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As Large Language Models (LLMs) for code generation continue to gain widespread adoption, exempli-
fied by GitHub Copilot’s’ user base surpassing a million, it is imperative that these models are aligned
with functional standards to ensure their reliability and security. Code-LLMs are revolutionizing devel-
oper productivity by automating code generation, but they also raise significant concerns about the quality
and security of the generated code. This research addresses these issues by employing innovative adver-
sarial techniques to enhance the reasoning capabilities and security of Code-LLMs. Our study focuses on
two primary approaches: Direct Preference Optimization (DPO), which leverages an adversarial game be-
tween two models, Alice and Bob; and Proximal Policy Optimization (PPO), which utilizes unit testing as
a reward model. By combining these methods, we aim to systematically improve the robustness and reli-
ability of Code-LLMs, ultimately advancing the development of a framework that not only mitigates risks
associated with automated code generation but also reinforces the overall integrity and dependability of
Code-LLMs.
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Chapter 1

Introduction

The rapid advancement of Large Language Models (LLMs), particularly those specialized in
code generation such as GitHub Copilot, has significantly accelerated the automation of cod-
ing tasks, enhancing productivity in software development. Despite these benefits, this tech-
nological evolution introduces critical challenges concerning the quality, security, and ethical
alignment of the generated code. Traditionally, aligning LLMs has relied on human-annotated
data, a method becoming impractical due to its lack of scalability in the face of rapidly evolving
model capabilities and application contexts.

In response to these challenges, this research aims to innovate upon existing methods by
integrating adversarial components into established reinforcement learning techniques, specif-
ically Proximal Policy Optimization (PPO) [18] and Direct Preference Optimization (DPO) [16].
This approach seeks to replace the traditional human-centric data annotation process with a dy-
namic, model-driven alignment mechanism, wherein models engage in adversarial interactions
to refine and optimize the target model’s performance continuously.

Our approach utilizes Proximal Policy Optimization (PPO), where a more extensive model
generates coding exercises accompanied by descriptions and a critical test suite. This suite
serves as a reward model, guiding the target model’s policy optimization through real-time
feedback. However, initial attempts using this method revealed instabilities in test outputs,
which occasionally led to erroneous model penalization. Despite these challenges, we observed
some intriguing behaviors during testing. Notably, the model often resorted to auto-completing
with "pass" to strategically maximize the reward—successfully compiling and running while
only failing the assertion tests. This behavior highlights a potential area for further refinement
in the reward structure to ensure comprehensive assessment and learning.

Alternatively, the research explores an adversarial enhancement of DPO. In this setup, an
iterative interaction between an ‘oracle’ model and a ‘student’ model is used. The oracle, be-
ing larger and more knowledgeable, is tasked with guiding the smaller student model, thereby
aligning it more closely with ethical and functional standards. Conducted over multiple cy-
cles and leveraging high-performance computing resources, this method has shown promise in
preliminary tests, including slight improvements in benchmarks like HumanEval [5]. Addition-
ally, our training logs indicate that the reward margins are clearly increasing during the training
sessions, demonstrating that the student model is effectively learning to converge toward the
distribution of the oracle. This observation underscores the potential of this method to facilitate
significant advancements in model alignment.

This introduction sets the stage for a comprehensive discussion on how adversarial tech-
niques can enhance traditional reinforcement learning methods for model alignment. The fol-



5 Introduction

lowing sections will delve into related work, the specific adversarial adaptations applied to
PPO and DPO, and strategies for managing computational resources effectively. This discussion
aims to elucidate the potential impacts and future applications of these advanced adversarial
techniques in the ongoing development and refinement of Code-LLMs.

To summarize, we first introduce an innovative use of adversarial techniques within estab-
lished reinforcement learning frameworks like Proximal Policy Optimization (PPO) and Direct
Preference Optimization (DPO) to enhance model training and performance without relying on
human-annotated data. Second, we demonstrate the practical application of these techniques
through a dynamic, adversarial interaction between ‘oracle” and "student” models, showcasing
measurable improvements in model alignment and performance, as evidenced by increased
reward margins and enhanced outcomes on coding benchmarks. Collectively, these advance-
ments provide a scalable, efficient solution to the challenge of quality, security, and ethical align-
ment in code generation by LLMs, offering a substantial foundation for future explorations and
developments in the domain.



Chapter 2

Context

This section provides a contextual backdrop for the current research by reviewing relevant liter-
ature across several key areas that inform our approach to refining and enhancing Code-LLMs
through adversarial techniques.

Data Annotation: Data annotation serves as the foundation for training and refining LLMs.
Traditional approaches heavily rely on manual annotation, which, while effective, scale poorly
with the increasing size and complexity of models and datasets. An illustrative example from
the realm of code generation LLMs is highlighted by [13], where 1,399 crowd-workers from 35
different countries were engaged to annotate a dataset for Personally Identifiable Information
(PII) in source code. This example underscores the extensive human effort involved and the
challenges in scalability and consistency across such a large and diverse group of annotators.

