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Chapter 1

Introduction

In concurrency theory, which deals with modeling and analyzing systems with parallelism,
partially ordered sets (posets) are employed to represent the executions of programs composed
of both sequential and concurrent events. While series-parallel posets have been extensively
studied due to their straightforward algebraic properties—being generated solely by serial and
parallel compositions—they fall short in representing real-world computations. This limita-
tion arises because series-parallel posets only permit decomposition by cutting through edges,
whereas practical applications often require cutting through events. To address this, a new
gluing composition extending the serial composition was introduced for posets with interfaces
(iposets). When combined with parallel composition, this defines the class of gluing-parallel
(gp) posets. However, it was observed that certain posets do not belong to this class. The
objective thus shifted towards enumerating gp-posets to gain a deeper understanding of their
algebraic properties.

The task of enumerating gp-posets proved to be challenging. Generation efforts managed to
produce all gp-posets up to a certain size, identifying numerous forbidden structures along the
way. This led to the idea of introducing a new operation to create an even larger class of posets
that would be easier to study. The non-trivial symmetry operation, together with the existing
gluing and parallel compositions, defines the class of gluing-parallel-symmetric (gps) posets.

The statement that a gps-poset does not contain any of these five forbidden substructures has
already been proven. The main challenge is to demonstrate the converse: that any poset not
containing one of these forbidden substructures is indeed a gps-poset.

In this report, we begin by defining all the necessary concepts related to posets, iposets, and
gps-posets. We then explore a potentially significant theorem and provide a detailed analysis
of the proof of this theorem. Finally, we discuss possible paths to prove the conjecture and
demonstrate the second statement.

I am grateful to Krzysztof Ziemiański (University of Warsaw, Poland) for discussions, intu-
itions and advices on the subject of this work.
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1.1 Contribution

The main contribution in this report is several paths for the proof of the conjecture. For now, the
proof remains incomplete as there are still many questions to be answered about the interme-
diate results found. The different paths are detailed starting in Chapter 4. The main idea of the
first path is to take a closer look at the interval representations of the forbidden substructures
in order to see whether we could find some nice properties and whether it would be easier to
focus on the analysis of those representations or not. The idea of the second path is to look for
a more structural approach by analyzing the obtained posets after adding a point to an already
gps-poset. The idea is to observe what creates non-gps structures.



Chapter 2

Preliminaries

In this chapter, we define notions and mathematical objects that have a significant role in the
understanding of this report. We highlight specific vocabulary, as well as the choices of poset
representation for this research. We will first define general notions about posets and how to
classify them before emphasizing an important result about the class of gps-posets. The term
poset is an acronym used to refer to partially ordered set. Most of these premiliminaries can be
found in Fahrenberg et al. (2019), Fahrenberg et al. (2022), Äikäs et al. (2022).

2.1 Posets

A poset is a set that has a specific ordering of its elements. We first recall the properties of order
relations:

Definition 2.1.0.1 (Reflexive, Symmetric, Transitive Relation). Let E be a set and R a binary rela-
tion on E.

• R is reflexive: ∀x ∈ E, xRx

• R is transitive: x, y, z ∈ E, xRy ∧ yRz =⇒ xRz

• R is antisymmetric: x, y ∈ E, xRy ∧ yRx =⇒ x = y

Definition 2.1.0.2 (Order Relation). Let E be a set. ≺ (resp. ⪯) is a partial order relation on E if it
is reflexive, anti-symmetric, transitive.

Remark 2.1.1. It exists two notations which are equivalent to write an order relation: (x, y) ∈≺ is
equivalent to x ≺ y. The last one seems more understandable when the relation is not denoted by a
comparison symbol.

Based on the given definition of an order relation, we can now define posets by using a spe-
cific order relation:

Definition 2.1.0.3 (Poset). A partially ordered set (poset) is a tuple P = (E,≺) with E a set and ≺ a
partial order relation on E.
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Figure 2.1: Example of a poset

Definition 2.1.0.4 (Minimal and Maximal points). Let P = (E,≺) be a poset. A point x of P is a
minimal (resp. maximal) point if there is no point y of P , such that y ≺ x (resp. x ≺ y). We note Pmin

(resp. Pmax) the set of all minimal (resp. maximal) points.

