
Search for duplication and cloned codes

Lucas Collemare

08/07/2024

1

Sommaire

1 Abstract 3

2 Introduction 3
2.1 Context . 3
2.2 Goals . 3
2.3 Methodology . 3

3 Tools 4
3.1 Chroma . 4
3.2 Streamlit . 4

4 Code Cloned Types 5
4.1 Type 1: Identical Similarity . 5
4.2 Type 2: Lexical Similarity . 5
4.3 Type 3: Syntaxical Similarity . 5
4.4 Type 4: Semantic Similarity . 5

5 Similarity Calculation Methods 6
5.1 Chroma . 6

5.1.1 Fill The Database . 6
5.1.2 Get the Right Chunk in the Database 6
5.1.3 Analyse the Results Chunks . 6
5.1.4 Compare Results . 6

5.2 Other Algoritmh . 7
5.2.1 Minhash . 7
5.2.2 Simhash . 8
5.2.3 Partial Conclusion . 8

6 Accuracy 9
6.1 BCB . 9
6.2 LLM Based . 10

7 Prompts 11
7.1 Chain of thought . 11
7.2 RISEN . 12

7.2.1 R - Role . 12
7.2.2 I - Instructions . 12
7.2.3 S - Steps . 12
7.2.4 E - End goal . 12
7.2.5 N - Narrowing . 12

8 LLMs Post analysis 13
8.1 Clone Type Identification . 13
8.2 Similarities Analysis . 14

9 Final Application 15
9.1 Search Your Code Menu . 15
9.2 Compare Files Menu . 16
9.3 Compare Folders Menu . 16

10 Conclusion 17

11 Acknowledgments 17

12 Références 18

2

1 Abstract

Code deduplication is a major problem that
faces several areas of discussion. First of all,
we can think of cheating for students, or even
the theft of resources. But the subject that
will interest us here is Common Vulnerabili-
ties and Exposures (CVEs). This report de-
scribes work that was done to create a tool
capable of propagating security vulnerability
fixes. The goal here is to find, using a code du-
plication search, the actors affected by these
security flaws to warn them of a vulnerability
correction in their program. This security vul-
nerability correction will be based on a CVE.
This report mainly concerns developers, secu-
rity analysts and software architects

2 Introduction

Code duplication, commonly seen in
software development, has both ad-
vantages and disadvantages. While
it can speed up development by
reusing proven blocks of code, it can
also propagate security vulnerabili-
ties, known as Common Vulnerabil-
ities and Exposures (CVEs)1, across
various software projects. This re-
search aims to explore cloned code
detection with the specific goal of
propagating security fixes efficiently
and reliably, using advanced tools
like Chroma for embeddings and
Streamlit for visualization.

2.1 Context

Code reuse is common, especially in open-source environments, developers can uninten-
tionally introduce security vulnerabilities by copying and pasting vulnerable code. This is
risky in sectors where safety is paramount. For example, a computer science student may
copy a piece of code for a project without realizing that the source code contains vulnera-
bilities. Similarly, a developer can reuse code found in a public repository without knowing
that this code is broken or obsolete.

2.2 Goals

This study focuses on implementing a means to detect cloned codes and perform CVE
propagation. The goal is to develop an application capable of scanning a database to identify
duplications, based on known vulnerabilities. By associating the results of this detection
with CVE databases, it is possible to alert developers to security risks and offer them
recommended fixes.

2.3 Methodology

Chroma, an artificial intelligence-based tool for analyzing and comparing code embed-
dings, will be the primary tool to detect semantic similarities that could indicate duplication.
Streamlit is used to create an interactive user interface where users can load codes, perform
comparisons and view analysis results.

In practical terms, this application could for example be used to prevent students from
cheating by checking the uniqueness of their work, or to help companies ensure that their
code does not contain vulnerable portions already identified in other projects. Through this
approach, this study contributes to securing software development and reducing the risk of
propagating security vulnerabilities through code reuse.

3

3 Tools

3.1 Chroma

Chroma is an open-source, AI-native vector database that facilitates the development of
applications using LLMs2

Chroma allows you to store not only embeddings (dense vector representations from lan-
guage models) but also their associated metadata. This feature is practical for users who
work with a lot of text or documents and who need to find precise information efficiently.
Using Chroma, users can insert documents and perform queries by transforming them into
embeddings, simplifying complex searches on large datasets.

