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Abstract

The representation of human brain MRI images through generative models
has emerged as a pivotal area of research in medical imaging and computational
neuroscience. This study explores the application of generative models to cap-
ture and synthesize high-fidelity representations of brain MRI images. Aligned
with pre-trained foundation models, our research leverages inherent patterns
in diverse brain modalities for efficient representation. We evaluate the perfor-
mance of these models through a series of qualitative and quantitative metrics,
demonstrating their capability to generate realistic and anatomically coherent
brain images. Furthermore, we investigate the potential of these models in data
augmentation and compression. Our hypothesis asserts that representing such
data not only reduces storage needs but also enables subsequent applications,
leveraging generative models for image generation and diagnostic analysis.
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1 Introduction

Medical imaging plays a crucial role in modern healthcare, providing invaluable
insights into human anatomy and pathology. Magnetic Resonance Imaging (MRI)
stands out for its ability to produce high-resolution images of soft tissues. However,
the increasing volume of MRI data presents significant challenges in terms of storage,
transmission, and analysis.

Recent advancements in deep learning and computer vision have opened new
avenues for addressing these challenges. Generative models, in particular, have shown
promising results in various image processing tasks. This study aims to explore the
application of generative models for representing and augmenting human brain MRI
images, with a focus on developing efficient compression techniques and creating
realistic data augmentation methods through interpolation.

Traditional compression methods often struggle to maintain the delicate balance
between compression ratio and image fidelity, especially for complex medical images.
Our research addresses this gap by leveraging the power of generative models to
achieve high compression ratios while preserving critical anatomical details.

Simultaneously, the scarcity of large, diverse datasets in medical imaging poses a
significant challenge for developing robust machine learning models. Data augmen-
tation techniques can help mitigate this issue, but traditional methods often fail to
capture the complexity and variability of brain structures. Our study explores novel
interpolation-based augmentation techniques that can generate realistic, anatomically
consistent synthetic brain MRI images, potentially enhancing the diversity and size
of training datasets.

Our objectives include:

• Developing efficient compression techniques that preserve diagnostic quality
while reducing storage and transmission costs.

• Creating realistic data augmentation methods through latent space interpola-
tion.

• Evaluating the performance of various model architectures for image compres-
sion and reconstruction tasks using the augmented data.

We hypothesize that our approach will not only reduce storage needs but also
enable subsequent applications in image generation and diagnostic analysis. By com-
bining advanced compression techniques with innovative data augmentation methods,
we aim to contribute to the development of more efficient and accurate AI-driven tools
for medical image analysis.
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2 State of the art

Recent advancements in deep learning and computer vision have led to significant
breakthroughs in image processing, compression, and synthesis. This section explores
cutting-edge techniques in compression, data augmentation, and interpolation that
form the foundation for our work on brain MRI image representation.

2.1 Compression

Ballé et al. (2016) introduced a neural network-based image compression method
using an encoder-decoder architecture in Figure 1. The encoder processes the input
image through convolutional layers and downsampling, followed by Generalized Di-
visive Normalization (GDN), to create a latent representation. This representation is
then quantified for efficient entropy coding.

The decoder uses Inverse Generalized Divisive Normalization (IGDN) to recon-
struct the image from the quantified latent space. The entire system is trained end-
to-end to optimize rate-distortion performance, balancing file size and image quality.
Context-adaptive binary arithmetic coding (CABAC) is employed for compressing
the latent representation into the final bitstream.

Figure 1: Schematic representation of a neural network-based image compression
architecture. The system employs an encoder-decoder structure with Generalized
Divisive Normalization (GDN) to achieve efficient compression while optimizing rate-
distortion performance. [1]

Ballé et al. (2018) enhanced the previous model by adding a hierarchical structure
with a secondary neural network acting as a hyperprior in Figure 2. This network
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provides contextual information to improve decoding. The advanced model, inspired
by Variational Autoencoders, captures complex image dependencies and maintains
end-to-end differentiability, crucial for training.