2.2 SP-Posets

While the general concept of posets is versatile for representing order relations, its broad scope
can sometimes pose challenges in terms of analysis and application. The wide variety of posets
makes it difficult to analyze these objects. To address these complexities and harness more
practical applications, specific subclasses of posets have been studied with more manageable
and well-defined properties. One such subclass is the series-parallel posets, or SP-posets. SP-
posets introduce an easierstructure through the operations of series and parallel compositions.

Definition 2.2.0.1 (Parallel composition). Let P = (E1, <1) and Q = (E2, <2) be two posets. The
parallel composition P ⊗Q is defined as the coproduct E1 ⊔ E2 as carrier set together with the order
defined as:

(p, i) < (q, j) ⇐⇒ i = j ∧ p <i q, i, j ∈ {1, 2}

# ⊗ # # =

# #

#

Figure 2.2: Example of a parallel composition.

Definition 2.2.0.2 (Serial composition). Let P = (E1, <1) and Q = (E2, <2) be two posets. The
serial composition P ∗ Q is defined as the coproduct E1 ⊔ E2 as carrier set together with the order
defined as:

(p, i) < (q, j) ⇐⇒ (i = j ∧ p <i q) ∨ i < j, i, j ∈ {1, 2}

# #

##

∗
# #

##

=

# #

##

# #

##

Figure 2.3: Example of a serial composition.

Remark 2.2.1. The serial composition is not commutative.
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# # ∗
# #

##

=

# #

# #

##

# #

##

∗ # # =

# #

# #

##

Figure 2.4: Example of the non-commutativity of the serial composition.

Based on the definitions of parallel and the serial compositions, we can now define the class
of series-parallel posets.

Definition 2.2.0.3 (SP-Poset). A poset P is series-parallel (an sp-poset) if it is empty or can be ob-
tained from the singleton poset # by applying a finite number of times the serial (∗) and parallel (⊗)
compositions.

Remark 2.2.2. A poset is series-parallel if and only if it does not contain a N.

Therefore the poset in Fig. 2.1 is not series-parallel whereas the poset in Fig. 2.2 is.

2.3 Iposets

With sp-posets, several issues arise. First, despite the easiness of its algebraic properties, the
class of sp-posets appear to be too restrictive for many real-world applications. The second issue
is that its algebra does not allow to split events when decomposing posets whereas it would be
desirable as it is rather intuitive to start an event in the first component that would finish in the
second component. To solve these issues, posets with interfaces (iposets) were introduced.

Definition 2.3.0.1 (Iposet). A poset with interfaces (iposet) P is a poset together with two injective
functions (s, t):

[n]
s−→ P

t←− [m], n,m ⩾ 0

such that the image s[n] is minimal and the image t[m] is maximal.

The two injections s[n] and t[m] represent the source and the target interfaces of P , respectively.
Another equivalent notation is also used: (s, P, t) : n→ m.

Remark 2.3.1. The notation SP (resp. TP ) is equivalent to sP ([n]) (resp. tP ([m])).

Remark 2.3.2. Usually iposets are also called posets as they are an extension of posets without interfaces.
When we want to specifically consider posets without interfaces, it is explicitly indicated.

With this new type of poset being defined, the definition of the serial composition can be
refined to create a new operation called gluing composition.
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Figure 2.5: Example of iposets.

Definition 2.3.0.2 (Gluing composition). The gluing composition P ▷ Q of two iposets
[n1]

s1−→ (P,<1)
t1←− [m1] and [n2]

s2−→ (Q,<2)
t2←− [m2] is defined as:

P ▷ Q =

{
(P ⊔Q)/t1(i) = s2(i)

(<1 ∪ <2 ∪ (P / t1[m])× (Q / s2[m]))+

The operation is defined if and only if m1 = n2.


#

G1

▷

H1

G1

 ▷

 #

H1

▷

#

#
 =

# G1

#

▷

H1 #

# #

=

# #

# #

#

#

Figure 2.6: Example of a gluing composition.