For example, finding duplicate code can benefit from using Chroma to index and search
similar code fragments across multiple code repositories. By transforming code snippets
into embeddings and storing them in Chroma, researchers can quickly identify similarities
that could indicate instances of code duplication.

In summary, Chroma is a powerful tool, enabling efficient vector data management with
advanced search capabilities.

3.2 Streamlit

Streamlit is an open-source framework that simplifies the development of web applica-
tions for data science and artificial intelligence projects. In our context, Streamlit offers an
ideal platform to easily visualize the results of cloned code analysis3

The Streamlit user interface allows you to create interfaces where you can display information
such as in our case the code snippets suspected of being duplicated as well as their asso-
ciated metadata. This visualization capability helps communicate results effectively to users.

Additionally Streamlit allows users to change search parameters and filter results. For ex-
ample, one could use a slider to adjust the detection threshold, instantly observing how this
affects the number of duplications detected.

Streamlit acts as the front-end where results can be analyzed in detail, providing a unified
platform for examining and managing vulnerabilities related to cloned code. Its ease of use
combined with its powerful interaction capacity makes it a very good tool in our context
and to respond to our problem.

4

4 Code Cloned Types

The question here is how to define cloned code. Because indeed, if two codes do the same
thing but are not similar, can we say that they are cloned codes ? There are several types
of cloned code, each with their own characteristics, ranging from type 1 (the most similar)
to type 4 (the least similar).

4.1 Type 1: Identical Similarity

Type 1, or exact clone, involves directly copying a block of code to another location
without any modification. This type of clone is the easiest to detect because the code
segments are identical character for character.

4.2 Type 2: Lexical Similarity

Type 2 cloned code includes minor variations in the code, such as changes in variable
names, data types, or slight modifications to logical expressions. Minor changes can hide
duplication detection.

4.3 Type 3: Syntaxical Similarity

Type 3 is cloned code that introduces significant additions or deletions of code. This type
may include additional loops, conditions, or separate branches of code. This type of cloned
code can be more difficult to identify because it requires analysis that goes beyond simple
textual comparison and engages in understanding the logic of the code. It combines elements
of original and new code, requiring semantic analysis to correctly identify the nature of the
duplication.

4.4 Type 4: Semantic Similarity

Type 4, or semantic cloning, occurs when two or more code segments perform the same
function but are implemented by different means. This type is the most complex to detect
because it requires a deep understanding of what the code is supposed to do, rather than
how it is written. Semantic cloning can often go unnoticed without careful analysis and
functional testing.

5

5 Similarity Calculation Methods

5.1 Chroma

We use Chroma to exploit its advanced capabilities in processing programming languages
via embeddings. Chroma leverages the all-MiniLM-L6-v2 language model to generate dense
vector representations of code segments. This method begins by instantiating Chroma’s
default embedding feature, designed to transform text into embeddings that capture deep
semantic features of the source code.4 Here is how the process work in the final application
to search the most similar chunks to the users codes

5.1.1 Fill The Database

The goal here is to fill the database correclty. The First step is to consider that we have
in our hands a lot of C files (We treats only this langage in this work). We’ll fill this databse
by chunking all the file into chunks. These chunks represents all the functions (search with
a simple regex for the moment) of all the files that you got and that we put into the Chroma
database.

5.1.2 Get the Right Chunk in the Database

When you want to search similars chunks to your code in the database, the code you
give is chunked by his turn. When it is chunked, all the chunks of your file will be compare
to all the chunks of the database by queriering Chroma that will return the most similar
chunk (In function of the number of responses you want, if you want more than one only
return chunks, you can change it in the final application see part ’9 Final Application’)

5.1.3 Analyse the Results Chunks

For each pair of code fragments analyzed, code1 and code2, we ask all-MiniLM-L6-v2
language model to obtain their corresponding vectors. These vectors vary in length and
scale, which requires a normalization step. We calculate the Euclidean norm of each vector,
which measures its length in vector space. By dividing each vector by its norm, we obtain
normalized embeddings that all have the same unit length.