Self-instruct: The use of larger models to autonomously generate high-quality, well-structured
data represents a shift towards more scalable methods of data creation and annotation. Notable
examples include the phi 1.5 model [7], where a model was exclusively trained on high-quality
generated coding textbooks, and the creation of the Cosmopedia dataset [3]. Both instances show-
case the effectiveness of leveraging advanced models for data generation. Furthermore, as dis-
cussed by [6], the incorporation of topic sampling techniques is crucial for enhancing the diver-
sity and coverage of the generated datasets, ensuring a broader range of scenarios and cases for
the model to learn from.

Adversarial and Curriculum Learning: Adversarial learning techniques, particularly those
coupled with curriculum strategies, have demonstrated substantial benefits in fields such as
robotics. For example, "Asymmetric self-play” methodologies have shown potential in discov-
ering optimal policies through adversarial setups [14]. This is further elaborated in the study
on "intrinsic motivation and automatic curricula via asymmetric self-play," which illustrates
how adversarial interactions can naturally induce a curriculum of tasks that progressively in-
crease in complexity [20]. Such methods provide a framework for our approach to adversarial
enhancements in training Code-LLMs, suggesting a pathway to more dynamic and effective
model training regimes.

Unit Tests in CodeLLMs: Unique to the domain of code generation, unit tests offer a valuable
feedback mechanism for both training and inference phases. The concept of an agentic loop as
explored in the codeRL framework [12], highlights the utility of unit tests not just as a means of
validation but as integral components of the learning process. By incorporating feedback from
unit tests into the training loop, models can continuously refine their output, align more closely
with functional requirements, and reduce the occurrence of bugs or undesired behaviors.

Proximal Policy Optimization: In the reinforcement learning with human feedback (RLHF)
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step, the primary method utilized is Proximal Policy Optimization (PPO) [18]. This technique
involves implementing a stochastic gradient ascent method, where gradient steps are taken
after processing a mini-batch of sample data. Within the context of Large Language Models
(LLMs), PPO entails training a reward model designed to replicate human preferences. The
process involves the model generating textual responses to inputs, with the reward model eval-
uating these responses and assigning scores based on their alignment with desired outcomes.
The objective is to maximize the average reward, thereby steering the model’s outputs towards
higher quality and greater alignment with human expectations. This method enhances the
model’s performance by iteratively adjusting based on feedback, aligning more closely with
the intricacies of human language and preferences.

Direct Preference Optimization: While Proximal Policy Optimization (PPO) offers signifi-
cant benefits, its implementation can be complex and potentially unstable due to its reliance
on a reward model that approximates human preferences. This approximation may lead the
model to drift too far from its original parameters, and the inherent nature of reinforcement
learning can contribute to this instability. To address these challenges, alternatives such as
Direct Preference Optimization (DPO) [16] have been developed. DPO simplifies the learn-
ing process by integrating an internal reward system, effectively transforming the optimization
challenge into a classification loss problem. This approach eliminates the need for sampling the
model during fine-tuning or hyperparameter adjustments. By directly comparing preferred and
non-preferred model outputs, DPO streamlines the training process, reduces complexity, and
increases stability, making it a more straightforward and robust alternative to PPO for aligning
model outputs with human preferences.

Adapters: Training Large Language Models (LLMs) can be notably resource-intensive, as
these models typically encompass billions of parameters. Fine-tuning such extensive models
demands considerable computational resources and can be highly inefficient. An effective so-
lution to this challenge is the use of adapters for fine-tuning [9]. Research has demonstrated
that training only a small proportion of new parameters, which are strategically injected into
existing model layers, can achieve performance comparable to fine-tuning the entire model. By
freezing the original parameters and training only these newly added adapter parameters, it is
possible to dramatically reduce the number of trainable parameters—often to less than 3% of
the total. This method maintains the original model architecture and performance, offering a
more resource-efficient approach to updating and refining LLMs.

Each of these areas contributes to the foundation upon which this research builds. By inte-
grating insights from these related works, this study aims to advance the methodology of us-
ing adversarial techniques to enhance the scalability, efficiency, and ethical alignment of Code-
LLMs. The subsequent sections will delve into the specifics of how adversarial methodologies,
informed by these related works, are applied to improve the design and functionality of our
model-training approaches.
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Memory Efficient Training

During my research, the availability of computational resources was limited, which is a com-
mon challenge when working with Code-LLMs that often consist of billions of parameters.
Given this limitation, it is crucial to implement strategies that optimize memory usage, allowing
these extensive models to be trained on relatively smaller GPUs. Beyond resource constraints,
a key motivation for these strategies is to reduce the environmental impact of training large
models by minimizing energy consumption. To address this challenge, I focused on three main
methods: low-rank adaptation, quantization, and gradient accumulation. These techniques are
pivotal in managing the substantial memory requirements of Code-LLMs, enabling efficient and
eco-friendly training within the constraints of available hardware. This chapter will explore
how these methods contribute to effective and sustainable training processes under resource
limitations.

