Implementing Pomset Automata

Edgar Delaporte
(supervisor: Amazigh Amrane)

June 2024

In this document, we present an implementation of an extension of L* on pomsets. We examine several
data-structures for pomsets and their respective benefits in regards to this algorithm. We propose func-
tional improvements of the original algorithm as well as a method allowing us to enforce its termination
without using bimonoid isomorphism. We then use these results to discuss a similar extension of another
active learning algorithm, L*, on pomsets.

Keywords
Automata Theory, Pomset, Active Learning, Algebra

LRE

LABORATOIRE DE RECHERCHE DE L'EPITA

Laboratoire de Recherche de 'EPITA
14-16, rue Voltaire
94270 Le Kremlin-Bicétre CEDEX
France

Copying this document

Copyright © 2024 LRDE.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Soft-
ware Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

Contents

1 Introduction

2 Notations and Mathematical Definitions

24 LT L e

B4 LY o e

21 Pomsets.
2.1.1 Rational operations
212 SP-Pomsets
2.1.3 Classes of languages

2.2 Myhill-Nerode relationship
221 Onwords
222 Onpomsets

2.3 DPomsetrecognisers
231 Bimonoids
2.3.2 Pomsetrecognisers
241 General principle
242 Extension on pomset recognisers

3 Implementation

31 Pomsets...................
311 DAG
312 AST..........,

3.2 DPomsetrecognisers
321 Data-structure
3.2.2 Membership queries

3.3 Observationtable
3.3.1 Data-structure
3.3.2 Constructing pomset recogniser
3.3.3 Checking and fixing closure . . .
3.34 Checking and fixing associativity
3.74)1.1 Minimising counter-example . .
3.42 Thealgorithm

4 Further discussions

41 Extending L*

42 Comparing Bimonoids
421 Probabilistic method

CONTENTS

422 Algebraicmethod.
423 W-method
4.3 Random generation of pomset recognisers

5 Conclusion

6 Bibliography

26
26
26

27

28

Chapter 1

Introduction

Automata Theory is at the core of many theoretical results and applications such as the com-
putation of the complexity of algorithms, lexical analysis for compilers and model checking.
More generally, automata describe formal languages, allowing them to be used to analyse sys-
tems such as programming languages, proof systems, communication protocols or human lan-
guages. In most cases, automata model sequential processes. A state of an automaton then
represents a state of the system which is modelled and transitions are used to go from state to
state when an event occurs or an instruction is executed.

Automata learning algorithms are particular methods of machine learning in which the model
can learn state machines by querying an information source holding the target machine. These
methods are used to produce state machine models of hardware and software systems, thus
facilitating the use of formal verification methods. The first active learning algorithm to be de-
scribed was L* [1] which constructs a minimal deterministic automata equivalent to a target
state machine within a finite number of queries. It proceeds by searching iteratively all equiv-
alence classes of the Myhill-Nerode relationship [2], with respects to prefix-suffix relations. It
then constructs a deterministic finite automata (DFA) using the thus found partition of the lan-

guage.

Pomsets (Partially ordered Multi-sets) are algebraic objects used to model concurrent or non-
deterministic programs. They are an extension of words in which we discard the ’strongly
connected” property of the ordering function, thus creating partially ordered sets. Automata
recognising pomsets [3] [4] [5] are useful to study the behaviour of concurrent systems.

In the same manner that words can be recognised by monoids, pomsets can be recognised by bi-
monoids [6]. Bimonoids are a special case of tree automata in which transitions are of arity 0 or
2. TATA [7] has shown that the Myhill-Nerode theorem [2] can be generalised to tree automata
and Lodaya and Weil have done the same for pomset automata [8]. This provides necessary
and sufficient conditions for applying active learning methods on bimonoids.

An extension of L* on pomsets have been described [6]. This algorithm expends the classical ap-
proach of active learning on monoids, by learning bimonoids recognising pomsets. It searches

for a partition of the target languages in regards to a subpomset-context relation and uses it
to build a bimonoid in a similar way as the original algorithm. However, bimonoid isomor-
phism having never been described, equivalence queries do not seem to be computable given
the current state of the art. This seems to be one of the reasons as to why there exists no actual
implementation of said algorithm to the best of our knowledge.

In this document, we present an implementation in C++ code of this extension of L* on pom-
sets, providing minimal data-structures for each step in order to guarantee minimal space and
time complexity. We also examine the respective benefits of directed acyclic graphs (DAG) and
abstract syntax trees (AST) in regards to the representation of pomsets and conclude that the
time complexity saved by the recursive nature of AST is worth their greater space complexity.
Lastly, we provide a naive method allowing us to perform equivalence queries on bimonoids
without isomorphism in the case of finite language using a strategy similar to brute-force attack.

We then use these results to discuss an extension of another active learning algorithm on pom-
sets, L* [9]. We discuss how the improvement relatively to L* given by this algorithm would
still hold on pomset languages and provide some leads for proving such assertion, which will
be the nature of our future work.

We then discuss probabilistic, algebraic and functional methods of deciding isomorphism of
bimonoids and randomly generating said objects.