Evaluations on the Kodak dataset showed this improved architecture outperforms
traditional methods like JPEG and other neural network-based algorithms, highlight-
ing the potential of learned compression techniques in advancing image compression
efficiency and quality.
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Figure 2: Enhanced image compression model featuring a hierarchical structure with
a hyperprior. This advanced architecture incorporates a secondary neural network to
provide contextual information, improving decoding efficiency and maintaining end-
to-end differentiability.[2]

2.2 Data Augmentation

Mariani et al.(2018) propose BAGAN (Balancing Generative Adversarial Net-
work), a methodology to restore balance in imbalanced image classification datasets
by generating high-quality images for minority classes. The key novelty lies in cou-
pling a generative adversarial network (GAN) with an autoencoder initialization strat-
egy in Figure 3.

The autoencoder is first trained on the entire dataset to learn an encoding of the
input images in the latent space. Then it is transferred to initialize the generator and
discriminator of the GAN.

During adversarial training, the generator takes randomly sampled class-conditional
latent vectors and generates images trying to fool the discriminator into classifying
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them as real examples of the respective class. A key aspect is the discriminator’s
output, which is a single probability distribution over all classes and the ”fake” label,
avoiding contradictory objectives present in previous methods. The experimental re-
sults demonstrate BAGAN’s superiority over state-of-the-art GANs in generating di-
verse, high-quality minority class images when trained on imbalanced datasets across
multiple metrics.
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Figure 3: BAGAN (Balancing Generative Adversarial Network) methodology for ad-
dressing class imbalance in image datasets. (a) Autoencoder training on the entire
dataset. (b) GAN initialization using transferred autoencoder knowledge. (c) Adver-
sarial training of the GAN for generating minority class samples. [3]

2.3 Interpolation

GoodFellow et al.(2018) propose ACAI, a novel approach to improve interpolation
in autoencoders using adversarial regularization. The key innovation lies in explicitly
encouraging high-quality interpolations by introducing a critic network that attempts
to predict the interpolation coefficient α used to generate interpolated points. The
autoencoder is then trained to fool this critic, effectively pushing it to generate inter-
polated points that are indistinguishable from real data reconstructions.

As it is represented in the Figure 4, in ACAI, the interpolation process works as
follows:

1. Two input data points x1 and x2 are encoded to obtain their latent representa-
tions z1 = fθ(x1) and z2 = fθ(x2).

2. An interpolated latent code is created using the coefficient α: zα = αz1 + (1−
α)z2, where α ∈ [0, 1].

3. The interpolated latent code zα is then decoded to produce an interpolated data
point x̂α = gϕ(zα).
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Figure 4: ACAI (Adversarially Constrained Autoencoder Interpolation) approach for
improving interpolation in autoencoders. The method introduces a critic network
that predicts the interpolation coefficient α, encouraging the generation of realistic
interpolated points.[4]

The crucial aspect of ACAI is the introduction of a critic network that tries to
predict the value of α used to generate x̂α. The autoencoder is then trained to fool this
critic, effectively pushing it to generate interpolated points that are indistinguishable
from real data reconstructions.

The training process involves two main components:

1. Reconstruction loss: This ensures that the autoencoder can accurately re-
construct input data.

2. Adversarial loss: This encourages the autoencoder to produce high-quality
interpolations that fool the critic.

The autoencoder is trained to generate interpolated points that the critic perceives
as having α = 0, regardless of the actual α used. This adversarial game pushes the
autoencoder to create interpolations that lie on the data manifold and are indistin-
guishable from real data reconstructions.

The use of α in this context is crucial because it allows for a continuous spectrum
of interpolations between two data points. By varying α from 0 to 1, we can generate
a sequence of interpolated points that smoothly transition from one input to another.
The adversarial training ensures that these interpolated points remain realistic and
semantically meaningful throughout the range of α values. This approach encourages
the autoencoder to learn a latent space where linear interpolations reflect smooth
transitions in the data space, yielding realistic and coherent results.

3 Dataset

The dataset employed in this study consists of 3D brain MRI images from 20
patients. Each volumetric image is meticulously segmented into 144 slices, resulting
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in a comprehensive collection of 2880 2D images. To maintain the integrity and
relevance of the dataset, we implemented a rigorous pre-processing step to exclude
any fully black images, which could skew the interpolation results. Post-filtering,
the training dataset comprises 2398 high-quality, informative images. For evaluation
purposes, the testing dataset includes a substantial set of 3776 images.