Definition 2.3.0.3 (Characteristic Function). Let Q : n → m and R : m → k be iposets. The
characteristicfunction of the decomposition Q ▷ R is φQ▷R : Q ▷ R→ {0, ∗, 1} defined by

φQ▷R(x) =


1 for x ∈ Q \ TQ

∗ for x ∈ TQ = SR

0 for x ∈ R \ SR

Lemma 2.3.1 (Decomposition Lemma). The characteristic function φ = φQ▷R satisfies the following:

• If (φ(x), φ(y)) = (1, 0), then x < y

• If (φ(x), φ(y)) ∈ {(1, ∗), (∗, 0), (1, 0)}, then y ≮ x

• If (φ(x), φ(y)) = (∗, ∗), then x ≮ yand y ≮ x

• If x < yand φ(y) ̸= 0, then φ(x) = 1. If x < yand φ(x) ̸= 1, then φ(y) = 0

If the decomposition P = Q ▷ R is non-trivial, then there exist x, y ∈ P such that x is minimal, y is
maximal, φ(x) = 1, and φ(y) = 0.
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2.4 GP-Iposets

Definition 2.4.0.1 (GP-iposet). An iposet is gluing-parallel (gp) if it is empty or can be obtained from
the following elements:

# H1 G 1 H1 G 1

by applying a finite number of times the gluing (▷) and parallel (⊗) compositions.

Remark 2.4.1. The gp-iposets is a bigger class which includes the sp-posets. If we want to consider
posets without interfaces then the set of gp-posets is equal to the set of sp-posets.

H1

#

#

G1

Figure 2.7: Example of a gp-iposet.

Despite the class of gp-iposets being larger than sp-posets and therefore less restrictive, many
posets still do not belong to this class. These structures are called forbidden structures. These
posets are impossible to construct or decompose based on the rules defined previously. One
major problem is then to be able to enumerate the posets from this class. In the recent years,
many research works about generating iposets have been done (see Äikäs et al. (2022)). Iposets
were generated until 16 points and many forbidden structures were found. However it is still
unknown whether other exists or not.

2.5 Forbidden Substructures

From this generation work, it has been found eleven forbidden substructures: five of them have
6 points (Fig. 2.8) and the six remaining have at least 8 points (Fig. 2.9).

#

#

#

#

#

#

#

#

#

#

#

# #

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Figure 2.8: The five forbidden substructures of 6 points for gp-posets.

By conducting an in-depth analysis of these posets, we can notice that the posets from Fig. 2.9
are not gluing-parallel because one of their substructures has its interfaces permuted as shown
in the example in Fig. 2.10.
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Figure 2.9: Additional forbidden substructures for gp-posets.

#

#

#

#

#

#

#

#

=

#

#

G1

G2

G3

G4

▷

H1

H2

H3

H4

#

#

Figure 2.10: Gluing decomposition of the 8-point forbidden substructures.

The first of the iposets on the right-hand side is gluing-parallel as it can be decomposed into
singletons using only the parallel and gluing decompositions (it is the parallel product of two
three-point iposets). However, the second iposet is not gluing-parallel. It has its interfaces
swapped and therefore it is not a parallel composition and it does not exist any working de-
composition.

This is a similar case for the other forbidden substructures of at least 8 points.
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2.6 GPS-Posets

From this result, we can be eager to define a new class of posets which would allow interface
permutation and therefore make our study of these posets easier.

Definition 2.6.0.1 (Non-trivial Symmetry Operation). Let (s, P, t) : n→ m be an iposet.
H1 G 2

H2 G 1
= (s, [2], t) : 2→ 2 defines the non-trivial symmetry on 2, with s(i) = i and t(i) = 3− i.

This operation basically permutes the labelled interfaces. The operation of symmetry together
with the parallel and the gluing compositions define the gps-iposets.

Definition 2.6.0.2 (GPS-Iposet). An iposet is gluing-parallel-symmetric (gps) if it is empty or can be
obtained from the elements:

# H1 G1 H1 G1
H1 G2

H2 G1

by applying a finite number of times the gluing (▷) and parallel (⊗) compositions.

Hence gps-iposets contain all the gp-iposets, but also, for any n, all the symmetries n → n.
It therefore becomes the largest class of posets. With this new definition, the number of known
forbidden substructures for this new class is reduced and it only remains the five forbidden
substructures of 6 points (Fig. 2.8) that are still forbidden for gps-posets.

NN =

#

#

#

#

#

#

M = #

#

#

#

#

#

W =

#

#

#

#

#

#

3C =

#

#

#

#

#

#

LN =
#

#

#

#

#

#

Figure 2.11: The five known forbidden substructures for gps-iposets (with their names).

The proof that these posets are not gluing-parallel nor gluing-parallel-symmetric can be found
in Fahrenberg et al. (2022).