Chapter 2

Notations and Mathematical
Definitions

2.1 Pomsets

Definition 1: A word is a set of letters of a certain alphabet ¥ on which we consider a linear
order A\. An order A over a certain set is said to be linear iff it is reflexive, transitive, antisymetric
and strongly connected. We define the "strongly connected” property of a set S as follow:

Y(a,b) € S*,a <bVb<a

Instinctively, we can see words as a sequence of letters that we can always arrange from the first
to the last.

p—~0o0o—u—»7 —e€

Figure 2.1: A word over the alphabet ¥ with A = {(p, 0), (0,u), (u,1), (I,e)}

We now want to extend the notion of words to sets for which some elements might not be com-
parable. Posets (Partially Orderded Sets) are thus a generalization of words in which we accept
partial orders A.

Definition 2: An order A over a certain set is said partial iff it is reflexive, transitive and antisy-
metric.

We can note that the only condition which differentiates total from partial ordering is the ab-
sence of the "strongly connected" property, making total orders a particular case of partial or-

2.1 Pomsets 8

ders.

Definition 3: A labelled poset over some alphabet X is a tuple (S, <, f) with S a set of elements
of A, < a partial order over S and f a labelling map that associates a label to any element of S.

Definition 4: A pomset [10] (Partially Ordered MultiSet) over some alphabet ¥ is an isomor-
phism class of labeled posets over ¥. Two labeled posets are part of the same isomorphism class
if there exists a bijection between the two that preserves labelling and ordering. Within a pom-
set, two elements and y that cannot be compared, are said to be in parallel and are denoted

2|ly.
The empty pomset € is the only pomset for which the set of Letter S is the empty set.

We can graphically represent a pomset as a Hass Diagram as follow:

—U

/O \
’ \ /)
l
Figure 2.2: A pomset over S = {zi,z0,23,x4,x5} with A =

{(z1,22), (x2,x3), (z3,25), (x1,24), (xa,25)} and f : S — « a labelling map such as

f(x1) =p, f(x2) = 0, f(23) = w, f(z4) = 1, f(25) = e.

2.1.1 Rational operations

Let (p1, <1, A1) and (p2, <2, A2) be two disjoint pomsets over respectively ¥; and X5, we define
the following operations [11]:

¢ The parallel product of p; and p; is the pomset p1||p1 = (p1 U p2, <1 U <2, A1 U Ag) over
(31 U Xy), as illustrated in Figure 2.3.

¢ The sequential product of p; and p; is the pomset p; ® po = (p1 U p2, <1 U <o U(p1 X
p2), A1 U A2) over (X1 U 3y), as illustrated in Figure 2.4.

* The substitution of a letter £ by p; in p, is the new pomset equal to p, with all occurrences
of the letter ¢ replaced by copies of p;. This is illustrated by Figure 2.5.

Let L be a sp-language of pomsets labelled by B, P a pomset labelled by A and £ € A. The
substitution of £ by L in P, denoted L o¢ P, is the language L’ in the alphabet (4/ {¢}) U B where
every pomset is the result of the substitution of every element labelled by £ in P by an element
of L.

9 Notations and Mathematical Definitions

For example, let B = {a,b}, A = BU{¢}, P = a&(b||§) and L = {a||b, a}, then
P o¢ L = {a(al[b)(bl|al|b), a(al[b)(b]|a), aa(b]|a||b), aa(bl|a)}

These operations can be repeated a certain number of times over an element e and are then
called parallel iteration e, sequential iteration et and iterated substitution e*¢.

f O¢ a = a d—1f

o ~ \/

Figure 2.5: The substituion of £ by p; = (d||e) f in p2 = a(b||).

2.1.2 SP-Pomsets

Definition 5: The set of series-parallel pomsets (or sp-pomsets for short) is the set of pomsets
that are closed under parallel and sequential product. The empty pomset is series-parallel.

We denote SP(X) the series-parallel algebra of 3, the set of all sp-pomsets that can be con-
structed with letters of X.

We call the width of a pomset the length of the longest of its anti-chains. ¢ has a width of 0.

2.1 Pomsets 10

~._ :
VAN —

Figure 2.6: a sp-pomset

Figure 2.7: a non-sp-pomset

e N
N -

A
VAR,

g
Figure 2.8: p = a((b(d||e)R)||(c(fllg)i))J, a sp-pomset of width 2.
Definition 6: A pomset of which the width is a finite number is said to have bounded-width.
Definition 7: A pomset language L over an alphabet ¥ is a certain subset of SP(X).
2.1.3 Classes of languages
Definition 8: In algebra on words, a language over X is a set of words constructed from letters

of 3. A language L is said regular iff it is accepted by a finite automaton. It is said rational iff
all its words can be described using only concatenation, union and iteration.

Proposition 1: For any pomset language L, being regular is equivalent to being rational [12].

Definition 9: A pomset language is said to have bounded-width iff all of its elements have
bounded-width.

A pomset language for which all elements are sp-pomsets is called a sp-language.

Definition 10: A sp-language is said to be series-rational if all its elements can be described
using only concatenation, parallel product, sequential iteration and union.

Proposition 2: Every series-rational sp-languages has bounded-width [13].

11 Notations and Mathematical Definitions

We then can define general rational pomset languages [8] as subsets L of SP(X) with the fol-
lowing properties:

e If p; and po are elements of L, then so are p; ® ps, p1||p2 and pf
¢ If p; and p are elements of L and if { € L, then p;o¢ps is so.
e If pis a rational expression and if £ € L, then p*¢ is so.