5.1.4 Compare Results

The similarity is then obtained by calculating the Gram matrix of these vectors. The
result is a value between 0 and 1, where 1 means perfect similarity and 0 means total dissim-
ilarity. To make this score more intuitive, we multiply it by 100 and round it to one decimal
place, thus producing a percentage. We then compare it to a threshold (80% in general but
you can change it in the final application, see ’9 Final Application’) and this will say if yes
or no this chunk will be a reponse of the application

6

5.2 Other Algoritmh

In addition to the Chroma embedding techniques discussed previously, other algorithms
like Minhash and Simhash are important. They offer different approaches to measuring
similarity between segments of text or code, often used because of their effectiveness in
handling large datasets.5

5.2.1 Minhash

Minhash is a probabilistic algorithm used to estimate the similarity of datasets. It is
particularly effective at identifying similarity between data sets, such as text documents
or code files, by comparing the ”shingles” (subsets) they comprise. In the context of code
duplication, Minhash involves breaking code into a collection of small chunks or tokens and
creating a ”signature” for each document using the minimum hash values produced from
those chunks.

The main advantage of Minhash lies in its ability to quickly estimate Jaccard similarity
between documents. Jaccard similarity is a statistical measure that calculates the size of
the intersection divided by the size of the union of the sample sets. By comparing these
Minhash signatures rather than the entire data set, we can effectively determine which code
segments are likely to be duplicated without a direct and exhaustive comparison of each
element in the data set. This feature makes Minhash particularly suitable for preliminary
scans in large code bases where performance and speed are critical.

Figure 1: Representation of the MinHash algorithm

7

5.2.2 Simhash

Simhash is another commonly used algorithm for near-duplicate detection. It generates
a fingerprint for each document by processing features (such as tokens or syntactic elements
in the code) into a binary hash representation. Each feature influences the final hash by
toggling certain bits, with the degree of influence weighted by the importance of the feature.
The resulting hash is a fixed-length binary string where similar documents produce similar
hash values.

The main utility of Simhash in detecting code duplication is its effectiveness in comparing
large numbers of documents. Documents are considered similar if their Simhash fingerprints
are within a certain Hamming distance from each other—the Hamming distance being the
number of positions at which the corresponding bits differ. Simhash allows for quick com-
parisons because only hash values need to be compared, rather than entire documents.

Figure 2: Representation of the SimHash algorithm

5.2.3 Partial Conclusion

These algorithms will be very effective in detecting type I or II cloned code due to their
speed in processing large data sets. However, they will have more difficulty with a semantic
resemblance between two code snippets that comes from the textual comparison of these al-
gorithms. We use them and compare them to a threshold in the same way than the Chroma
similarity calculation method we discuss just before

8

6 Accuracy

6.1 BCB

We used the BigCloneBench (BCB) dataset from CodeXGLUE 6, designed for code clone
detection via a binary classification task. This involves determining whether two Java meth-
ods are semantically equivalent (label ’1’) or not (label ’0’). However, using this dataset
presented challenges in evaluating the effectiveness of our methods and algorithms, partic-
ularly with our approach based on Chroma embeddings.

Figure 3: Example data from the Big Clone Bench dataset

The main problem encountered was the correlation between the similarity scores generated
by Chroma and the binary labels in the dataset. For example, in cases where Chroma gave
a high similarity score, such as 90%, and the corresponding label was ’true’ (equivalent to
’1’), this seemed to validate the effectiveness of the algorithm. However, there were also
many cases where despite a similarity score of 55% reported by Chroma, the label was still
’true’. These imprecise results made it difficult to draw reliable conclusions about the actual
performance of the chroma, simhash, and minhash algorithms.

Consequently, this method of evaluation using the BCB dataset was inadequate for our
research. The types of clones detected are not explicitly stated in the data, which adds
uncertainty : a similarity score of 55% may indicate less direct semantic equivalence (such
as type 3 or 4 clones), which our algorithms assume difficult to detect. Furthermore, the
lack of differences between different types of clones in BCB labels prevents us from better
understanding how our detection methods work. BCB’s solution to calculate accuracy was
therefore ruled out.

For these reasons, we decided to move towards other methods for the validation of our
code duplication detection approaches, looking for sources that offer better granularity and
more detailed information on the types of clones present in the data. This adaptation is
crucial to refine our algorithms and to guarantee a precise and meaningful evaluation of
their performance.

9

6.2 LLM Based

After attempting to use HuggingFace’s BCB dataset. The idea came to use LLMs to
create a reference answer. We then seek here to determine specific prompts to make the
most precise requests to LLMs in order to have correct and error-free responses.