2.7 Ziemiański’s Theorem

An important result regarding the gps-iposets is the Ziemiański’s theorem. It is, for now, the
only theorem we have on this class of posets. This theorem reveals a powerful link between
gps-iposets and sp-posets.

Theorem 2.7.1 (Ziemiański). A poset is gluing-parallel-symmetric ⇐⇒ it has an interval repre-
sentation in a sp-poset

For now, no paper presenting a demonstration of this theorem is available on internet and
therefore, this is why the demonstration will be detailed in this report. To demonstrate this
theorem, we can first split it into two lemmas.
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Lemma 2.7.2 (Direct Sense). Every gps-iposet P has an inteval representation in a sp-poset V .

Proof. We proceed by structural induction.

• Base case: P is a generator, P ∈ { ε, # , G , H , HG }
So P has an interval representation in a sp-poset because all those five elements are
# -interval. Indeed, P admits an interval representation in itself, so in particular in a

sp-poset.

• Induction case:

Here, we have two subcases to consider:

If P = Q ⊗ R and (fQ, gQ), (fR, gR) are interval representations in sp-posets V and
W , respectively, then by applying the definition of the parallel composition to both in-
terval representations of Q and R, we have that (fQ ⊔ fR, gQ ⊔ gR) (the coproduct of
(fQ, gQ), (fR, gR)) is a representation of Q⊗R.

This representation (fQ ⊔ fR, gQ ⊔ gR) is an interval representation of P in V ⊗W .

This statement seems pretty straight forward as the parallelization of two posets does not
create any order relation between them, therefore they remain completely independent
of each other as we can see in Fig. 2.2. So taking the coproduct of (fQ, gQ), (fR, gR) does
not change the overall properties. Then (fQ ⊔ fR, gQ ⊔ gR) is an interval representation of
V ⊗W . For this pair to be an interval representation, we have to show:

1. f(p) ⩽ g(p) for all p ∈ P

2. p < q ⇐⇒ g(p) < f(q) for all p, q ∈ P

With:

f(p) = (fQ ⊔ fR)(p) =

{
fQ(p) for p ∈ Q

fR(p) for p /∈ Q

g(p) = (gQ ⊔ gR)(p) =

{
gR(p) for p ∈ R

gQ(p) for p /∈ R

To show (1):

Let p ∈ P .

– If p ∈ Q \R, then we have f(p) = fQ(p) ⩽ gQ(p) = g(p)

– If p ∈ R \Q, then we have f(p) = fR(p) ⩽ gR(p) = g(p)

– The case where p ∈ Q ∩R cannot occur as Q ∩R = ∅ by definition of the coproduct.
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Q RQ ∩R

V W

ggf f

Figure 2.12: Diagram which illustrates the demonstration of (1) if P = Q⊗R

To show (2):

Let p, p′ ∈ P and assume that p < p′.

– If both p, p′ ∈ Q, then p /∈ R because p <Q p′ and p′ /∈ R because Q ∩ R = ∅. Hence
g(p) = gQ(p) < fQ(p

′) = f(p′)

– If both p, p′ ∈ R, then p′ /∈ Q because p <R p′ and p /∈ Q because Q ∩ R = ∅. Hence
g(p) = gR(p) < fR(p

′) = f(p′)

– If p ∈ Q \ R and p′ ∈ R \ Q then g(p) = gQ(p) < fR(p
′) = f(p′) because gQ(p) ∈ V

and fR(p
′) ∈W .

– If p ∈ R \ Q and p′ ∈ Q \ R then there is a contradiction because we assumed that
p < p′. So this case cannot occur.

– The case where p ∈ Q ∩R and p′ ∈ Q ∩R cannot occur as Q ∩R = ∅..

Because (2) is an equivalence, we also have to show the second implication:

We assume that g(p) < f(p′).

– If p /∈ R and p′ /∈ Q, then p ∈ Q and p′ ∈ R because Q ∩R = ∅. So p < p′

– If p /∈ R and p′ ∈ Q, then gQ(p) = g(p) < f(p′) = fQ(p
′), so p < p′

– If p ∈ R and p′ /∈ Q, then gR(p) = g(p) < f(p′) = fR(p
′), so p < p′

– If p ∈ R and p′ ∈ Q cannot occur. Otherwise, it would mean that fQ(p′) < gR(p) <
fQ(p

′) which is absurd.
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(fQ ⊔ fR, gQ ⊔ gR) is indeed an interval representation of P in V ⊗W .