It is important to note that, while all series-rational sp-languages are rational, the converse does
not hold. There are indeed rational languages that does not have bounded-width. For example,
a®® is rational while not being bounded-width.

Choosing whether or not to consider these cases has a great influence on the complexity of the
problems with which we will be confronted. We will therefore sometimes choose to consider
only series-parallel sp-languages in order to limit ourselves to more reasonable cases in terms
of algorithmic complexity.

2.2 Myhill-Nerode relationship

2.2.1 On words

Given two words (w;,w;) of a language L, we define a distinguishing extension as a word ¢
such that :

wiecELFwyece L

We then define the Myhill-Nerode relationship ~, as follows:

Y(wy,w) € L wy ~p wy <= fc€ ¥ wyecc LA wyecE L

The Myhill-Nerode theorem shows that this relationship partitions L into equivalence classes
and that L is regular iff this partition is of finite order.

Proposition 3: A minimal DFA has as many states as the carnality of its partition in regards to
the Myhill-Nerode relationship.

Such properties allows regular languages of infinite cardinality to be described with a finite
number of elements by finding every equivalent class with respect to the Myhill-Nerode re-
lationship. As we will see in the following sections, respecting this property is a sufficient
condition for a language to be learned using active learning algorithms.

2.3 Pomset recognisers 12

2.2.2 On pomsets

Similarly, we can define a Myhill-Nerode-like theorem on pomset languages. Given two pom-
sets (p1,p2) of a pomset language L, we a define a context as a pomset e containing exactly one
occurrence of the letter £ such that:

progc€L#progcel

Previous works on Pomset Automata [3] have show that contexts of pomset languages share all
the properties of distinguishing extensions of 2.2.1 and we therefore define a similar relation-
ship:

V(p1,p2) € L*,p1 ~ p2 < Bc€C,procc€ L#pyogc€e L

With C the set of all pomsets that can be constructed using letters of the alphabet and the letter &.

Such relation partition L into equivalence classes in a similar manner than on languages on
words [3]. This is a sufficient condition that active learning algorithms on languages of words
can be extended to languages of pomsets.

2.3 Pomset recognisers

2.3.1 Bimonoids

Definition 11: A bimonoid is a category defined as a tuple (M, e, ||,1) where M is a set called
the carrier, e is a binary associative operation over M, || is a binary associative commutative
operation over M and 1 is a neutral operand for both e and ||.

As monoids recognise words, bimonoids recognise pomsets [13] and can be manipulated in a
similar manner. This is a convenient algebraic solution to study pomset languages without hav-
ing to care about the algorithmic complexities induced by pomset automata. We will however
need to operate on state machines in the following parts and therefore define Pomset recognis-
ers to circumvent this issue.

2.3.2 Pomset recognisers

Definition 12: A pomset recogniser is a tuple (M, e, ||, 1,4, F') where (M, e,||,1) is a bimonoid, i
is a mapping function from the alphabet to M, and F is a subset of M of final states.

Pomset recognisers are therefore tree automata with M being the set of states, F the set of final
states and (e, ||) the transition functions.

For example, given M = {qq,,¢1,¢1,1}, i the function such that i(a) = ¢, and i(b) = g,
F = {q1} and (e, ||) defined in Tables 2.1 and 2.2.

We obtain the pomset recogniser P = (M, e, ||, 1,1, F') that recognises the language L = (a||b)* =

{e, allb, (al|b)(al[b), (al[b)(al D) (al[0), ...}

13 Notations and Mathematical Definitions

| ¢ | @ | ¢ | q | 1 ' g0 | @ | @0 | g0 | 1
Ga | 9L | 9L | 91 | 41 | Ga Ga | 491 | q1 | 4L | 91 | Ya
db gL | 91 | 91 | 91 b db q1 q1 | 91 | 9L db
g1 | 91 | 91 | 91 | 4L | q1 g1 | 91 | 91 | 91 | 91 | 1
g1 | 91 | 9L | 91 | 91 | 91 gL | 9L | 91 | 9L | 91 | 9L
1 | g | @ | @ g | 1 1 | g | @ | ¢ |q] 1
Table 2.1: eoperation Table 2.2: | | operation
24 L~

24.1 General principle

L~ [1] was one of the first learning algorithm to be described. It creates a minimal DFA equiva-
lent to a state machine held by a teacher by querying it for membership and equivalence.

Minimally adequate teacher

A teacher is an abstract object holding a state machine A and capable of answering queries
about the later.

Definition 13: A teacher is said to be minimally adequate if it can answer at least the two follow-
ing types of queries: Membership queries, consisting of answering yes or no as a whether the
word w belongs to the language of A. Equivalence queries, consisting of determining whether
a submitted DFA B is equivalent to A. In negative cases, the teacher must submit a counterex-
ample, i.e. a word that distinguishes the languages of A and B.

Proposition 4: If a teacher is minimally adequate, L* will be capable of learning its language
within a finite number of queries [1].

Observation table

In order to classify the information given by the teacher, the learner maintains an observation
table.

Definition 14: An observation table over an alphabet ¥ is a tuple (S, E, T') with S a finite prefix-
closed set of words over %, E a finite suffix-closed set of words over ¥ and 7" a mapping function
from ((SUS.X).E) to {0,1}. A set of words X is said to be prefix-closed (resp. suffix-closed) iff
all prefixes (resp. suffixes) of all elements of X are also in X. For any s € (S U S.X) we define
row(s) as the function f : e — T'(s.e).

