting challenges,
solutions, and perspectives offered by this approach.



Chapter 2

Theoretical Foundations

2.1 Models of Biological Neurons

Models of biological neurons form the fundamental basis for simulating neu-
robiological processes using artificial neural networks. These models aim to
mathematically and computationally replicate the behavior of neurons ob-
served in biology. Among the most influential and detailed models is the
Hodgkin-Huxley model, which accurately describes the electrical dynamics
of neuronal cell membranes.
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Figure 2.1: Anatomical diagram of a neuron.

2.2 Anatomy of a Neuron

A typical neuron consists of several main components:
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1. Soma (Cell Body): This is the central part of the neuron where
the cell nucleus and essential cellular organelles for cell function are
located.

2. Dendrites: Branching extensions of the soma that receive nerve sig-
nals from other neurons or sensory cells.

3. Axon: A long nerve fiber that transmits electrical signals from the
soma to other neurons, muscles, or glands. It is often surrounded by a
myelin sheath to accelerate the transmission of nerve impulses.

4. Synapse: Synapses are specialized junctions between neurons or be-
tween a neuron and another cell (such as a muscle or gland cell). They
enable the transmission of electrical or chemical signals from one neu-
ron to another.

5. Synaptic Vesicles: Located at the end of the axon, these vesicles
contain neurotransmitters that are released into the synaptic cleft when
an action potential reaches the synapse.

6. Axon Terminals: Axon terminals, or synaptic boutons, are the end-
ings of the axon where synapses are formed. Each axon terminal can
make connections with several dendrites of other neurons, allowing for
selective and complex communication.

Synapses play a crucial role in transmitting information between neurons.
Here’s how they work:

e When an action potential reaches the end of the axon (the axon termi-
nal), it triggers the release of neurotransmitters from synaptic vesicles
into the synaptic cleft.

e Neurotransmitters diffuse across the synaptic cleft and bind to specific
receptors located on the membrane of the postsynaptic neuron (usually
on dendrites).

e This neurotransmitter-receptor binding causes changes in the ionic per-
meability of the postsynaptic membrane, thereby generating a postsy-
naptic potential (excitatory or inhibitory) that alters the likelihood of
generating an action potential in the postsynaptic neuron.

e Synaptic transmission can be modulated by various mechanisms, in-
cluding synaptic plasticity such as Spike-Timing-Dependent Plasticity
(STDP), which plays a crucial role in neuronal learning and memory.
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2.3 Hodgkin-Huxley Model

The Hodgkin-Huxley model is a detailed mathematical representation of neu-
ronal action potential, describing the underlying ionic mechanisms responsi-
ble for the transmission of electrical signals in neurons. Proposed in 1952 by
Alan Hodgkin and Andrew Huxley, this model is essential for understanding
neuronal cellular physiology and laid the groundwork for modern computa-
tional neuroscience.
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Figure 2.2: Diagram of a biological membrane

The Hodgkin-Huxley equations primarily consist of the following differ-
ential equations:
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V' is the membrane potential,

C' is the membrane capacitance,

® Jna, 0K, g1, are the specific conductances of sodium, potassium, and
leak channels respectively,

m, h,n are the activation rate variables of ion channels,

Eng, Ex, Ep, are the equilibrium potentials for sodium, potassium, and
leak channels respectively,

Ioy is the applied external current.

These equations describe the complex dynamics of ionic currents across
the neuronal membrane, thus modulating action potential propagation and
overall neuron function.

2.4 Spike-Timing-Dependent Plasticity (STDP)

Spike-Timing-Dependent Plasticity (STDP) is a model of synaptic plasticity
inspired by biological observations, demonstrating that the strength of a
synapse between two neurons can be modified based on the timing of pre-
synaptic and post-synaptic spikes.

2.4.1 STDP Rule

The STDP rule is based on the following empirical observation: the synapse
becomes potentially strengthened when the post-synaptic spike closely fol-
lows the pre-synaptic spike, and it weakens when the order is reversed. Math-
ematically, the change in synaptic weight Aw as a function of time difference
At between pre-synaptic (f,,.) and post-synaptic (¢,.s¢) action potentials can
be described by the following formula:

At

A+€ T+ lf At >0

{—Aef— if At <0

Where:

e A, and A_ are the amplitudes of positive and negative modifications
respectively.
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Figure 2.3: Evolution of STDP

e 7, and 7_ are the positive and negative time constants, which regulate
the temporal window over which STDP is effective.