If P = Q▷R and (fQ, gQ), (fR, gR) are interval representations in sp-posets V and W ,
respectively, then we want to show that:

f(p) =

{
fQ(p) for p ∈ Q

fR(p) for p /∈ Q

g(p) =

{
gR(p) for p ∈ R

gQ(p) for p /∈ R

is an interval representation of P in V ▷W .

To show (1):

Let p ∈ P .

– If p ∈ Q \R, then we have f(p) = fQ(p) ⩽ gQ(p) = g(p)

– If p ∈ R \Q, then we have f(p) = fR(p) ⩽ gR(p) = g(p)

– If p ∈ Q ∩R, then f(p) = fQ(p) < gR(p) = g(p) because fQ(p) ∈ V and gR(p) ∈W .

Q RQ ∩R

V W

gggf f f

Figure 2.13: Diagram which illustrates the demonstration of (1) if P = Q ▷ R
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To show (2):

Let p, p′ ∈ P and assume that p < p′.

– If both p, p′ ∈ Q, then p /∈ R because p <Q p′. Q ∩ R does only contain maximal
points of Q and minimal points of R so p is not a maximal point of Q whereas p′ is.
Hence g(p) = gQ(p) < fQ(p

′) = f(p′)

– If both p, p′ ∈ R, then p′ /∈ Q because p <R p′. Q ∩ R does only contain minimal
points of R and maximal points of Q so p′ is not a minimal point of R whereas p is.
Hence g(p) = gR(p) < fR(p

′) = f(p′)

– If p ∈ Q \ R and p′ ∈ R \ Q then g(p) = gQ(p) < fR(p
′) = f(p′) because gQ(p) ∈ V

and fR(p
′) ∈W .

– If p ∈ R \ Q and p′ ∈ Q \ R then there is a contradiction because we assumed that
p < p′. So this case cannot occur.

– If p ∈ Q ∩R and p′ ∈ Q ∩R then there is a contradiction because we assumed p < p′

while elements from Q ∩R cannot be ordered. So this case cannot occur.

Because (2) is an equivalence, we also have to show the second implication:

We assume that g(p) < f(p′).

– If p /∈ R and p′ /∈ Q then by definition of Q ▷ R, p < p′

– If p /∈ R and p′ ∈ Q, then gQ(p) = g(p) < f(p′) = fQ(p
′), so p < p′

– If p ∈ R and p′ /∈ Q, then gR(p) = g(p) < f(p′) = fR(p
′), so p < p′

– If p ∈ R and p′ ∈ Q cannot occur. Otherwise, it would mean that fQ(p′) < gR(p) <
fQ(p

′) which is absurd.

As this part can be a bit difficult to understand, an advice is to refer to Fig. 2.12 and to Fig. 2.13
to visualize the different steps of the demonstration.

Lemma 2.7.3 (Indirect Sense). If an iposet P has an interval representation (f, g) in some sp-poset V ,
then P is gluing-parallel-symmetric.

Proof. We proceed by structural induction.

• Base case: V is a generator, V ∈ { ε, # }
So P is a parallelization of a finite number of some of the following elements { ε, # , G , H }
and so because points all have an interval representation in themselves, therefore several
points in parallel can all be mapped to the same point.

• Induction case We assume that V = W ⊗ Y .

Let Q = f−1(W ) = g−1(W ) and R = f−1(Y ) = g−1(Y ) These equalities turn out to be
true because V = W ⊗ Y is disconnected.

Proof. Asssume that V = W ⊗ Y is not disconnected. Then, it exists p ∈ W ∩ Y . But by
definition of the parallel operation (which is defined as the coproduct, the disjoint union
of two posets), if p ∈ W , then p /∈ Y . So we have a contradiction. Therefore, V = W ⊗ Y
is disconnected.
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Q

R

V

W

f

f

g

g

Figure 2.14: Diagram which illustrates that W ⊗ Y is disconnected.

Indeed, when W and Y are put in parallel: W∩Y = ∅ as we can notice on the above figure.
Then, we note f |Q the restriction of f on Q. It means that we only consider elements
p ∈ Q \ R. We have that (f |Q, g|Q) is an interval representation of Q in W with f |Q
and g|Q being respectively, the inverse functions of f−1(W ) and g−1(W ) defined above.
Symmetrically, we have that (f |R, g|R) is an interval representation of R in Y with f |R and
g|R being respectively, the inverse functions of f−1(Y ) and g−1(Y ) defined above.