4 Contributions

Our research makes several key contributions to the field of medical image process-
ing and generative modeling. We present a comprehensive analysis of our proposed
methods, demonstrating their effectiveness in addressing the challenges of MRI brain
image compression and augmentation.

4.1 Methodology Overview

Our research employs a multi-faceted approach to address the challenges of MRI
brain image compression and augmentation. We explore two main architectures: Con-
volutional Neural Networks (CNNs) and generative U-Nets. For each, we investigate
various configurations to optimize performance. We then develop an interpolation-
based data augmentation method leveraging these architectures. Our evaluation en-
compasses both qualitative assessments of image quality and quantitative metrics to
measure compression efficiency and augmentation effectiveness.

4.2 Convolutional Neural Network (CNN)

To gain insights into the challenges faced by our generative U-Net architecture
without skip connections, we developed a simplified convolutional autoencoder model.
This approach allows us to pinpoint areas where the model struggles, providing valu-
able information for future improvements.

4.2.1 Architecture

We designed a minimal autoencoder with a single layer in both the encoder and
decoder. This streamlined structure facilitates easier analysis of the model’s behavior.
As it is represented in the Figure 5, This architecture uses a single convolutional layer
for encoding and a transposed convolutional layer for decoding. The ReLU activation
in the encoder promotes non-linearity, while the sigmoid function in the decoder
ensures output values between 0 and 1, suitable for image reconstruction.

We trained the model using Mean Squared Error (MSE) as the loss function,
which measures the average squared difference between the input and reconstructed
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images. This choice allows us to quantify the reconstruction quality effectively. To
investigate the model’s capacity and performance, we conducted experiments with
varying numbers of channels in the hidden layer: 8 channels, 16 channels and 32
channels

This progressive increase in channel count allows us to observe how the model’s
representational capacity affects its ability to reconstruct input images.

Figure 5: Schematic representation of the minimal autoencoder architecture employed
in our study. The model features a single convolutional layer for encoding and a
transposed convolutional layer for decoding, facilitating easier analysis of the model’s
behavior.

4.3 Generative Unet

4.3.1 Architechture

• With skip connections

Our research trajectory with the U-Net architecture took an intriguing turn,
driven by two key objectives: leveraging generative modeling techniques and
enhancing our data augmentation capabilities through interpolation. These
goals led us to a significant modification of the classic U-Net design mentionned
by O.Ronneberger et al. (2015)
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Initially, we implemented a standard U-Net with skip connections, which ex-
celled at precise image reconstruction. The skip connections, bridging the en-
coder and decoder paths, enabled the network to preserve fine-grained spatial
details, resulting in highly accurate reconstructions of input images.

• Without skip connections

However, our ambitions extended beyond mere reconstruction. We aimed to
harness the power of generative models and explore advanced data augmenta-
tion techniques. This shift in focus necessitated a rethinking of our architecture.

The critical change came with the removal of skip connections. This decision
was not made lightly, but it was essential for our purposes. Here’s why:

1. Generative Modeling: By eliminating skip connections, we forced the net-
work to compress all relevant information into the bottleneck layer - the latent
space representation. This condensed representation is crucial for generative
tasks, as it allows the model to capture the essence of the input in a compact,
manipulable form.

2. Latent Space Interpolation: Our goal of data augmentation through
interpolation justified the architectural change. Removing skip connections en-
sures that the latent representation is the sole information source for the de-
coder. This enables meaningful interpolation between latent vectors, allowing
the generation of new synthetic data points that smoothly transition between
known samples.

4.3.2 Architectural Variations

In our quest to optimize the U-Net architecture for our specific tasks, we em-
barked on a series of strategic changes. These modifications were designed to explore
the trade-offs between model capacity, computational efficiency, and reconstruction
quality. Our experiments focused on altering the channel configurations in the net-
work’s layers, providing valuable insights into the model’s behavior and capabilities.

• Expanding Channels Capacity

Our first modification targeted the network’s capacity to capture and retain
information. As it is shown in Table 4, we started with a baseline configuration
of [64, 128, 512, 1024] channels in the successive layers of the encoder (and
mirrored in the decoder). To enhance the model’s representational power, we
scaled these channels by a factor of 1.5, resulting in a new configuration of [96,
192, 384, 768].
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This expansion aimed to increase the amount of information stored in the latent
representation. By providing more channels, we hypothesized that the network
could capture finer details and more complex features of the input images. This
modification is particularly relevant in the context of our generative modeling
goals, as a richer latent space could potentially lead to more nuanced and diverse
outputs.