For example, with S = E = {¢,a,b} and T such that T(z) = 1 for z € {¢,q,aa,aaa} and
T'(z) = 0 otherwise, we have the following observation table:

24 L* 14

e a b

e |1 1 0
a1l 1 0
b |0 0 O
aa |1 1 O
ab|0 0 O
ba |0 0 O
bb| 0 0 O

Table 2.3: Observation table 1

By constructing S, the learner identifies the different equivalence classes of the target language
in regards to the Myhill-Nerode relationship. E then represents the set of distinguishing exten-
sions. In a similar manner, it identifies the transition functions by constructing 7.

Definition 15: An observation table is said to be closed iff for every ¢ € S.X there existsa s € S
such that row(t) = row(s). An observation table is said to be consistent iff

Y(s1,82) € S, row(s;) = row(sz),Va € ¥, row(si.a) = row(ss.a)

Definition 16: Given a closed, consistent observation table (S, E,T) we define an acceptor
M((S,E,T)) as a tuple (Q, qo, F') with Q = {row(s),s € S} a set of states, gy the unique ini-
tial state and F' the subset of @) of final states. M ((S,E,T')) is a DFA by construction and has
exactly | S| states.

The algorithm starts with S = E = {¢}. It will then loop while the observation table is non-
closed or non-consistent and will try to remedy one of these properties with each iteration.
Enforcing closure is done by adding elements to .S until the condition is met. Enforcing consis-
tency is done by adding elements to E that distinguishes elements that were indistinguishable
beforehand. Once the table is closed and consistent, the learner will submit an acceptor A cor-
responding to the table as an hypothesis to the teacher. If the teacher finds no counterexample,
then A is the minimal target DFA and the algorithm terminates. Otherwise, the learner will ex-
tract a new distinguishing element from the given counterexample and will continue checking
for closure and consistency.

Proposition 5: For any minimally adequate teacher T holding a DFA A of n states and given
m the maximum length of a counterexample handed by T', L* will produce a minimal DFA B
equivalent to A in polynomial time over n and m [1].

2.4.2 Extension on pomset recognisers

It is possible to extend L* to learn pomset recognisers instead of DFA [6]. To avoid any ambi-
guity, we will refer to such extension as L;.

Definition 17: The observation table for L; over an alphabet . is defined analogously as to L*’s.

Given a placeholder letter ¢, the observation table is a tuple (S, E,T) with S a set of pomsets

15 Notations and Mathematical Definitions

known as sub-pomsets, E a set of contexts and 7' a mapping function from ((SUS.XUS||X) o¢ E)
to {0, 1}. The row function is defined similarly as in Definition 14.

For example, with S = {¢,a,b}, E = {£,£.0,€]|a,§||b} and T such that T'(e) = 1liff e € (a*)||b
and T'(e) = 0 otherwise, we have the following observation table:

£ &a la &b

€ 0 O 0 0
a 0 O 0 1
b 0 0 1 0
aa 0 0 0 1
ab 0 O 0 0
ba 0 O 0 0
bb 0 O 0 0
allb|1 0 0 0

Table 2.4: Observation table 2

Closure and consistency are defined as in Definition 15, we however need two new properties
for our observation table to produce correct outputs, associativity and sharpness.

Definition 18: An observation is said to be v — associative for v € (e, ||) iff

V(s1, 52,583,581, 5.) € S°,row(s;) = row(s1ys2) A row(s,) = row(syyss) = row(s;ysz) = row(s;ysz)
Definition 19: An observation table is said to be sharp iff
Y(s1,82) € S, row(s)) = row(sy) = s = sy

Proposition 6: A sharp table is consistent [6].

Definition 20: A closed, associative, sharp observation table (S, E,T) induces an hypothesis
H=(Q,+,|I.1,i, F) with:

e Q= {row(s),s € S}

V(s1,82) € S,row(s1) @ row(sz) = row(s; e s2)

V(s1,82) € S, row(sy)||row(sz) = row(si||s2)

e 1 =row(e)

Ya € a,i(a) = row(a)
F = {row(s),s € S,row(s)(&) =1}

An hypothesis defined this way is a pomset recogniser by construction. We have |Q] = |5].
We can observe that the constructed pomset recogniser will have as many states as the num-
ber of rows of the column. As shown in the previous section, there exists a bijection between

24 L* 16

the states/rows and the equivalence classes of the Myhill-Nerode relationship of the target lan-
guage.

Similarly to L*, this algorithm starts with S = {e} and £ = {£}. It will then loop while the
observation table is non-closed or non-associative and will try to remedy one of these proper-
ties with each iteration. Enforcing closure is done by adding elements to S until the condition
is met. Enforcing v — associativity is done by adding new contexts to E that distinguishes ele-
ments that were indistinguishable beforehand. Once the table is closed and associative (which
implies sharpness [6]), the learner will submit an hypothesis H corresponding to the table to the
teacher. If the teacher finds no counterexample, then H is the minimal target pomset recogniser
and the algorithm terminates. Otherwise, the learner will extract a new context from the given
counterexample and will continue checking for closure and associativity.