One effective approach to address the memory constraints encountered in training Code-
LLMs is low rank adaptation [10]. This method leverages adapters to fine-tune the model,
employing a strategic modification in parameter handling. Specifically, these adapters consist
of two lower rank matrices involved in a matrix multiplication process. One matrix is initialized
with a zero-centered normal distribution, while the other starts from zero.

Model Trainable Parameters | All Params | Trainable%
StarCoderBase 835,584 1,14B 0.073
Phi-2 9,175,040 2,7B 0.329
Phi-1.5 5,505,024 1,4B 0.386

Table 3.1: Trainable parameters of different models

By using low rank matrices instead of full parameter matrices, the number of trainable pa-
rameters is drastically reduced to just 0.3% of the total parameters of the model. This significant
reduction not only decreases the memory required to store and update parameters during train-
ing but also simplifies the computational demands, enabling the training of large-scale models
on hardware with more limited capabilities. The implementation of low rank adaptation thus
represents a crucial advancement in making the training of sophisticated LLMs more accessible
and manageable.

Quantization is another method employed to manage memory and computational efficiency
in the training of Code-LLMs. This technique involves representing the model’s parameters
in lower precision formats. By reducing the number of bits required to store each parameter,



9 Memory Efficient Training

eval/loss yst 0. yAlloc:

Figure 3.1: Phi 1.5 validation loss on Hu- Figure 3.2: Memory allocation on GPU
manEval [5] using LoRA during training

quantization decreases the overall memory footprint of the model. This reduction not only
saves storage space but also typically lowers energy consumption and speeds up operations
such as matrix multiplication through the use of integer arithmetic, which is faster than floating-
point arithmetic.

While quantization is often used during the inference phase on CPUs to enable large models
to run more efficiently, it can also be adapted for use during the training phase. In training,
certain parameters and matrix multiplication operations are converted to lower precision to ac-
celerate the process. It's important to note, however, that this method depends on hardware
compatibility; only some GPUs support lower precision data types, which can limit the appli-
cability of quantization in certain training environments.

Table 3.2: Different quantization for Phi 1.5 [7], 1.3B parameters

dtype Model | Grad. Calc. | Backward Pass | Opt. Step
Float32 49 GB 49 GB 9.81 GB 19.62 GB
Float16/BF16 | 4.9 GB 7.36 GB 9.81 GB 9.81 GB

Gradient accumulation is a crucial technique utilized to manage memory more efficiently
while enabling the training of large-scale models with larger batch sizes. This method involves
performing multiple backward passes and accumulating the gradients over these passes. The
model’s weights are only updated after accumulating the desired amount of gradients, equiva-
lent to the gradient effect of a much larger batch.

By implementing gradient accumulation, it is possible to mimic the effects of training with
larger batches without the corresponding increase in memory usage. This approach allows for
more flexible management of memory resources, making it feasible to train more substantial
models on hardware with limited memory capacity.



Chapter 4

Proximal Policy Optimization with
Unit Test Signal

This chapter explores a novel implementation of Proximal Policy Optimization (PPO) involving
two models, Alice and Bob, which interact to enhance the training process of code generation
LLMs. In this setup, Alice is tasked with generating coding exercises, while Bob’s objective is to
solve these exercises correctly. The efficacy of Bob’s solutions is assessed using unit tests, which
serve as the basis for rewards in this training framework.

The interaction between Alice and Bob is designed to simulate a dynamic and realistic coding
environment, where the generation of challenges and the formulation of solutions co-evolve.
This method not only aims to improve the problem-solving capabilities of Bob but also refines
Alice’s ability to create relevant and challenging coding tasks. This chapter will delve into the
specifics of how these models collaborate and the impact of this approach on enhancing the
robustness and reliability of Code-LLMs.

7'('9(@,5 ‘ St)
;
Trgold(a’t | St)

LOLIP(9) = F, [min(rt(ﬂ)flt, clip(re(8),1 — e,1 + E)At)} 4.2)

r(0) = (4.1)

We use Proximal Policy Optimization (PPO) to align our model using test signals. PPO is
a reinforcement learning method particularly well-suited for large language models (LLMs).
In this setup, the environment is represented by the prompts the model receives. An action
corresponds to generating the next token relative to the previous tokens, and each new token
generated represents a new state. In our case, the training is configured such that the model has
a limited number of actions, defined by the max token parameter. We evaluate the reward at
the end of each episode, meaning after generating all tokens, by using unit test signals. We then
optimize the policy (the LLM) using PPO.