So by induction hypothesis, Q and R are gps-posets and so is P .

Then, we assume that V = W ▷ Y .

Let Q = f−1(W ) and R = g−1(Y ). We can note that, here the equalities Q = g−1(W )
and R = f−1(Y ) do not hold because Q ∩ R ̸= ∅ in this case. Indeed, a point can be
decomposed into two interfaces and therefore belongs to both Q and R as we can see in
Fig. 2.6 or in Fig. 2.15.

Define fQ, gQ : Q→W as follows:

Let q ∈ Q:

– fQ(q) = f(q)

– gQ(q) =

{
g(q) if g(q) ∈W

w with w ∈Wmax such that f(q) ⩽ w

We can define fR, gR : R→ Y symmetrically:

Let q ∈ R:

– fR(q) =

{
f(q) if f(q) ∈ Y

y with y ∈ Y min such that g(q) ⩾ y

– gR(q) = g(q)
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Such values of w exist for every poset P ̸= ∅ as they are composed of minimal points and
maximal points. For a poset P ̸= ∅, |Pmax| ⩾ 1 and |Pmin| ⩾ 1.

Q

R

Q ∩R

W

Y

f

f

f

g

g

g

g

f

w

y

Figure 2.15: Diagram which illustrates the different cases for defining (fQ, gQ) and (fR, gR)

We want to show that (fQ, gQ) is an interval representation for Q in W :

To show (1):

Let q ∈ Q.

– If g(q) ∈W , then fQ(q) = f(q) ⩽ g(q) = gQ(q).

– Otherwise we have fQ(q) ⩽ gQ(q) by definition of gQ.

To show (2):

Let q, q′ ∈ Q. We assume that q < q′.

– If g(q) ∈W , then gQ(q) = g(q) < f(q′) = fQ(q
′).

– Otherwise, we have gQ(q) ∈ W and g(q) ∈ Y which implies gQ(q) < g(q) < f(q′) =
fQ(q

′).

Once again, because (2) is an equivalence, we still have to show the back implication.

We assume gQ(q) < fQ(q
′), then fQ(q

′) ∈ W implies gQ(q) /∈ Wmax, hence g(q) = gQ(q) <
fQ(q

′) = f(q′) and thus q < q′.

The proof that (fR, gR) is an interval reprseentation for R in Y is symmetric.

We proceed by induction to assert that Q and R are gps and so is P = Q ▷ R.

As with the demonstration of the Theorem 2.7.2, the best way to understand this part is to
look at the Fig. 2.14 and Fig. 2.15 to better visualize the different steps.

All this work of classifying and analysing posets leads to the following conjecture which, if it
is true, would allow to enumerate gps-iposets.
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The Conjecture

A poset is gps ⇐⇒ it does not contain one the five forbidden structures

NN =

#

#

#

#

#

#

M = #

#

#

#

#

#

W =

#

#

#

#

#

#

3C =

#

#

#

#

#

#

LN =
#

#

#

#

#

#

The statement: A poset is gps =⇒ it does not contain one of the five forbidden substructures has
already been proven. The main core of the work is to find a proof for the other statement: A
poset does not contain one of the five forbidden structures =⇒ it is gps.



Chapter 4

Contribution

To find a proof for this conjecture, several paths were considered. We first considered analysing
the interval representations of the forbidden five (Fig. 2.11). Afterward, we worked on a more
structural approach whose aim was to consider posets of 5 points and to add points to observe
which phenomenon creates forbidden structures.

4.1 Interval Representation Analysis

The idea of analysing the interval representations of the forbidden structures comes from the
Ziemiański theorem. As it highlights a strong link between gps-posets and sp-intervals, we
think analysing these interval representations would tell more about these forbidden structures.
To study these reprentations, we start from the interval representation of a M:

#

#

#

#

#

#

#

#

#

#

Figure 4.1: An interval representation of a poset M.

If we add a point to the M, we can get some of the forbidden structures (M←,←W,NN), there-
fore we would like to know if we can get an interval representation of a forbidden structure
only by adding a point to the interval representation of a M.