Proposition 7: for any minimally adequate teacher T holing a pomset recogniser A of n states
over an alphabet « of k letters and given m the maximum length of a counterexample given by
T, L}, will produce a minimal pomset recogniser B equivalent to A in O(n® + nm + kn) [6].

Chapter 3

Implementation

3.1 Pomsets

In order ensure the robustness and speed of our implementation, it is necessary to ensure the
spatial minimality of the structures used and the temporal minimality of their algorithms. As
we will see, these two characteristics don’t always go hand in hand, so we will have to choose
between several implementations of our objects, each presenting different advantages and dis-
advantages.

3.1.1 DAG

Directed acyclic graphs (DAG) are the smallest data-structure with which we can represent a
pomset [14]. The DAG G of a pomset p of n elements is the transitive reduction graph of p and
therefore has exactly n nodes.

A pomset p thus can be represented as a Hasse diagram (Q, A, f) with Q a set of states, f an
isomorphism between the elements of p and) and X a set of transition such that:

V(a,b) € p,a>b < (f(a), f(b)) € A

See figure 3.1.

To implement such graph in C++, we define a class DAGNode that holds a Letter (unsigned
integer) and a vector of pointers to its children. The Pomset class then have the vector of its
DAGNodes as attribute.)

This structure holds all the needed information of a pomset with a space complexity of “-+o(n?)
bits [14]. However, in addition to the list of node, we decide to keep two lists of references to
the minimal and maximal elements in order to simplify basic operations. This representation
is ideal for long pomsets (where the order is close to a chain). It is therefore worst for wide
pomsets (where the order is close to an anti-chain). The main purpose of those two lists is to
prevent the DAG to be run through entirely for each call to the sequential product. With such
implementation, it is trivial to determine whether the pomset is empty and to retrieve the lists
of maximal and minimal elements. Such object can be constructed from infix notation with a

3.1 Pomsets 18

Figure 3.1: Directed Acyclic Graph modelling the pomset p = (a||b) ® (a||b) ® (a||b).

simple Shunting-Yard algorithm [15].

However, such representation discards the reverse polish notation (RPN) of the pomsets which
is needed in order to perform the membership query of a pomset to a bimonoid in the fastest
possible way. Thus adding more operations to the query, in order to retrieve the RPN from the
DAG. Performing substitution operations on DAGs is also highly non-trivial and would involve
re-arranging the whole data-structure. As those are operations that will be done numerous
times in our program, it seems interesting to look up for an implementation that would involve
shorter queries and substitutions.

3.1.2 AST

Abstract syntax trees (AST) are data-structures that store a synthaxic expression directly in RPN.
It is able to store a category of n elements in 2n — 1 nodes [16]. In such implementation, internal
nodes represent operations in {e, ||} and leaves represent the elements of the pomset. The RPN
notation of the pomset can thus be retrieved with a simple post-order traversal.

See figure 3.2.

Figure 3.2: Abstract syntax tree modelling the pomset p = (a||b) ® (a||b) (a||b).

To implement such graph in C++, we define a class BinTree that holds a data e (unsigned inte-
ger) and two pointers to its children. Such object has always 0 or 2 of its pointers non-null. In

19 Implementation

the first case, the node is a leaf and e is a Letter. In the second, it is an internal node and e is
either 0 (o) or 1 (]|).

Computing concatenation (resp. parallel product) on AST representing pomsets is trivial. In-
deed, for two AST g; and g it suffices to create a new AST g3 with its root being a node with
e = e (resp. ||) and its children being g; and g». Therefore computing both operations in con-
stant time regardless of the size of the operands.
In a similar manner, substitution g; o¢ g2 can be done by replacing the leaf.ves holding the letter
€ in g1 by g9, resolving in O(n) in the worst case.

In order to always have two equivalent pomsets be the exact same C++ object we "canonise” our
AST by recursively stacking all sequence of operations to the right using right bintree rotation.
This allows us to compare two pomsets by literally comparing their AST.

As we will see in the following part, storing pomsets as AST is ideal for to query them to bi-
monoids. With regards to the minimal time complexity of the operations on pomset represented
as AST and despite their greater space complexity as DAG, we will assume that we are using
such data-structure for the following parts, as it seems to assure better performance.

3.2 Pomset recognisers

3.2.1 Data-structure

We can represent a bimonoid in C++ thanks to a class Bimonoid with a template 7" holding a
vector M of T representing the carrier, two function pointers concat and parallelise of signature
(T,T) — T representing the two composition laws, and a unit of type T

We can then define the Pomset_rec class holding a Bimonoid with T' = unsigned int, an alpha-
bet X (vector of unsigned int), as subset F' of M of final state and a function pointer of signature
unsigned int — unsigned int capable of mapping Letters of the alphabet to elements of M.

We note that the complexity of such data-structure is dependant on the implementation of the
internal function pointed to by the bimonoid and can thus vary by a great range. It seems
coherent to affirm that the best implementation of these functions would be to read results in
a previously filled array, thus implying two more "hidden" arrays of unsigned int of size n?
essential to this structure.

3.2.2 Membership queries

In order to compute the membership query of a Pomset p represented as an AST to a Pomset_rec
A, we need to parse the bintree using the internal functions of the bimonoid. This results to a
single element of the bimonoid, as described in Algorithm 1. For a pomset of size n, this algo-
rithm performs exactly 2n — 2 recursive calls.