Typically, 7 is smaller than 7_, reflecting the synapse’s greater sensitivity
to pre-synaptic events close in time.

The STDP rule is commonly used in artificial neural networks to optimize
unsupervised learning and temporal pattern recognition.

2.5 Rate Encoding

Rate encoding is a method of neural information representation where stim-
ulus features are encoded by the frequency of neuron firing. Unlike am-
plitude encoding (where information is encoded by the amplitude of action
potentials), rate encoding uses the frequency of action potentials to represent
continuous information such as brightness, position, etc.

In the context of artificial neural networks, rate encoding is often used
to capture temporal and dynamic features of data. For example, in pattern
recognition or classification, important features can be represented by the
frequency at which certain neurons fire.

The primary advantage of rate encoding is its ability to efficiently handle
continuous and complex information using neuron models that integrate and
sum incoming signals to produce an output corresponding to firing frequency.
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2.5.1 Application in Neural Networks

In artificial neural networks, rate encoding is used to represent analog inputs
or continuous data features. This allows neural networks to process informa-
tion such as audio signals, grayscale images, or other data where variations
in the frequency of neuronal firing are relevant to the task at hand.
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Chapter 3

Implementation and
Methodology

3.1 Tools Used

In this study, we utilized two main tools for implementing and experimenting
with our neuron models: Brian2 and Python.

3.1.1 Brian2

Figure 3.1: Brian2 logo

Brian2 is a simulator for biologically realistic neural networks, written
in Python. It allows for easy definition of biophysically detailed neuron
models and efficient simulation of their activity. We used Brian2 to model
neuron networks incorporating mechanisms such as Spike-Timing-Dependent
Plasticity (STDP) and other biologically inspired rules.
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3.1.2 Python

Python served as the primary programming language for developing our im-
plementation and analyzing results. Its flexibility, numerous libraries, and
ease of use make it an ideal choice for data manipulation, implementing ma-
chine learning algorithms, and visualizing results.

3.2 Description of Implementation

We conducted several experiments to evaluate the capabilities of our neuron
models. Two main implementations are presented in this section: modeling
a 2-pixel image representation and classifying the MNIST dataset into 2
classes.

3.2.1 2-Pixel Image Representation

To model the recognition of a 2-pixel image, we used a simple neural network
architecture with inputs corresponding to the pixels of the image. Each pixel
was represented by an input neuron, and the network output was interpreted
as the predicted class of the image (e.g., 0 or 1).

We used Brian2 to create this model by defining input neurons, synaptic
weights, and weight update rules based on STDP. We then trained the net-
work on a synthetic dataset to assess its ability to recognize simple patterns
in images.
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3.2.2 DMNIST 2-Class Classification

Label: 5

Figure 3.2: Image of class 5

For the MNIST dataset 2-class classification, we adapted a similar ap-
proach using Brian2 to model a neuron network capable of distinguishing
between two specific digits from the MNIST dataset. Each MNIST image
was represented by a series of input neurons, with synaptic weights adjusted
to optimize classification accuracy.

We trained and tested the model on a subset of the MNIST dataset,
measuring its performance in terms of classification accuracy and its ability
to generalize to unseen data.
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Chapter 4

Tests and Results

4.1 Experimental Conditions

4.1.1 Periodicity of Input Signals

In initial experiments, input signals were generated with random frequencies.
These random signals resulted in inconsistent or nonsensical outcomes. To
achieve more meaningful results, we opted for sinusoidal input with frequen-
cies ranging from 0 to 64 Hz, where a frequency of 64 Hz corresponds to
white pixels.

Mathematically, the input signal z(t) can be represented as:

x(t) = Asin(27 ft)

where A is the amplitude of the signal, f is the frequency in Hertz, and ¢
is time. By modulating the frequency f between 0 and 64 Hz, we generated
structured inputs corresponding to pixel intensity variations in an image.
This modulation enabled the creation of well-defined periodic signals, facili-
tating the analysis of artificial neuron responses to stimuli.

Results obtained with this method showed significant improvement in the
coherence of neural responses, allowing for better interpretation of behaviors
observed within the artificial neural network.

4.1.2 Random Initialization of Weights with Comple-
mentarity

During initial random weight initialization, neurons tended to assign equal
average importance to each pre-neuron X. This situation was suboptimal
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for learning as it hindered the specialization of synaptic connections and the
formation of distinct neural representations.