We start by creating prompts for the LLM which will compare two code segments. For
example, a typical prompt might be: ”Examine the following two functions. Determine
whether or not they perform similar tasks, and indicate whether they can be considered
clones.”. In this case the prompts which were used in our case are the prompts taken from
another research document cited below:

Figure 4: Prompts tirés du document nommé en référence 7

After receiving the prompt, the LLM generates a response which will give an evaluation of
the similarity between the segments. This response is then used to create a binary label
- cloned or not cloned. This label is compared with the ground truth label, allowing for
example to calculate the F1 score.

However, this method also has its limits. The quality of LLM responses may vary depending
on the wording of prompts and the model’s ability to correctly interpret complex code
snippets.

10

7 Prompts

The interest of this section is to present prompting methods which allow LLMs to give
more precise and efficient answers. The two methods that will be presented here are the
’Chain of Thought’ or the flow of thought and finally the RISEN prompt which is a type of
advanced prompt.8

7.1 Chain of thought

The “Thought Chain” is a way of writing prompts that involves prompting the model
to generate an explanatory sequence of its reasoning steps before providing a final response.
This process mimics the way a human thinks about a problem, breaking complex tasks into
more manageable intermediate steps.

This technique can enormously transform the way LLMs respond to queries. By using struc-
tured prompts that encourage step-by-step thinking, the model can explore code features
more methodically, enabling analysis that goes beyond simple text recognition.

To detect duplication, a ”Chain of Thought” prompt might look like this:
- Examine each extract: Identify main functions, loops and conditions.
- Compare structures and logics: See if they accomplish the same tasks in the same way.
- Determine whether extracts are cloned based on their functional similarities and differences.

At each step, the model generates explanations that help understand the reasoning behind
comparing two code fragments.
This has several advantages :

1. Transparency : Each step of the reasoning is explicit, making the model’s conclusions
more understandable.

2. Reliability : By breaking down the problem, the model can handle more subtle and
complex duplication cases with greater accuracy.

We will therefore use this process to create prompts like the example above in order to refine
our query responses.

11

7.2 RISEN

The RISEN prompt is a method designed to structure and break down complex tasks
into more manageable components. It is broken down into 5 components: R for Role, I for
Instruction, S for Steps, E for End goal and N for Narrowing. Here is a detailed explanation
of each component of the RISEN prompts. (An example of a RISEN prompt will be given
a little later in the document in section ’8 - LLMs Post analysis’)

7.2.1 R - Role

This component defines the role that the user wants the LLM to adopt to accomplish
the task. This can vary depending on the needs, for example, the AI can be considered a
research assistant, a content writer, a data analyst... Clear definition of the role helps to
frame the objectives of the task at hand.

7.2.2 I - Instructions

The instructions detail the main task that the LLM is intended to perform. It is a precise
description of what the user expects in terms of response. Instructions must be clear and
direct to avoid any ambiguity during execution

7.2.3 S - Steps

This section describes the steps the LLM must follow to complete the instruction. Break-
ing it down into stages helps structure the process. Each step should be numbered and
contain concise actions.

7.2.4 E - End goal

The end goal sets the goal. It’s about defining what the user hopes to have as an answer.
The objective must be specific to effectively evaluate the success of the task.

7.2.5 N - Narrowing

The last component concerns constraints to be respected in the LLM response. For ex-
ample a length limit, or specific requirements such as in our case asking for a response with
a single unique word which will facilitate automated information retrieval.

12

8 LLMs Post analysis

The interest of this section is to explain how the LLMs could be integrated into the final
application. The integration of LLM responses to advanced prompts in our application offers
the possibility of more detailed analyses. For example, being able to directly ask what the
type of clone is or what the differences are in two extracts. This supports Chroma similarity
calculation and makes data processing even more efficient. Below are the two prompts that
were created to respond to their problem

8.1 Clone Type Identification

The following RISEN prompt was created to determine the clone type associated with two
code snippets:

- Role: Code Review Assistant
- Main Task: Analyze and report the type of clone between two provided code snippets.
- Steps to complete task:

1. Read both code snippets. Carefully examine the two pieces of code provided below.

2. Identify differences. Compare each line and identify any discrepancies between the
two snippets.

3. Provide a conclusion

- Goal: The goal is to provide a simple analysis of the type of code cloned.
- Constraints:

1. Only focus on syntactic and logical differences.

2. Ignore comments and formatting differences unless they impact the code’s function-
ality.

3. Answer ONLY by these words : (’Type I’, ’Type II’, ’Type III’, ’Type IV’) by chosing
the right one

This prompt instructs the LLM to categorize clones into types based on specific differences.
We can note a constraint in the number of words to only recover the type of the clone and
not a detailed analysis for greater clarity.