Then, we can compute the membership query of a pomset by checking if the element computed
by Algorithm 1 is in the set of final element of the Pomset recogniser, as described in Algorithm

3.3 Observation table 20

Algorithm 1 process_ast(p)

if p == null then
return A.unit
end if
if p is a leaf then
return A.i(p.data)
else
I = process_ast(p.left_child)
r = process_ast(p.right_child)
if data is e then
return A.concat(l,r)
else
return A.parallelise(l,r)
end if
end if

Algorithm 2 recognise(p)

if F.empty() then
return false

end if

res = process_ast(p)

for state in F do
if res = state then

return true

end if

end for

return false

3.3 Observation table

3.3.1 Data-structure

*

In order to perform the whole L; algorithm of a pomset recogniser () in C++, we define an
Observation_table class. It holds a vector of sub-pomsets S, a vector of contexts £ and an 2-
dimension array ¢ of booleans such that t[z][y] = true < S[z] o¢ E[y] € L(Q).

We also maintain a table St of pomsets in (S.X) U (S||2) and extend ¢ accordingly in order to
not re-compute these values each time we check for closure or associativity.

Thus, for a pomset recogniser () of n states over an alphabet ¥ of k letters, our Observation_table
will store 2n + 2nk pomsets and a table of n* + 2n?k booleans.

21 Implementation

3.3.2 Constructing pomset recogniser

As we need to be able to extract a pomset recogniser from our table, we define a C++ class Hy-
pothesis holding a Pomset_rec rec and a 2-dimension array of boolean t.

We are able to construct an Hypothesis object from an Observation_table as described in Defi-
nition 20.

The Hypothesis will duplicate the array ¢ of the Observation_table and store it in order to define
the internal functions of the bimonoid as described in Algorithm 3.

Algorithm 3 concat(q1, g2)
p1 = t.5[z] such that t.row(z)
p2 = t.S[y] such that t.row(y)
return row(p; e p2)

q1
q2

The parallel product is defined analogously.

The carrier of the bimonoid is defined as the vector of row(s),s € S. The set of final states is
defined as the the vector of row(s),s € S, t[row(s)][0] = 1. The mapping function i is defined
directly from the alphabet.

Once the Hypothesis is constructed, we can compare it to the teacher as an equivalence query.
The teacher shall provide a boolean indicating the result of query as well as a counterexample
pomset in the negative cases. This can be done on finite languages by testing all combination
of Letters up to the maximal size of a Pomset of the language of the teacher as described in
Algorithm 4.

Algorithm 4 find_counterezample(H, Q)
E=L(Q)
fore € E do
if H.recognise(e)! = Q.recognise(e) then
return e
end if
end for
return null

This method of comparison is naive and does not allow to compare pomset recogniser repre-
senting languages of infinite cardinality. However bimonoid isomorphism having never been
described, the state of the art does not seem to provide anything more effective. Better methods
of comparing two pomset recognisers are discussed in 4.2.

3.3.3 Checking and fixing closure

Algorithm 5 checks for closure and Algorithm 6 enforces closure on an Observation_table ¢.

3.3 Observation table 22

We observe that making the table closed requires all the operations necessary for checking clo-
sure. We will therefore, in contrary to the pseudo-given provided by [6], never check for closure
and always try to make the table closed at each loop of L;, as this will lead to fewer operations.

Algorithm 5 is_closed(t)

fore; € ST do
found = false
r1 = row(ey)
forey, € S do
ro = row(ez)
if r1 == ry then
found = true
break
end if
end for
if ! found then
return false
end if
end for
return true

Algorithm 6 make_closed(t)

fore; € ST do
found = false
r1 = row(ey)
forey, € S do
ro = row(ez)
if r1 == ry then
found = true
break
end if
end for
if found then
S.add(ey)
return
end if
end for

3.3.4 Checking and fixing associativity

Algorithm 7 checks for y-associativity and Algorithm 8 enforces y-associativity on an Observa-
tion_table ¢ learning a teacher 7.

As for closure, we observe that making the table y-associative requires all the operations neces-
sary for checking y-associativity. In a similar manner, we will never check for associativity and
always will try to make the table associative directly.

23 Implementation

Algorithm 7 is_associative(t,)

for sy, $2, 83, 8,8 € S do
if row(s;)! = row(sy v s2) or row(s,)! = row(sy v s3) then
continue
end if
Py =57 s3
Py =5 7Y Sr
if row(Py)! = row(P2) then
return false
end if
end for
return true

Algorithm 8 make_associative(t,y)

for s1, 89, 83,8,,5 € Sdo
if row(s;)! = row(sy 7 s2) or row(s,)! = row(sa v s3) then
continue
end if
Py =577 83
P, =517 s,
fori € E do
if row(Py)[i]! = row(P2)[i] then
D1, D2, P3, Pl € = S1, 82,83, 81,1
goto exit_loop
end if
end for
end for
return
exit_loop :
B = (p1vp2)vps
if row(p; v p3)[e]! = T.membership_query(B) then
E.add(e o¢ (€7 p3))
else
E.add(e og (s1 7))
end if

34L; 24

34 L

3.4.1 Minimising counter-example

When an equivalence queries gives a negative response, the teacher hands a counter-example
pomset to the table. This pomset is either one that belongs to the language of the teacher and
not to the one of the table, or either conversely.