• Streamlining the Network

In contrast to the expansion approach, our second modification aimed to sim-
plify the network architecture. We reduced the number of layers from four to
two, retaining only the [64, 128] channel configuration in Table 4. This pruning
of the network was motivated by several factors:

1. Efficiency: A shallower network requires less computation and memory,
potentially allowing for faster training and inference.

2. Resolution preservation: Fewer downsampling operations might help main-
tain spatial resolution in the output.

However, an important modification in this approach was setting the stride to
1 (stride was set to 2 in the other configurations). This change significantly
slowed down the training of the model. Consequently, this approach proved to
be less interesting from a practical standpoint, as the potential benefits of the
simplified architecture were outweighed by the substantial increase in training
time.

4.4 Data Augmentation

4.4.1 Interpolation Method

Building upon our research into generative models for data augmentation, we
developed an interpolation method for MRI brain images. This approach was heavily
inspired by the work of Goodfellow et al. (2018), which provided valuable insights
into the challenges and opportunities of interpolation in latent spaces.

Our interpolation strategy leverages both CNN and generative U-Net architec-
tures to create a smooth continuum of synthetic samples between existing MRI brain
images. The key to this process is the manipulation of the latent space representations
learned by these models.

The interpolation process can be described as follows:

1. Encoding: Two input MRI brain images x1 and x2 are encoded into their re-
spective latent space representations z1 and z2 using the model.
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2. Interpolation: We generate new latent vectors by interpolating between z1 and
z2 using the formula:

zinterpolated = αz1 + (1− α)z2

where α is a mixing coefficient ranging from 0 to 1.

3. Decoding: The interpolated latent vector zinterpolated is then passed through
the decoder to generate a new, synthetic MRI brain image.

The parameter α plays a crucial role in this process. As α varies from 0 to 1, it
controls the balance between the features of the two original images in the generated
sample.

• Interpolation Between n Images

To interpolate between n images, we can extend the binary interpolation formula
to a weighted sum of n latent vectors. Here’s the equation for interpolating
between n images:

zinterpolated =
n∑

i=1

αizi

Where:

– zinterpolated is the resulting interpolated latent vector

– zi represents the latent vector of the i-th image

– αi is the weight coefficient for the i-th image

– n is the total number of images being interpolated

With the constraint:

αi ≥ 0 ∀i,
n∑

i=1

αi = 1

This constraint ensures that the weights sum to 1 and are non-negative, main-
taining the interpolation property.
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In this formulation:

– When a particular αi = 1 and all others are 0, the output will be equivalent
to the i− th input image.

– By varying the αi values, we can create a mix of features from all n images
in different proportions.

– The space of possible interpolations becomes an (n−1)−dimensional sim-
plex, allowing for more complex and diverse synthetic samples compared
to the linear interpolation between just two images.

4.4.2 Advantages of this Method

Our approach differs from naive pixel-space interpolation, which often results in
unrealistic or blurry outputs. By operating in the latent space, we leverage the se-
mantic understanding captured by our generative models to produce more meaningful
and realistic interpolations.

It’s important to note that this interpolation in latent space is not simply a linear
blending of pixel values. Instead, it aims to traverse the underlying manifold of brain
MRI data, creating realistic intermediate states that maintain the structural integrity
and characteristics of genuine brain images.

We experimented with various values of α to generate a diverse range of synthetic
samples. This allowed us to significantly augment our dataset with new, plausible
MRI brain images that exhibit a smooth transition between existing samples.

This interpolation-based data augmentation technique has shown promising re-
sults in expanding our MRI brain image dataset, potentially improving the robustness
and generalization capabilities of models trained on this augmented data.

4.5 Benchmark

To evaluate our approach and understand the impact of architectural choices
on our goals of data augmentation and compression using generative models, we
conducted a series of experiments with different model configurations. Our benchmark
analysis includes both qualitative and quantitative assessments of the CNN and U-Net
architectures.