PPO optimizes the policy by minimizing the objective function. The ratio component repre-
sents the momentum of the update, which helps stabilize learning. The loss function is based on
the Trust Region Policy Optimization (TRPO) method [19], with PPO adding a clipping mech-
anism to control the updates when the advantage is positive. The advantage is a metric that
indicates how much the policy underestimated or overestimated the reward of the current pol-
icy. When the advantage is positive, the policy should be updated by at most 1 + ¢; when the
advantage is negative, the update should be penalized by at least 1 — e.
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Figure 4.1: Objective function for both negative advantages and positive advantages. [18]

4.1 Dataset Generation

Generating a diverse synthetic dataset for training Code-LLMs poses significant challenges,
particularly in balancing diversity with relevance and accuracy. Traditional methods such as in-
creasing the generation temperature often lead to a more uniform distribution of tokens, which
can result in the generation of irrelevant data. To counter this, we employed topic sampling, a
technique that involves maintaining a list of topics and subtopics from which we randomly se-
lect for each prompt. This method ensures controlled diversity and high-quality output specific
to our target domain.

In this project, we utilized the Mistral 7B instruct model installed at the LRE, which allowed
us to interact with the model through VLLM’s REST endpoints for data generation. Initially, we
prompted the model to produce a broad range of topics related to coding exercises. However,
some categories proved challenging to evaluate using simple unit tests due to their require-
ments for specific environments, such as I/O operations, databases, or front-end coding tasks.

To streamline our approach, we concentrated on Data Structures and Algorithms—a domain
commonly featured in coding interviews and suitable for evaluation through straightforward
unit tests that do not require specialized environments. We meticulously selected and catego-
rized a number of main topics within this area, then generated multiple subcategories under
each to enrich our dataset’s diversity.

Given the constraints of using a relatively smaller 7B model, we adopted a multi-prompt
strategy. This approach involves incrementally building each exercise through multiple stages,
significantly increasing the number of prompts but ensuring a high-quality dataset. This con-
trasts with approaches using larger models, such as the Mixtral-8x7B-Instruct-v0.1 for Cosmo-
pedia [3], GPT-4 and GPT-3.5 for phi 1.5 [7], and Llama 2 70B for CodeLlama [17], which typi-
cally require fewer prompts to generate comprehensive outputs.

Our dataset generation process incorporated three main attributes for each exercise: a "doc-
string” detailing the function signature with arguments and a doc-string describing the task, a
"description” providing detailed information about the exercise, and "unit tests" comprising a
test suite to assess the proposed solutions. The generation process is divided into three steps:
starting with the creation of a detailed exercise description, followed by prompting the model
to format this into a completion exercise resembling the HumanEval dataset structure, and con-
cluding with the generation of unit tests.

Ensuring consistent output formats from smaller models can be challenging. To address this,
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we instructed the model to deliver outputs in a JSON markdown box, which aids in maintain-
ing a uniform format. Additionally, we employed specific sampling strategies, such as a top p
of 0.9 and a temperature of 0.6, to consistently produce high-quality outputs. This methodolog-
ical approach allowed us to generate 90 exercises across three categories, with each category
containing ten subcategories and three exercises per subcategory, requiring over 210 prompts
in total.

4.2 Reward Model

In typical Reinforcement Learning from Human Feedback (RLHF) setups for model alignment,
the process often involves training a reward model on a dataset annotated according to human
preferences. This trained model then serves as a basis for aligning the targeted model through
proximal policy optimization on a larger scale, mimicking human evaluative patterns to guide
the model’s behavior.

However, in our specific application with code generation models, we diverge from this con-
ventional method by leveraging a unique aspect of coding—unit tests—as a direct signal for
performance evaluation. This approach eliminates the need for a traditional reward model. In-
stead, we define a straightforward reward function that quantitatively assesses the performance
of the generated code based on several criteria, each reflecting common types of errors and suc-
cesses encountered in coding tasks. This method is tailored to the intrinsic properties of coding,
where outputs are inherently more structured and measurable.

Our reward function operates on the following scale:

* Timeout: A penalty of -2.

¢ Compile-time syntax errors: A penalty of -1, penalizing code that is not syntactically
correct.

* Runtime errors: A penalty of -0.6, for code that compiles but fails during execution.

¢ Assertion errors (test failures): A penalty of -0.3, applied when the code does not pass all
provided unit tests.

¢ Passing all unit tests: A reward of +4, awarded when the code meets all specified criteria
and successfully passes every test.

By directly integrating these specific metrics into our reward function, we can precisely guide
the model’s learning process towards producing functionally correct and syntactically accu-
rate code, effectively utilizing the natural feedback mechanism inherent in programming. This
method not only simplifies the training process but also enhances its relevance and effectiveness
by directly addressing the unique challenges of code generation.