Which counter-example will be given is non-deterministic, there is thus no limit as to its size.
We will then try to reduce this pomset to an equivalent minimal pomset, in order to ensure the
spacial and temporal complexities of our program. This is done recursively by replacing sub-
pomsets inside the counter-example by equivalent elements of S while the obtained pomset still
is a counter-example. We implement this function handle_counter_example in the exact same
way as [6] and therefore do not provide pseudo-code.

3.4.2 The algorithm

Our implementation of L;; with a teacher () and an Observation_table 7' is given in Algorithm
9.

Algorithm 9 L (Q)
T.S = {e}
T.E - (¢}

while true do
while !T'.closed or \T.associative do
T.make_closed(t)
T.make_associative(t, o)
T.make_associative(t,||)
end while
H = T.create_hypothesis()
¢ = find_counter_example(H, Q)
if ¢ == null then
return H
end if
¢ = T.handle_counter_example(c)
T.E.add(c)
end while

Chapter 4

Further discussions

4.1 Extending I

L*, described in [9], is an extension of L* that uses abstract data-structures instead of an obser-
vation table. It works by assigning a specific list of contexts to each prefix instead of computing
each prefix/suffix relationship, as some of them are not relevant as to the expressiveness of the
target language.

The algorithm maintains a prefix-closed list of words (called short-prefixes) S modelling the
equivalent classes of the Myhill-Nerode relationship. It also maintains of partition B of (SUS.X)
called the pack of components. It maps to each b € B a list V;, of suffixes, used to distinguish
classes of prefixes.

L* goes on by submitting equivalence queries to the teacher and treating counter-example. Each
handed counter-example is expanded in order to find more components b of B. Components
are then refined in order to find their appropriate distinguishing elements. This allows the al-
gorithm to learn a DFA in finite time, with less membership queries and less total maintained
symbols than L* [9].

Our future work will mainly consist in finding an extension of L* to pomset recognisers. We
believe that this can be done by replacing the list S of short-prefixes by a list of sub-pomsets and
the pack of components maintaining suffixes by one maintaining contexts. The main problem-
atic as to this extension is to find how to compute appropriate contexts for each component, this
will probably need another solution that what is done in L}, as we discard the observation table.
The optimisation provided by the minimisation of counter-example handed by the teacher in
L;, seems to be directly adaptable to this new algorithm. It is foreseeable that such an algorithm
for pomset recognisers will retain the same complexity advantages as its version on DFA.

4.2 Comparing Bimonoids 26

4.2 Comparing Bimonoids

As bimonoid isomorphism has never been described, and as our method described in Algo-
rithm 4 is naive, we would like to find an optimal method for such operation, and thus present
several leads to resolve this issue.

4.2.1 Probabilistic method

Probabilistic methods of computing isomorphism with random tests might be a solution for
such problem. As described in [17], it is possible to generate random tests for finite state ma-
chine with geometric distribution in ¥*. Using a large number of such tests sequentially would
tend to increase confidence in our equivalence computation, making this method an interesting
indicator. However, it’s important to bear in mind that this method is inexact and thus will lead
to false positives after a large number of attempts, which could undermine our work.

4.2.2 Algebraic method

As bimonoids are 2-categories [18], formal algebraic methods can be employed in order to com-
pare them. [19] introduces 2-isomorphism, which is an extension of graph isomorphism on
2-categories graphs. This is done by mapping all circuit in the first operand’s category graph to
one of the other. This operation succeeds iff the two graphs are equivalent. Such method might
be a coherent way of deciding equivalence between two bimonoids. However, as the graph
isomorphism problem is np-complete, this method is very likely to imply great algorithmic
complexity.

4.2.3 W-method

The w-method [17] is a test generation method that produces a test suite of polynomial size
used to study the behaviour of a finite state machine. This is done by using certain properties
of state covers and characterisation sets and by comparing the behaviour of each equivalence
classes of states in both operands. This method has the advantage of being both exact and
less resource-intensive than graph isomorphism. We thus believe that such solution should be
considered first, both for simplicity and efficiency.

4.3 Random generation of pomset recognisers

As we would like to empirically test our active learning algorithms implementation, it would
be handy to be able to randomly generate test cases. We believe that this can be done using
random tree automata generation as described in [20]. This method allows generation of trim
tree automata and would permit to generate random pomset recognisers if we limit the arity of
the transition functions to 0 or 2.

However, as we need the composition laws of the bimonoid to be associative (and commutative
for the parallel product), we need to enforce such properties on the transition functions gener-
ated by the algorithm. This seems to be doable using rewriting methods such as Knuth-Bendix
completion [21]. Potential further work might be to prove that using rewriting methods on such
generative algorithm does no undermine the "good" distribution of generated objects.

Chapter 5

Conclusion

We have presented an implementation of an extension of L* to pomset recognisers. By doing
so, we have compared different data-structure for pomsets and have concluded that abstract
syntax tree are the best possible objects in this context, in regards to the temporal advantages
they offer. We have also described algorithms computing membership query of a pomset to a
pomset recogniser and a naive method of comparing two pomset recognisers. The obtained L
written in C++ seems to efficiently replicate the theoretical behaviour of the algorithm while
providing some functional improvements. Such algorithm can be used to learn and/or min-
imise a state machine recognising pomsets.

Our future work will consist in the theoretical and practical extension of L* on pomset recog-
nisers, using the already accomplished work on L;. Such extension would permit to reach new
levels of performance when learning pomset languages.