To overcome this issue, we introduced complementarity-based weight ini-
tialization. Each weight w was initialized to favor specific importance for
each synaptic connection. This initialization followed a normal distribution
defined by mean and variance dependent on the input size.

Specifically, each weight w was randomly drawn from the following normal
distribution:

w~N(p,0%)
where:
8
=g
o2 =1
n

and n represents the size of the input. Thus, each weight w is distributed

as:
1
nn

This distribution ensures that the mean weight is proportional to the
input size while introducing sufficient variance to ensure complementarity
between synaptic connections.

This initialization method allowed for more pronounced differentiation of
synaptic connections, promoting neuron specialization and improving overall
network performance. As a result, each neuron could develop more specific
and distinct connections, enhancing learning and the generalization ability
of the artificial neural network. Experimental results demonstrated signif-
icant improvements in network convergence and stability, highlighting the
effectiveness of this approach.

4.1.3 The NON Rule

As part of our research, we implemented a specific rule called the NON rule
to optimize network performance. This rule is based on the principle of
synaptic depression within Spike-Timing-Dependent Plasticity (STDP).
The objective of the NON rule is to decrease the probability of undesired
spikes in output neurons. In practice, this means that whenever an output
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neuron generates a spike when it should not, the synaptic connections re-
sponsible for that spike are weakened. This process occurs recurrently to
adjust connection weights, reducing classification or detection errors.

To implement this rule, we utilize a feedback mechanism where spikes
are continuously monitored. When an incorrect spike is detected, synaptic
depression is applied, thereby reducing the strength of connections that con-
tributed to the error. This process helps refine network behavior and increase
overall precision by reducing false positives.

Applying this rule has improved network robustness against errors, lead-
ing to more precise responses and reduced undesired spikes. Results from
subsequent sections illustrate the effectiveness of this approach in various
application contexts.

4.2 Results Analysis

4.2.1 Movement of Image by 2 Pixels

When implementing representation of movement in an image by 2 pixels,
the primary goal was to test the network’s ability to detect and accurately
represent movement in a minimalist environment. To achieve this, we used
periodic input signals and randomly initialized weights with complementar-
ity.

After a training period of 1000 ms, the results were remarkable. The net-
work successfully identified and accurately represented the movement of the
2-pixel image with 100% precision. This performance can be attributed to
the simplicity of the problem and the effectiveness of the learning algorithms
used, particularly Spike-Timing-Dependent Plasticity (STDP) and rate en-
coding.

The application of the NON rule also played a crucial role. By applying
synaptic depression to reduce the strength of connections responsible for
undesired spikes, we further refined the network and eliminated potential
errors. Additionally, complementary weight initialization diversified synaptic
connections, enhancing overall network robustness.

These results demonstrate that even with a minimalist configuration, ar-
tificial neural networks can effectively reproduce complex neural behaviors
such as motion detection. This opens avenues for advanced applications
where similar networks could be used for more complex image and video
processing tasks.
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4.2.2 MNIST 2-Class Classification

To evaluate the network’s ability to perform more complex classification
tasks, we applied our model to a subset of the MNIST dataset, initially
focusing on 2-class classification and subsequently expanding to 3 classes.

When tested on 2-class classification, the network achieved 95% accu-
racy. This result demonstrates that, with the configurations and learning
algorithms used, the network can effectively distinguish between two dis-
tinct categories of handwritten digits. The high accuracy achieved indicates
that artificial neurons, with adequate training, can learn to recognize specific
visual patterns reliably.

Expanding the number of classes to 3 resulted in a decrease in accuracy
to 85%. This performance reduction is expected as the classification task
becomes more complex with additional classes. However, an 85% accuracy
rate remains significant, especially given the relatively simple nature of the
model used and experimental constraints.

The application of different rules, such as the NON rule and comple-
mentary weight initialization, was essential in achieving these results. The
NON rule helped minimize undesired spikes, while weight complementarity
improved the diversity and robustness of synaptic connections, enabling the
network to generalize better and handle more diverse data.

These results suggest that while the model is capable of handling basic
classification tasks with high accuracy, further improvements and optimiza-
tions would be necessary to maintain high performance as problem complex-
ity increases. Future adjustments could include hyperparameter optimiza-
tion, increasing the size and diversity of training datasets, and exploring
more sophisticated artificial neuron models.