4.3 Training

For this method, the training dataset was generated using the Mistral 7B instruct model, with
a focus on data structures and algorithms, as these are extremely well-suited for test suite eval-
uation. We opted for the DeepSeeker Coder Base 1B model [8], a 1.3 billion parameter model
specifically tailored for coding completion tasks. This allows us to directly pass the function
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Table 4.1: Deepseeker-Coder-1b-base [8] performances [2]
Win Rate | humaneval-python | java | javascript | cpp
16 32.13 27.16 28.46 27.96

and doc-string as a prompt, and the model smoothly completes it to solve the exercise. Addi-
tionally, this eases the process of parsing the answer since the model is extremely consistent in
its outputs.

To enhance efficiency, we applied Low Rank Adaptation (LoRA) [10], reducing the model’s
trainable parameters to just 2.7 million. The training was conducted with a learning rate of le-5
and a batch size of 8. Although the training duration encompassed only a few epochs, it was
sufficient to reveal several noteworthy issues.

A significant initial challenge was the absence of common libraries such as math, typing,
datetime, and collections, which led to undefined errors when running the reward function. To
resolve this, we prefixed each output from the model with these libraries without incorporat-
ing them into the completion exercises, to prevent the model from defaulting to solutions that
overly rely on these libraries.

During the training, we encountered frequent indentation errors. Since correct indentation
is crucial for Python coding, these errors were particularly relevant. We also observed ini-
tial parsing errors, where the model failed to format Python code correctly within markdown
blocks. These errors diminished when we started working on a "base" model that was trained
to complete code which was extremely suited to coding completion exercise as we can find in
HumanEval. Small instruct model are still inconsistent when trying to have a desired output
format.

Another issue we encountered was timeouts. In some coding exercises, the model occasion-
ally generates infinite loops, which are undesirable for both functionality and security. Another
source of infinite loops occurs when the model generates a solution using the input function
in Python, causing the training to get stuck while waiting for input from stdin. To bypass this
problem, we used multiprocessing to simulate a timer for the running thread. Additionally, we
try to reduce the occurrence of this error by applying a heavy penalty whenever we encounter
such issues.

However, the most persistent problem we faced was related to the quality of the generated
unit tests. These tests were often misleading or incorrect, sometimes referencing undefined
functions. For example, in an exercise involving Breadth-First Search (BFS), the model assumed
the existence of a tree creation method within our context, which led to runtime failures and
unjust penalties for the model. This highlighted a potential limitation of the current model’s ca-
pacity to handle complex logical structures and the need for a larger model with more resources
for more effective execution.

For this method, we prohibited the model from generating exercises, solutions, or tests that
would require external libraries, as this would necessitate an adapted environment. However,
this restriction led to some issues, particularly in generating test suites. For example, one ex-
ercise involved finding the eigenvalues of a matrix. Since the model was not allowed to use
external libraries such as NumPy, it ended up hard-coding the answers, which we then ran
assertions on. Some of these hard-coded answers were actually incorrect. In this type of mathe-
matical exercise, allowing the use of NumPy would significantly enhance the quality of the test
suite.

Additionally, we noticed an unintended learning behavior where the model began to fre-
quently implement the completion exercise with only a "pass" statement. This tactic resulted
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in only an assertion error during unit testing, leading to a lesser penalty of -0.3. This strategy
minimized the negative reward impact, indicating a need to adjust the reward structure to dis-
courage such minimalist output strategies and promote more comprehensive coding solutions.

4.4 Results

The training results did not show signs of learning. As seen in the average reward plot, the
reward is not increasing but instead stabilizing around -0.3, which corresponds to the penalty
we assigned for assertion errors. This indicates that the model is generating syntactically correct
code without triggering runtime errors, but it is only encountering assertion errors during unit
tests.

One potential solution to this issue would be to implement a more complex reward scheme.
In this experiment, we treated the unit test score as a binary outcome: either the model passes all
tests and receives the highest reward, or it receives a -0.3 penalty. We might need to introduce
intermediate rewards based on the number of tests passed.

We also observed some high variation spikes in the rewards. We believe this is due to the
high complexity variation in the coding exercises. When an exercise is easy, the unit tests are
also relatively easy to pass, which is significant since we noticed that some exercises contained
incorrect unit tests. Addressing these issues could lead to more consistent and meaningful
training results.
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Figure 4.3: The mean reward does not
show a consistent increase, indicating that
the current PPO setup may not be maxi-
mizing expected rewards efficiently.

Figure 4.2: The observed high variance in
rewards may be attributed to the varying
difficulty levels of coding exercises.

4.5 Limitations

Throughout the training process, we encountered several challenges and unexpected behaviors
that underscored the limitations of our current approach. One significant hurdle is the necessity
for highly precise and accurate synthetic data. Without this level of precision, the utility of the
data for effective training is greatly compromised.

The main issue we faced was the quality of unit tests. Incorrect unit tests can completely
halt the model’s training, as it would be directly penalized by assertion errors. To improve
this method, we need to enhance the quality of the tests. One approach could be to use larger
models, such as OpenAl’s API, to generate high-quality test suites. Another solution would be
to fine-tune smaller, capable models such as the DeepSeeker Code 7B model [8] specifically for
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the task of test suite generation. This would allow us to generate these tests locally in a scalable
manner.