Figure 5: Example answer on the final application

13

8.2 Similarities Analysis

Consider the following RISEN prompt, created for more detailed similarity analysis between
two code snippets:

- Role: You are an AI programmed to analyze and compare software code, adept at pin-
pointing both differences and similarities in code structures.
- Main Task: Perform a detailed analysis of two provided code snippets, focusing on identi-
fying and explaining their similarities, while clearly indicating the specific locations within
the code where these similarities are found.
- Steps to complete the task:

1. Identify Common Syntax and Structure: Review both code snippets for similar syntax
and structural patterns. Clearly describe each similarity and specify the line numbers
or sections where these similarities occur.

2. Check for Similar Variable Naming: Analyze the variable naming conventions used
in both snippets. Note any similarities in variable names or naming patterns, and
indicate exactly where these are used within each snippet.

3. Assess Logic and Functionality: Look for similarities in the logic and functionality
that both snippets are designed to perform. Explain any shared logic or functional
aspects, and point out where in the code these parallels are evident.

4. Evaluate Style and Formatting: Identify any stylistic similarities, including formatting
choices, comments, and code arrangement. Discuss how these stylistic elements are
similar and highlight the specific parts of the code where these styles match.

- Goal: The goal is to provide a detailed examination of the similarities between the two code
snippets, with specific references to the parts of the code where these similarities are found.
This should include insights into syntax, structure, variable naming, logic, functionality, and
style.
- Constraints: Each identified similarity should be described in one or two sentences, with
explicit reference to the exact location in the code. Aim for a comprehensive yet concise
analysis, ensuring clarity and precision in locating each point of comparison.

The LLM must identify similarities and locate precisely where they occur in the code
which can be defined by ’LLM sourcing’. This answer does indeed provide a clearer and
more detailed analysis of why two codes are similar.

Figure 6: Example answer on the final application

14

9 Final Application

Our application, developed with Streamlit, is designed to facilitate code analysis and
duplication detection through three main functionalities: comparing two folders, comparing
two files, and searching for specific code. The functionality that interests us here is ’Search
Your Code’ because it is the one that addresses the subject of CVEs and the search for
duplication in a large database. Below are the details of each menu

9.1 Search Your Code Menu

The application’s flagship functionality, Search your code, addresses the issue of CVEs
(Common Vulnerabilities and Exposures). It allows users to upload a code file via drag
and drop, enter the number of desired results through an input field, and set a similarity
threshold via a slider. This part of the application is designed to search for matches or
similarities in a code database using Chroma’s, SimHash’s and MinHash’s similarity scores
to determine duplications.

Figure 7: Image of the application on the ”Search Your Code” menu

Figure 8: Example answer on the final application on the ”Search Your Code” menu

15

9.2 Compare Files Menu

The Compare Two Folders feature allows users to compare two entire projects. This
menu is particularly useful for analyzing and comparing projects that have similar goals but
are developed independently. The main objective here was to test the duplication detection
algorithms on smaller projects and to be able to draw a two-resemblance score between two
files. This allows us to observe how algorithms identify similarities in real-world scenarios
where entire projects could be cloned or heavily inspired by each other.

Figure 9: Image of the application on the ”Compare Files” menu

9.3 Compare Folders Menu

The Compare Two Files menu is designed for more granular analyses. This feature allows
users to specifically select two files and subject them to detailed code duplication analysis.
This menu was created to primarily test the ”chunking” process. Additionally it helps to
understand what the algorithm detects as duplication. This feature was essential to fine-
tune the accuracy of chunking and to ensure that the algorithm worked efficiently with a
good level of detail.

Figure 10: Image of the application on the ”Compare Files” menu

16

10 Conclusion

The multitude of code duplication in software development poses security challenges.
This work addressed these issues by developing a methodology to detect codes cloned from
CVEs. Using advanced tools like Chroma for embeddings and Streamlit for interactive
analysis, we have implemented an application that makes it easier to detect duplication-
sThe developed features allow users to most effectively detect code reuse. By identifying
potentially vulnerable areas of code, our application helps prevent the spread of security
vulnerabilities based on precise analysis.