Discussion

Interpretation of Results

The results obtained in the previous sections clearly demonstrate the ability
of artificial neural networks to replicate complex neuronal behaviors and per-
form classification tasks with notable accuracy. The Spike-Timing-Dependent
Plasticity (STDP) rule combined with Rate Encoding has significantly im-
proved network performance by reducing unwanted spikes and diversifying
synaptic connections.

For the motion representation from a 2-pixel image, the network achieved
100% accuracy after 1000 ms of training, showcasing its effectiveness in a
minimalist framework. In the MNIST data classification task, the network
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achieved 95% accuracy for 2 classes and 85% for 3 classes, indicating good
generalization despite increased problem complexity.

These results demonstrate that the applied techniques and rules (such
as the NON rule and complementary weight initialization) are effective in
optimizing network behavior. However, it is also clear that improvements
are necessary to address more complex problems and increase classification
accuracy.

Study Limitations

Despite the promising results obtained, several limitations emerged during
this study:

¢ NON Rule Limited to Output Neurons: The NON rule was ap-
plied only to output neurons. Hidden layers did not benefit from this
rule, which could limit the overall effectiveness of the network in terms
of reducing unwanted spikes.

e Absence of Potentiation in the NON Rule: The current NON
rule allows only synaptic depression (weakening of connections) and
does not account for potentiation (strengthening of connections). This
limitation could restrict the network’s ability to learn and adapt effec-
tively to variations in input data.

e Hodgkin-Huxley Model Speed: The Hodgkin-Huxley neuron model
used in this study is relatively slow, which may pose challenges for ap-
plications requiring rapid responses.

e Lack of Supervised Rules for STDP: Learning in this work mainly
relies on unsupervised rules. The absence of supervised rules for Spike-
Timing-Dependent Plasticity (STDP) may limit the network’s ability
to effectively learn complex tasks requiring supervised cues.

Future Work

To overcome identified limitations and improve network performance, several
research and development avenues are proposed:

e Extension of NON Rule to Hidden Layers: Currently, the NON
rule is applied only to output neurons. Extending this rule to hidden
layers could help further reduce unwanted spikes and improve the over-
all efficiency of the network. This will require designing mechanisms to
effectively apply synaptic depression in intermediate layers.
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e Integration of Potentiation into NON Rule: The NON rule could
be enhanced by integrating both synaptic depression and potentiation.
Allowing synaptic connections to strengthen or weaken based on spike
errors could enable the network to adapt more quickly and accurately
to input data variations.

e Optimization of Hodgkin-Huxley Model Speed: While effective
for simulating biological neuronal behaviors, the Hodgkin-Huxley neu-
ron model is relatively slow. Research should explore optimizing this
model or investigating faster alternatives while maintaining fidelity to
biological neuronal dynamics.

e Development of Supervised Rules for STDP: To enhance the
network’s ability to learn complex tasks, supervised rules for Spike-
Timing-Dependent Plasticity (STDP) should be developed. These rules
would allow the network to benefit from external cues during learning,
thereby improving classification accuracy and robustness.

By exploring these research directions, we aim to significantly enhance
the performance and efficiency of artificial neural networks for various appli-
cations, bringing them closer to biological neuronal behavior.

Conclusion

This study has demonstrated the ability of artificial neural networks to model
complex neuronal behaviors and perform classification tasks with significant
accuracy. By employing techniques such as Spike-Timing-Dependent Plas-
ticity (STDP), Rate Encoding, and the NON rule, we optimized the network
to effectively represent motion from a 2-pixel image and classify handwritten
digits from the MNIST dataset.

The obtained results, with 100% accuracy for motion detection and 95%
and 85% for 2 and 3-class classification rates respectively, illustrate the effec-
tiveness of the approaches used. However, several limitations were identified,
including the restricted application of the NON rule to output neurons only,
the absence of potentiation in this rule, the slowness of the Hodgkin-Huxley
neuron model, and the lack of supervised rules for STDP.

To address these limitations, several future research directions have been
proposed, including extending the NON rule to hidden layers, integrating
synaptic potentiation, optimizing the speed of the Hodgkin-Huxley model,
and developing supervised rules for STDP. These improvements should strengthen
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the learning capabilities and robustness of artificial neural networks, making
them more suitable for complex and diverse applications.

In conclusion, this study makes significant contributions to understand-
ing and optimizing artificial neural networks inspired by biological neurons.
Future work based on these findings could open new perspectives in the fields
of artificial intelligence and computational neuroscience.
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