Another issue pertains to the use of unit tests for model alignment. While unit tests can ef-
fectively ensure the functionality of the implemented functions, they primarily align the model
with performance objectives. However, they offer little to no insight into crucial aspects such
as security and ethics. Previous studies have shown that Code-LLMs can generate functionally
correct code that contains vulnerabilities even from benign prompts [21], highlighting a gap in
the alignment process.

Moreover, unit tests are limited in their scope of evaluation, typically suited only for specific
coding domains. Many important areas, such as web development, low-level hardware coding,
and machine learning, present unique challenges that are difficult to assess through standard
unit testing alone. Even simple I/O exercise would require to have an environment with pre-
existing files and generating test suites while using the environment context for accurate testing.

Lastly, the use of reinforcement learning itself introduces instability, which can lead to sig-
nificant deviations from the initial model characteristics. This instability can undermine the
consistency and reliability of the training outcomes. However, alternatives such as Direct Pref-
erence Optimization [16] have been suggested as potential solutions to address these issues,
offering a more stable approach to model alignment that may better accommodate the broader
complexities of code generation.



Chapter 5

Iterative Adversarial Direct
Preference Optimization

As highlighted in the previous chapter, while Proximal Policy Optimization (PPO) offers a dy-
namic approach to model training, it is not without complexities and instabilities. An effective
alternative to address these challenges is Direct Preference Optimization (DPO), which signifi-
cantly simplifies the process by reducing the reliance on a traditional reward model.

Unlike PPO, which necessitates a separate reward model to drive reinforcement learning,
DPO integrates the concept of preference directly into the training process. The model itself
acts as both the evaluator and the entity being optimized, streamlining the alignment mecha-
nism. DPO operates by using a dataset that includes prompts alongside paired responses: a
preferred response and a rejected one. This setup converts the optimization challenge into a
straightforward binary classification task, where the model learns to distinguish between desir-
able and undesirable outputs based on direct comparisons. Over time, this process guides the
model to produce outputs that closely align with the preferred responses, refining its output
distribution effectively.

. _ 7o (Yu | ) 7oy | )

As mentioned previously, our reinforcement learning problem is transformed into a super-
vised learning scenario with binary classes. In equation 5.1, we have two terms inside our
sigmoid function. The left term represents the probability of the model generating the pre-
ferred output, while the right term corresponds to the probability of the model generating the
rejected output. When optimizing our model to minimize this function, we aim to maximize
the left term while simultaneously minimizing the right term. This approach drives our model
to converge towards the preferred distribution while diverging from the initial distribution,
particularly in the context of IADPO.

This chapter will delve into the intricacies of implementing Iterative Adversarial Direct Pref-
erence Optimization, exploring how this method not only addresses the limitations of PPO but
also enhances the overall efficiency and stability of training Code-LLMs. We will discuss the
specific adaptations made to employ DPO in an adversarial framework, which further refines
the model’s ability to generate high-quality, aligned code outputs.
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Figure 5.1: PPO RLHF VS DPO [16]

5.1 Adversarial Game

The objective of Iterative Adversarial Direct Preference Optimization (IADPO) is to infuse ad-
versarial dynamics into the established Direct Preference Optimization (DPO) algorithm. This
is achieved by orchestrating an adversarial game between two models: an Oracle and a Stu-
dent. The Oracle, being a larger and more proficient model in the domain of coding, is tasked
with generating coding exercises (prompts) and providing solutions that are assumed to align
with expert human standards. These solutions are labeled as "chosen" answers. Conversely, the
Student, which is a smaller model, attempts to solve the same exercises, and its solutions are
labeled as "rejected" due to their presumed lesser alignment with expert preferences.

Our DPO setup involves a dataset with three key columns: the prompt (coding exercise),
chosen (the Oracle’s solution), and rejected (the Student’s solution). This structured format
facilitates the execution of DPO training iterations. To introduce adversariality, we conduct
multiple rounds of these training iterations. At the end of each iteration, we calculate the loss
for each training sample, which enables us to determine the rewards for each. A critical metric
in this setup is the margin reward, which quantifies the difference between the rewards of the
chosen and rejected answers. A higher margin indicates that the model is effectively converging
towards the chosen solutions and diverging from the rejected ones.

Subsequently, we apply the softmax function to convert these margin rewards into a proba-
bility distribution, where exercises with lower margins are assigned higher probabilities. This
probabilistic approach allows us to selectively sample a diverse array of exercises that the Stu-
dent model found challenging. To ensure the retention of topic diversity across the exercises,
this sampling process is applied to the entire batch as a whole rather than to individual samples.
This batch-level operation helps maintain a diversified range of topics and challenges across the
dataset.