In the longer term, we plan to expand our database to cover more cloned code that could
potentially be affected by CVEs. There could also be modifications and improvements to
be made in the chunking part so that better results emerge.

In summary, this report marks an important step towards safer development practices.
The web application developed here paves the way for future advancements in software
security management, ensuring that developers can not only detect but also effectively rectify
vulnerabilities in a rapidly changing development environment.

11 Acknowledgments

I express my deepest gratitude to Julien Perez and Idir Benouaret for their invaluable
guidance and support throughout my research journey. Their expertise profoundly enriched
this work, providing both technical insights and methodological rigor that were essential for
the success of this project. I am immensely thankful for their mentorship and the opportu-
nities they have offered me, which have been instrumental in my academic development.

17

12 Références

1 - Httpcs 2024 : CVEs definitions and explanations.
https://www.httpcs.com

2 - Chroma 2024 : An AI-native vector database for embedding management. Description
of how Chroma facilitates the development and implementation of LLMs in practical appli-
cations.
https://www.trychroma.com/

3 - Streamlit 2023 : The fastest way to build and share data applications. Overview and
documentation on using Streamlit for creating interactive data applications.
https://streamlit.io/

4 - Chroma Embedding Documentation 2024 : lightweight wrappers around popular embed-
ding providers
https://docs.trychroma.com/guides/embeddings

5 - Github repository that talk about text deduplication including Minhash and Simhash
algorithms.
https://github.com/ChenghaoMou/text-dedup

6 - CodeXGLUE 2023 BigCloneBench: A dataset on HuggingFace that includes code cloned
with labels thta indicates if the two code snippets are cloned or not
https://huggingface.co/big-clone-bench

7 - Capability of Large Language Models on Code Clone Detection 2023 : A survey that
talk about evaluation of LLMs for clone detection, covering different clone types, languages,
and prompts
https://arxiv.org/pdf/2308.01191

8 - prompt frameworks 2023 : Article about how to write evolved prompts
https://www.thepromptwarrior.com

9 - PyTorch 2023 PyTorch-Transformers: Library providing state-of-the-art implementations
for various transformer models, making it easy to train and use advanced NLP models in
research and industrial application projects.
https://pytorch.org/

10 - BigCode Project. 2023. The Stack v2: a multi-language source code dataset from vari-
ous open-source repositories, intended for training and evalu- ating code processing models,
hosted on Hugging Face.
https://huggingface.co/datasets/bigcode/the-stack-v2

11 - Microsoft 2023 Phi-1 5 (Hugging Face): A Specialized Natural Language Processing
Model for Coding Tasks. Designed for code generation, infilling, and code understanding
while remaining compact and efficient.
https://huggingface.co/microsoft/phi-1.5

18

https://www.httpcs.com/fr/faille-cve-common-vulnerabilities-exposures#:~:text=Le%20syst%C3%A8me%20CVE%20(Common%20Vulnerabilities,est%20attribu%C3%A9%20%C3%A0%20chaque%20faille.
https://www.trychroma.com/
https://streamlit.io/
https://docs.trychroma.com/guides/embeddings
https://github.com/ChenghaoMou/text-dedup
https://huggingface.co/datasets/google/code_x_glue_cc_clone_detection_big_clone_bench
https://arxiv.org/pdf/2308.01191
https://www.thepromptwarrior.com/p/5-prompt-frameworks-level-prompts
https://pytorch.org/
https://huggingface.co/datasets/bigcode/the-stack-v2
https://huggingface.co/microsoft/phi-1_5

	Abstract
	Introduction
	Context
	Goals
	Methodology

	Tools
	Chroma
	Streamlit

	Code Cloned Types
	Type 1: Identical Similarity
	Type 2: Lexical Similarity
	Type 3: Syntaxical Similarity
	Type 4: Semantic Similarity

	Similarity Calculation Methods
	Chroma
	Fill The Database
	Get the Right Chunk in the Database
	Analyse the Results Chunks
	Compare Results

	Other Algoritmh
	Minhash
	Simhash
	Partial Conclusion

	Accuracy
	BCB
	LLM Based

	Prompts
	Chain of thought
	RISEN
	R - Role
	I - Instructions
	S - Steps
	E - End goal
	N - Narrowing

	LLMs Post analysis
	Clone Type Identification
	Similarities Analysis

	Final Application
	Search Your Code Menu
	Compare Files Menu
	Compare Folders Menu

	Conclusion
	Acknowledgments
	Références