By analysing these two interval representations, we can notice that one inteval representation
of a ←W does preserve the structure of the interval representation of a W which is a good result
as we would like to observe a preservation of the structure. However, when we take a look at
the interval representation of a NN, we can see that the structure of the interval representation
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#a

#c

#e

#b

#d

#f

→
#f #

e+

#c, a+

#
e−

#a
−

#b

#d

Figure 4.2: Interval Representation of the ←W.

#a

#c

#e

#b

#d

#f

→
#e

#a

#
f+

#b

#c #d, f−

Figure 4.3: Interval Representation of the NN.

of a W is not preserved. Therefore, our first assumption turns out to be incorrect. There is a
possibility that this path could still lead to a proof however, for now, we do not how to take
these results any further.

4.2 Structural Analysis

Another path we considered was to try to construct forbidden structures. To do that, we first
tried to add a point to a 5-point poset (a W mainly) to see if we can highlight interesting phe-
nomenon regarding the construction of these forbidden structures.

4.2.1 Construction of 6-point Posets

We started this path by trying to construct posets of six points to see in which cases we get
forbidden structures and otherwise to see whether we could get forbidden structures by adding
other points or not.

We start from the poset W and define different zones where we can add points.

#

#

#

#

#

layer 1

# a

2

# b′′

# b′

# b

3

c′′′ #

c′′ #

c′ #

c #

4

# d

Figure 4.4: Representation of the different zones for adding points.
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After that, we make some simplifications to refine our representation and therefore reduce
the number of possible zones to add points.

#

#

#

#

#

layer 1

# a

2
# b

3

c #

4

# d

Figure 4.5: Simplified representation of the different zones where we can add points.

We finish our reduction with only two layer on which we can add one point.

#

#

#

#

#

layer 1

# a

2

b #

Figure 4.6: The most simplified representation of the different zones where we can add points.

The obtained posets can be found in Appendix A. We realize this process of construction
only from the poset W because it already raises many questions. What we can observe from
the results is that we do not necessarily obtain forbidden structures by adding a sixth point to
a W. Sometimes, we get posets that are gluing-parallel-symmetric and therefore decomposable
and on the other hand, we sometimes get forbidden structures. These results raise therefore a
new interrogation, do we nesseraily get forbidden structures if we add another points to these
obtained posets.

As this process of construction consumes a lot of time, we have decided to start the beginning
of the proof.

4.2.2 Construction of 5-point Reference Substructures

Together with Uli FAHRENBERG, we started to design the proof of the conjecture that is: if a
poset is not GPS, then it contains one onf the five forbidden induced substructures (Fig. 2.11). The
idea is to create a link be finding the reference structures used in the previous section. First,
an important and helpful notion for the rest of the demonstration is the definition of the zigzag
distance.
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Definition 4.2.0.1 (Zigzag Distance). Let P be a poset. The zigzag distance dzz(x, y) between two
points x, y ∈ P is the length n of a shortest zigzag x = x0 < x2 > x3 < ...xn = y.

Lemma 4.2.1. dzz defines a metric on P .

Proof. dzz(x, y) = 0 iff x = y; symmetry is obvious; and if dzz(x, y) = n and dzz(y, z) = m, then
the two zigzags may be concatenated (and the concatenation possibly be shortened), showing
that dzz(x, z) ≤ n+m.

We will also use some other special posets below:

M =

•
•
•

•
• W = •

•

•
•
•

Lemma 4.2.2. P contains an induced M or an induced W iff there are x, y ∈ P with dzz(x, y) ≥ 4. P
contains an induced NN iff there are x, y ∈ P with dzz(x, y) ≥ 5.

Proof. We only show the second claim; the first uses similar arguments. If P contains an induced
NN, then the zigzag distance between its extremal points is equal to 5. Conversely, let x, y ∈ P
with dzz(x, y) = 5, then the zigzag x = x1 < x2 > x3 < x4 > x5 < x6 = y is an NN. (The other
case is symmetric.) Any relation xi ≤ xj would shorten the zigzag, so the NN is induced.

Lemma 4.2.3. Let P be weakly connected. If P contains an induced M and an induced W, then P
contains an induced NN.

Remark 4.2.1. For now, we did not find any proof for this lemma and therefore we cannot be sure that it
is correct.

Now let P be a poset which is not GPS. We may assume that P is ⊗-indecomposable (i.e.,
weakly connected) and ∗-indecomposable; otherwise we can decompose P and have a smaller
poset to start with.