The final step involves using these selectively sampled exercises to generate new prompts that
target the identified weaknesses of the Student model. This cyclical process not only enhances
the Student’s performance over iterations but also ensures that the training dynamically adapts
to the evolving capabilities of the model, maintaining a robust and diverse set of challenges.

5.2 Dataset Generation

The dataset generation process for our Iterative Adversarial Direct Preference Optimization
(IADPO) was significantly enhanced by the resources available through our participation in the
Mistral Al hackathon. We had access to a Groq API key, enabling us to utilize extremely fast
inference endpoints for large models such as Mixtral 8x7B [11] and Llama 3 70B [1].
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5.2.1 Choosing the Oracle Model

After evaluating both models on coding exercise generation tasks, we selected the Llama 3 70B
as our Oracle model. This decision was based on its superior performance on standard cod-
ing benchmarks like HumanEval, indicating a higher quality of coding exercises and solutions
generated by this model.

5.2.2 Implementing the Data Generation Pipeline

We utilized LangChain to implement a straightforward data generation pipeline. The high pro-
ficiency of the Llama 3 70B allowed us to generate coding exercises and the Oracle’s solutions
using just a single prompt. We ensured that the model output respected a JSON format with
specific attributes by using function calling. This streamlined the process, making it more effi-
cient and reducing the complexity typically associated with multi-layer prompt generation.

5.2.3 Enhancing Diversity through Profession-Based Prompts

To further enhance the diversity of the coding exercises, we introduced an innovative ele-
ment to our data generation—profession-based prompts. By incorporating professions into the
prompts, such as generating coding tasks specifically tailored for an astronaut with an array-
focused problem, we were able to not only maintain the functionality and algorithmic rigor of
the exercises but also vary the context and application of the coding tasks. This was achieved
by sampling from a handcrafted list of professions, adding a unique and practical twist to each
exercise.

5.24 Generating Student Responses

For the student model, we selected the Mistral 7B instruct. Using a HuggingFace text generation
pipeline, we passed the Oracle-generated prompts to this model and extracted solutions, which
were then labeled as ‘rejected” in our dataset. This setup completed the initial dataset required
for the first iteration of IADPO.

5.2.5 Iterative Enhancement and Adversarial Exercises

Following each iteration, and unless it was the final one, we enriched the dataset with new,
adversarially generated exercises. This was done by identifying exercises with low margin
rewards from the previous rounds and using them as references for the Oracle to generate addi-
tional content. By continuously integrating these new samples into our dataset, we effectively
increased its robustness and relevance for subsequent training iterations, ensuring that the Stu-
dent model progressively improved and adapted to more challenging coding scenarios thus
inducing an implicit curriculum learning [20].

This iterative and dynamic approach to dataset generation not only optimized the training
process but also ensured that our models were exposed to a wide array of coding problems,
reflecting real-world diversity and complexity.

5.3 Training Setup

Our project benefited significantly from access to robust computational resources, including an
NVIDIA H100 GPU, which provided considerable flexibility in our training setup. We utilized
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the HuggingFace Transformers Reinforcement Learning (TRL) library to implement our adap-
tation of Direct Preference Optimization (DPO), ensuring an efficient integration of the latest Al
training methodologies.

As discussed earlier in the report, we employed strategies such as Low Rank Adaptation
(LoRA), gradient accumulation, and quantization to optimize memory usage and accelerate
the training process. These methods were crucial in managing the computational demands,
particularly given the iterative nature of our DPO implementation.

In our DPO setup, we faced a decision regarding the use of adapters across multiple training
iterations: creating a new adapter for each iteration and merging it into the base model at the
end of that iteration, or using a single adapter throughout all iterations and merging it only after
the final iteration. We opted for the latter approach as it presented a simpler and more manage-
able method under our current constraints. This choice was supported by the capabilities of the
H100, which allowed us to train with a batch size of 4 using the Adam optimizer with cosine
decay. The learning rate was set at 5e-5, and a bfl6 quantization to further enhance training
efficiency. A beta parameter of 0.1 was used to stabilize the training dynamics. We trained our
model on a maximum of 15 iterations.

5.4 Results

Following the training phase, we conducted performance evaluations using the BigCode code
generation LM harness [2] as our benchmark framework, which facilitated efficient testing on
the HumanEval benchmark. After two iterations of training with the Mistral 7B model, we
observed a modest but promising 2% improvement in performance on HumanEval.

However, during the more extended training sessions with the Student model, we encoun-
tered an issue with the tokenizer, which resulted in the generation of numerous random char-
acters. The cause of this problem remains unclear.