Other leads for future work would be to formalise better methods of bimonoid isomorphism
and pomset recogniser generation. Solving these problems would be of a great help in our work,
as they would allow faster and safer ways of running our algorithms in large test benches, thus
increasing our confidence as to the validity of our results.

Chapter 6
Bibliography

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87-106, 1987. (pages 5, 13, and 14)

[2] A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541-544, 1958. (page 5)

[3] Kamal Lodaya and Pascal Weil. A kleene iteration for parallelism. In Foundations of Software
Technology and Theoretical Computer Science, 1998. (pages 5 and 12)

[4] Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. On series-
parallel pomset languages: Rationality, context-freeness and automata. Journal of Logical
and Algebraic Methods in Programming, 103:130-153, 2019. (page 5)

[5] Amazigh Amrane, Hugo Bazille, Uli Fahrenberg, and Marie Fortin. Logic and languages
of higher-dimensional automata, 2024. (page 5)

[6] Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, and Alexandra Silva. Learning Pomset Au-
tomata, page 510-530. Springer International Publishing, 2021. (pages 5, 14, 15, 16, 22, and 24)

[7] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Loding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. 2008.

(page 5)

[8] Kamal Lodaya and Pascal Weil. A kleene iteration for parallelism. In Vikraman Arvind
and Ramaswamy Ramanujam, editors, Foundations of Software Technology and Theoretical
Computer Science, 18th Conference, Chennai, India, December 17-19, 1998, Proceedings, volume
1530 of Lecture Notes in Computer Science, pages 355-366. Springer, 1998. (pages 5 and 11)

[9] Falk Howar and Bernhard Steffen. Active automata learning as black-box search and lazy
partition refinement. In Nils Jansen, Mariélle Stoelinga, and Petra van den Bos, editors, A
Journey from Process Algebra via Timed Automata to Model Learning - Essays Dedicated to Frits
Vaandrager on the Occasion of His 60th Birthday, volume 13560 of Lecture Notes in Computer
Science, pages 321-338. Springer, 2022. (pages 6 and 25)

[10] Vaughan Pratt. Modelling concurrency with partial orders. Internationaljournal of Parallel
Programming, 15, 04 2000. (page 8)

29 BIBLIOGRAPHY

[11] Stephen L. Bloom and Zoltén Esik. Free shuffle algebras in language varieties. Theor.
Comput. Sci., 1996. (page 8)

[12] Kamal Lodaya and Pascal Weil. Rationality in algebras with a series operation. Inf. Comput.,
171(2):269-293, 2001. (page 10)

[13] Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width prop-
erty. Theor. Comput. Sci., 2000. (pages 10 and 12)

[14] J. Ian Munro and Patrick K. Nicholson. Succinct posets. CoRR, abs/1204.1957, 2012.
(page 17)
[15] Theodore Norvell. Parsing expressions by recursive descent. https://www.engr.mun.

ca/~theo/Misc/exp_parsing.htm, 1999. (page 18)

[16] Joel Jones. Abstract syntax tree implementation idioms. Pattern Languages of Program
Design, 2003. Proceedings of the 10th Conference on Pattern Languages of Programs
(PLoP2003) http:/ /hillside.net/plop/plop2003 /papers.html. (page 18)

[17] Dan-Tuong Le. Quantitative Analysis of Counterexample Generation for Automata Learning.
PhD thesis, Universitatsbibliothek der RWTH Aachen, 2020. (page 26)

[18] J.-M. Maranda. Formal categories. Canadian Journal of Mathematics, 17:758-801, 1965.
(page 26)

[19] Hassler Whitney. 2-Isomorphic Graphs, pages 125-134. Birkhduser Boston, Boston, MA,
1992. (page 26)

[20] Thomas Hanneforth, Andreas Maletti, and Daniel Quernheim. Random generation of
nondeterministic finite-state tree automata. Electronic Proceedings in Theoretical Computer
Science, 134:11-16, November 2013. (page 26)

[21] D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebras, pages 342-376.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. (page 26)

https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm

	1 Introduction
	2 Notations and Mathematical Definitions
	2.1 Pomsets
	2.1.1 Rational operations
	2.1.2 SP-Pomsets
	2.1.3 Classes of languages

	2.2 Myhill-Nerode relationship
	2.2.1 On words
	2.2.2 On pomsets

	2.3 Pomset recognisers
	2.3.1 Bimonoids
	2.3.2 Pomset recognisers

	2.4 L*
	2.4.1 General principle
	2.4.2 Extension on pomset recognisers

	3 Implementation
	3.1 Pomsets
	3.1.1 DAG
	3.1.2 AST

	3.2 Pomset recognisers
	3.2.1 Data-structure
	3.2.2 Membership queries

	3.3 Observation table
	3.3.1 Data-structure
	3.3.2 Constructing pomset recogniser
	3.3.3 Checking and fixing closure
	3.3.4 Checking and fixing associativity

	3.4 L*p
	3.4.1 Minimising counter-example
	3.4.2 The algorithm

	4 Further discussions
	4.1 Extending L
	4.2 Comparing Bimonoids
	4.2.1 Probabilistic method
	4.2.2 Algebraic method
	4.2.3 W-method

	4.3 Random generation of pomset recognisers

	5 Conclusion
	6 Bibliography