4.5.1 Qualitative Results

• Convolutional Neural Network Analysis

To gain a clear understanding of the challenges faced by more complex models,
we leveraged a basic convolutional autoencoder as a preliminary investigation.
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This strategic approach yielded valuable insights, successfully pinpointing areas
for future model improvement.

Figure 6: Visual comparison of reconstruction quality for three CNN configurations
(8, 16, and 32 channels). The images demonstrate subtle improvements in detail
preservation as the number of channels increases.

In Figure 6, the visual analysis of reconstruction quality across three CNN
configurations (8, 16, and 32 channels) revealed that increasing the number
of channels led to subtle but noticeable improvements in the preservation of
detailed features.

The error visualizations Figure 7 in both 2D and 3D provide additional insights:

– Lower channel counts (8) resulted in larger, more distributed errors across
the image.

– As channel count increased (16, 32), errors became more localized and
decreased in magnitude.

– Border regions consistently showed higher error rates across all configura-
tions, indicating a persistent challenge in accurately reconstructing these
areas.
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Figure 7: Topographic error visualization for CNN reconstructions with 8, 16, and 32
channels. The plots illustrate the spatial distribution of reconstruction errors across
different model configurations.

These findings suggest that while increasing model capacity through additional
channels generally improves reconstruction quality, certain aspects of the image
(particularly borders) remain challenging. This insight guided our approach to
more complex architectures.

• U-Net Architecture Analysis

Building on the insights from our CNN experiments, we explored various U-Net
configurations to address our specific goals of data augmentation and generative
modeling.

Initially, we implemented a standard U-Net with skip connections, which ex-
celled at precise image reconstruction. To better suit our objectives, we removed
the skip connections from the U-Net architecture. This crucial modification
forced the network to compress all relevant information into the bottleneck
layer, creating a latent space representation ideal for generative tasks and in-
terpolation.

In the Figure 8, there’s the modified U-Net, devoid of skip connections, ex-
hibited results that were not as good as those achieved with the original skip
connections. However, these results are still promising. Despite a slight de-
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crease in pixel-perfect accuracy, the model showed an improved ability to cap-
ture higher-level features and relationships within the input images, opening up
new possibilities aligned with our research goals.

Figure 8: Comparison of brain MRI reconstructions using different U-Net configura-
tions. From left to right: original image, reconstructions using baseline U-Net ([64,
128, 256, 512] channels), and reconstruction using expanded U-Net (channels multi-
plied by 1.5).

Regarding the two UNet optimizations, we chose not to train the ’Streamlined
Network’ due to its slow training speed. Instead, our focus was on evaluat-
ing the results of the version with ’Expanded Channels Capacity’. The image
presents a comparative analysis of brain section reconstructions using different
versions of the UNet model. The first column features the original brain section
images, showcasing intricate textures and fine details of the brain’s structure.
In the second column, the images are reconstructed using UNet V1 with channel
configurations of [64, 128, 256, 512].

These reconstructed images, while maintaining the overall structure, appear
smoother and exhibit a slight loss of fine details, indicating a trade-off between
noise reduction and detail preservation. The third column displays reconstruc-
tions using an enhanced UNet V2 model, where the number of channels is
increased by a factor of 1.5.
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This version produces even smoother images with further reduction in fine de-
tail, emphasizing broader structural elements at the cost of finer textures. This
comparative visualization underscores the impact of channel configurations on
image reconstruction quality, demonstrating how increasing the channels in
UNet models can smooth out images but may also lead to a loss of detailed
information.

Figure 9: Error distribution comparison between U-Net V1 and U-Net V2 (Channels
x1.5). The 3D error plots highlight specific areas where each model performs well or
encounters difficulties in image reconstruction.

The comparison between the error distributions of UNet V1 and UNet V2 in
the Figure 9 demonstrates the impact of model complexity on reconstruction
accuracy. While UNet V1 exhibits higher error peaks, reflecting its limitations
in detail preservation, UNet V2 with increased channels shows improved per-
formance with lower error values. This indicates that augmenting the model’s
capacity by increasing the number of channels enhances its ability to produce
more accurate reconstructions, effectively reducing the overall reconstruction
error. The 3D error plots provide a clear visualization of these differences, high-
lighting specific areas where each model performs well or encounters difficulties.
This comparative analysis underscores the importance of model configuration in
achieving high-quality image reconstructions in medical imaging applications.
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• Interpolation Analysis

Our interpolation experiments produced visually convincing results in generat-
ing synthetic brain images. Figure 10 presents a benchmark comparison of our
method against other approaches. The image shows five brain MRI scans. The
leftmost image, labeled ”Image 1”, and the second image, labeled ”Image 2”,
represent the two original brain scans used in the interpolation process. and
the others are the generated images.