Despite this setback, the training logs indicate a clear increase in the reward margin, demon-
strating that our model is effectively learning and converging towards the desired distribution.
This suggests that the core training objectives are being met, even as we continue to address the
tokenizer issue.
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Figure 5.2: Chosen rewards during our
training, the higher the reward the more
our model converge to the chosen distribu-
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Figure 5.3: Rejected rewards during our
training, the lower the reward the more
our model is diverging from the rejected
distribution

The interesting metric is actually the difference between these two rewards. It’s called the
margin reward, which represents how much our model is actually aligning with our preference

data.
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train/rewards/margins

Figure 5.4: The margin being the difference between the chosen and rejected rewards, an in-
creasing margin means we are converging toward our chosen distribution while diverging from
the rejected one

5.5 Limitations

The effectiveness of our Iterative Adversarial Direct Preference Optimization (IADPO) approach
faces several inherent limitations. One key limitation is that the alignment of the Student model
is heavily reliant on the Oracle’s alignment. While we can tweak this to some extent through
prompt engineering, the effectiveness of these adjustments diminishes as the Oracle model size
decreases.

Additionally, the current setup treats the Oracle as a static monolith that does not evolve
or improve through the adversarial game. This static nature contrasts with our initial vision of
creating an asymmetrical game where both policies—the Oracle and the Student—continuously
improve with each iteration.

Another significant challenge encountered was the tokenization issue observed during ex-
tended training sessions, where the model began generating random characters. The root cause
of this problem remains unidentified, adding an element of unpredictability to the training pro-
cess.

Furthermore, our dataset management practices have room for improvement. Currently, we
do not perform decontamination to ensure that our training data does not include benchmark
samples. This oversight could potentially skew our model’s learning in unintended ways. Ad-
ditionally, the absence of a deduplication step means that despite efforts to enhance diversity,
our dataset might still contain duplicate samples, which could limit the effectiveness of the
training process and the model’s ability to generalize from the training data.

5.6 Mistral Hackathon

I have had the privilege of participating in the Mistral Hackathon, where I was given exten-
sive resources to develop my research idea. Within a span of just 24 hours, my team and I
successfully developed an Iterative Adversarial DPO pipeline. This innovative system not only
generates datasets and trains models but also iterates this process autonomously. Our approach
demonstrated promising training outcomes, propelling us into the top four finalists among over
50 competing teams.



Chapter 6

Discussion

In this report, we explored two innovative methods aimed at enhancing the alignment of code-
LLMs through the use of synthetic datasets and asymmetrical games, concepts inspired by ad-
vancements in the field of robotics. Both methods—Proximal Policy Optimization (PPO) and
Iterative Adversarial Direct Preference Optimization (IADPO)—offer unique advantages and
present distinct limitations.

While we did not fully achieve the anticipated outcomes, the groundwork laid by these initial
prototypes provides a promising basis for further development. The availability of advanced
GPUs at Jean Zay will facilitate more extensive testing and experimentation, allowing us to
refine these approaches.

For the PPO method, there is potential to continue development with larger models, which
could help ensure a more stable and reliable dataset. A similar opportunity exists for the IADPO
method, where further iterations and enhancements could significantly improve its effective-
ness.

A critical factor that could enhance both methods is the improvement of our dataset gen-
eration techniques. By increasing the quality and quantity of data, and incorporating steps
we initially overlooked—such as deduplication—we can enhance the training outcomes across
both methodologies. Furthermore, our exploration can extend to various training setups, ad-
justments in hyperparameters, and the employment of different model architectures.

Currently, our research has primarily focused on the functionality of the code generated by
these models. However, true alignment with human preferences encompasses not only func-
tionality but also performance and security. These dimensions have not yet been fully explored
and represent vital areas for future research, potentially leading to more holistic and robust
model alignment.



Chapter 7

Conclusion

In this report, we investigated scalable methods to align code-generating large language models
(Code-LLMs) with human preferences, addressing the challenge through innovative memory-
efficient training techniques such as low rank adaptation, quantization, and gradient accumu-
lation.

We implemented and assessed two primary methods. The first method utilized unit tests as
a reward function in a proximal policy optimization framework. Despite its potential, we en-
countered several challenges, such as issues with incorrect indentation leading to syntax errors
and the model strategically generating "pass” statements to minimize penalties associated with
assertion errors. These findings suggest that refining the reward system to more effectively pe-
nalize non-substantive responses could enhance model training. Additionally, inconsistencies
and inaccuracies in the unit tests themselves sometimes led to unfair penalties, pointing to a
need for better test validation processes.

The second method we explored was direct preference optimization, which showed that the
quality of the dataset has a profound impact on performance. Challenges such as unresolved
tokenizer errors highlighted areas requiring further investigation.

Looking forward, improving the dataset quality appears to be paramount for both methods.
Enhancements in data generation and preprocessing could dramatically increase the effective-
ness of the training process. As we refine these models, several unexplored avenues remain. For
instance, the integration of performance and security metrics into the alignment process could
provide a more holistic approach to model training. Additionally, the potential to apply these
techniques in other domains of Al, beyond code generation, suggests a broad applicability of
our findings.

These explorations also raise new questions about the scalability of such methods in different
contexts and the adaptability of the models to other complex tasks. As we advance, it will be
crucial to address these broader implications, paving the way for more robust and versatile Al
systems.
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