We denote by Pmax the subset of maximal elements and by PMAX = {y ∈ Pmax | ∀z ∈ P : |{x :
x < y}| ≥ |{x : x < z}|} the subset of right-extreme elements.

Let a ∈ PMAX. If Pmax = {a}, then P = (P \ {a}) ∗ {a}, in contradiction to P being indecom-
posable.

Assume that Pmax ⊊ PMAX and let b ∈ Pmax \ PMAX.
If dzz(a, b) > 2, then dzz(a, b) ≥ 4 as both a and b are maximal. By Lemma 4.2.2 and again

because of maximality, P contains an induced W.
Assume dzz(a, b) ≤ 2, then dzz(a, b) = 2 by maximality of both, hence there is z ∈ Pmin for

which a > z < b.
Let m ∈ P such that m < a and m ̸< b; this exists because a ∈ PMAX and b /∈ PMAX. We know

that m ̸< z because of minimality of z, but we may or may not have z < m.
If {k ∈ P \ {a, b} | k ̸< a} = ∅, then P = (P \ {a}) ∗ {a, b} (with b in the interface), in

contradiction to indecomposability. Let k ∈ P \ {a, b} such that k ̸< a. We know that k ̸< z
because of minimality of z, but we may or may not have z < k.

1. If k < b:

(a) If z < m: This do not lead to a M or W but to an N with an extra arc m→ a, which is
an interesting structure in order to build the LN.

(b) If z ̸< m:
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i. If z < k: This do not lead to a M or W but to an N with an extra arc k → b, which
is an interesting structure in order to build the LN.

ii. If z ̸< k: then m < a > z < b > k forms an induced M.

2. If k ̸< b: We cannot have k < m as this would imply k < a.

(a) If m < k:

i. If z < m: ???
ii. If z ̸< m:

A. If z < k: ???
B. If z ̸< k: then k > m < a > z < b forms an induced W.

(b) If m ̸< k:

i. If z < k: ???
ii. If z ̸< k: then dzz(z, k) ≥ 2, hence dzz(m, k) ≥ 4 and P contains an induced M.

This proof remains for now, largely incomplete and it still raise several issues. In some cases,
we get structures that are not forbidden structures but that have extra edges. This result is
disturbing and remains blocking for now as it seems difficult to get forbidden structures from
posets that have more edges than the non-gps posets.
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Conclusion

While the goal of finding a proof for the conjecture has not been reached this semester, we
nevertheless managed to find some interesting intermediate results. These results could in the
future lead to a complete version of the proof. For now, they are still unresolved issues and grey
areas regarding the demonstration of the conjecture. Looking at several paths may not have led
to the proof yet but it was for sure interesting and, in my opinion, useful for future works on
this subject.

I would like to thank Quentin HAY–KERGROHENN with who I worked during this semester
and Uli FAHRENBERG and Hugo BAZILLE for supervising us during this semester.
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Appendix A

Posets Construction

A.1 Cases With One Added Edge

1.

#

#

#

#

#

# =

#

#

G

G

# ▷

H

#

H

=⇒ ✓

2.

#

#

#

#

#

# =

#

#

#

#

#

# =

#

#

G

G

# ▷

H

#

H

=⇒ ✓

3.

#

#

#

#

#

# =

#

#

#

#

#

# = #

#

#

#

#

#

=⇒ Forbidden structure :NN

A.2 Case With Two Edges Added

A.3 Case With Three Edges Added

1.

#

#

#

#

#

# =

#

#

#

#

#

# ⇔ See 2.1.1
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2.

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.7

3.

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.4

4.

#

#

#

#

#

# =

#

#

#

#

#

# =

G

G

▷

H

H

#

#

#

# =

G

G

▷

 # ▷

H

H

#

#

#


=

G

G

▷

 # ▷


H

H

G

G

▷

H

#

H



 =⇒ ✓

5.

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.7

6.

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.4

A.4 Case With Four Added Edges

1.

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.3
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2.

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.4

3.

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.4

A.5 Case With Five Added Edges

#

#

#

#

#

# =

#

#

#

#

#

# =⇒ See 2.2.4

A.6 Symetric Case

Other cases are handled whether by the symmetric operation on gps-iposets or by the horizontal
symmetry axis of the initial poset.

A.6.1 Case of Layer 2

Every possible cases are already equivalent to some cases of the layer 1. Therefore, there is no
new case.
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