Figure 10: Comparative analysis of brain MRI interpolation results. From left to
right: two source images (Image 1 and Image 2), followed by three interpolated
images generated by our method using CNN configurations with 8, 16, and 32 channels
respectively.

Our method demonstrates the ability to generate a new, plausible brain image
that effectively combines features from both source images. The synthetic im-
ages maintain the overall structure and characteristics of brain MRI scans, with
key anatomical features remaining discernible. This visual coherence suggests
that our interpolation approach successfully captures and blends the essential
features of brain anatomy. Such capabilities have potential applications in med-
ical imaging, including data augmentation for machine learning models and the
creation of diverse synthetic datasets for research purposes.

16



4.5.2 Quantitative Results

To evaluate our work, we have chosen the following metrics:

– Peak Signal-to-Noise Ratio (PSNR) measures signal fidelity by comparing signal
strength to noise interference. Higher values indicate better quality.

– Mean Squared Error (MSE) Average quantifies average squared differences be-
tween estimated and actual values. Lower MSE signifies better quality.

– Structural Similarity Index (SSIM): Measures image similarity in luminance,
contrast, and structure. Higher SSIM values indicate better quality.

– Novelty Score evaluates the novelty or uniqueness of generated images compared
to a reference dataset.

– Learned Perceptual Image Patch Similarity (LPIPS) measures perceptual sim-
ilarity between images based on learned features.

4.5.2.1 Compression

In the context of medical image compression, particularly for MRI brain images, it
is crucial to carefully consider our evaluation criteria to ensure both efficient compres-
sion and high-quality reconstruction. Efficient compression allows for the reduction
of storage and transmission costs, while high-quality reconstruction ensures that the
diagnostic value of the images is preserved. This section focuses on metrics most rel-
evant to our generative model-based compression method and evaluates various CNN
and UNet configurations.

We conducted a thorough benchmarking of different CNN configurations employ-
ing 8, 16, and 32 channels

CNN 8 channels CNN 16 channels CNN 32 channels
PSNR 9.180-48.161 8.556-47.426 8.516-48.570

Table 1: (Reconstruction performance comparison for various CNN configurations):
”Comparison of Peak Signal-to-Noise Ratio (PSNR) ranges for CNN models with
varying channel configurations. Higher PSNR values indicate better reconstruction
quality.”

The evaluation of these CNN configurations provides valuable insights into their
performance in compressing and reconstructing MRI brain images. The PSNR values
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exhibit significant variability across the configurations, indicating varying levels of
reconstruction quality. Despite similarities in the upper ranges, increasing the number
of channels does not uniformly improve the maximum PSNR, highlighting the nuanced
impact of channel configuration on performance.

Unet V1 Unet V2 (x1.5)
PSNR 0.572–25.668 6.863–27.583
MSE 0.047 0.027
SSIM 0.038 0.044

Table 2: (Reconstruction performance comparison for various generative UNet con-
figurations without skip connections): ”Performance metrics for different U-Net con-
figurations without skip connections.”

For generative UNet architectures, we further examined their reconstruction per-
formance using metrics including PSNR, Mean Squared Error (MSE), and Structural
Similarity Index (SSIM). These metrics are critical for assessing both the accuracy
and perceptual quality of the reconstructed images.

These results highlight the significant impact of loss function and architectural
modifications on the performance of UNet models in image reconstruction tasks. The
UNet configuration with a 1.5 scaling factor demonstrates superior PSNR and SSIM
scores, underscoring its effectiveness in preserving image fidelity compared to other
configurations.

These findings highlight the importance of careful model selection and parameter
tuning in generative image reconstruction tasks, where balancing between different
quality metrics is crucial depending on the specific application requirements.

4.5.2.2 Data Augmentation

In the context of medical imaging, particularly MRI brain images, data augmen-
tation through interpolation is a valuable technique. It is crucial to carefully consider
our evaluation criteria to ensure that the generated images are both efficient and effec-
tive. This approach can bring significant benefits, such as enhancing the robustness of
machine learning models and improving their generalization capabilities. However, it
is equally important to be aware of the potential limitations, such as the introduction
of noise or unrealistic variations that might impact system performance. In our case,
we focus on the application of image compression and how these interpolated images
influence the outcomes.

Our analysis of novelty and perceptual similarity scores reveals a spectrum of
generated images. Some closely resemble the original dataset, offering subtle varia-
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Best CNN Best UNet
Novelty Score 4.46–11.0 4.17–11.72
LPIPS 0.16–0.47 0.21–0.47
PSNR 0.90 -0.39
SSIM 0.03 0.04

Table 3: (Performance results for interpolation using the best CNN, best UNet
BCE, and UNet MSE): ”Evaluation metrics for image interpolation using the best-
performing models. Novelty Score, LPIPS, PSNR, and SSIM are compared to assess
the quality and diversity of generated images.”

tions, while others introduce significant diversity. This range is beneficial for data
augmentation, but extremely novel images risk incorporating unrealistic elements.
The average scores suggest a good balance between similarity and novelty in the
augmented data.

Comparing the U-Net and CNN models, we observe that the U-Net generates
a wider range of images in terms of novelty and perceptual difference. While this
increased diversity could enhance data augmentation, it also raises concerns about the
realism of the most novel images. The U-Net’s higher minimum perceptual difference
score indicates that even its most similar images are more distinct from the originals
compared to the CNN’s output. These findings suggest that while the U-Net shows
promise in generating diverse images, further refinement may be necessary to ensure
the production of realistic and structurally accurate brain MRI images suitable for
medical applications.
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5 Conclusion

In conclusion, our study demonstrates the potential of generative models in repre-
senting and augmenting human brain MRI images. We have developed and evaluated
various architectures, including CNNs and U-Nets, for image compression and inter-
polation tasks. While our results show that these models can effectively capture the
complex features of brain MRI images, enabling efficient compression, there is still
room for optimization. We are on the right track, but further work on parameter tun-
ing and model upgrades is needed to enhance efficiency. Our interpolation method
has demonstrated the ability to generate anatomically consistent synthetic brain im-
ages, which could significantly enhance datasets for machine learning applications in
medical imaging. However, it is crucial to control the data augmentation process to
avoid physiological inconsistencies. The balance between novelty and realism in these
generated images requires careful consideration and further refinement.

5.1 Possible improvements and future directions

• Exploring more advanced architectures, such hybrid models or improve the
features on the existing ones, to further improve image quality and compression
ratios.

• Adding mechanisms to control data augmentation consistency, ensuring the
generated brain images are physiologically accurate.

• Investigating the impact of our data augmentation techniques on downstream
tasks, particularly in medical image segmentation and classification.

• Expanding the dataset to include a wider range of pathologies and patient
demographics to improve model generalization.
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7 Appendix

U-Net Configuration
A B C

5 weight layers 5 weight layers 3 weight layers
input

conv3-64 conv3-96 conv3-64
conv3-64 conv3-96 conv3-64

maxpool
conv3-128 conv3-192 conv3-128
conv3-128 conv3-192 conv3-128

maxpool
conv3-256 conv3-384
conv3-256 conv3-384

maxpool
conv3-512 conv3-768
conv3-512 conv3-768

maxpool
conv3-1024 conv3-1537
conv3-1024 conv3-1537

up-conv2
conv3-1024 conv3-1537
conv3-512 conv3-768

up-conv2
conv3-512 conv3-768
conv3-256 conv3-384

up-conv2
conv3-256 conv3-384 conv3-256
conv3-128 conv3-192 conv3-128

up-conv2
conv3-128 conv3-192 conv3-128
conv3-64 conv3-96 conv3-64
conv1-64 conv1-96 conv1-64

output

Table 4: Detailed architectural specifications for three U-Net configurations (A, B,
and C). The table outlines the number of weight layers, convolutional filters, and
channel dimensions for each configuration, highlighting the structural differences be-
tween the models.
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