Contribution to Efficient Biichi Game-Solving for
SPOT

Rataud Quentin
(supervisor: Philipp Schlehuber-Caissier)

Technical Report n°202407-techrep-rataud, July 2024
revision b77f4b3

In the domain of reactive system verification, efficient solving of Biichi games is critical for ensuring cor-
rectness against temporal logic specifications. This paper focuses on enhancing SPOT’s solver by specializ-
ing in Biichi games, specifically transitional variants, to address performance bottlenecks associated with
exponential complexity. By introducing improvements to existing algorithms and optimizations tailored
to Biichi games, including strategies for SCC decomposition and specialized data structures, significant
improvements in solving times and scalability are achieved.

Dans le domaine de la vérification des systémes réactifs, la résolution efficace des jeux de Biichi est cruciale
pour garantir la correction par rapport aux spécifications de logique temporelle. Ce document se concentre
sur 'amélioration du solveur de SPOT en se spécialisant dans les jeux de Biichi, notamment les variantes
transitionnelles, afin de résoudre les goulots d’étranglement de performance associés a une complexité
exponentielle. En introduisant des améliorations aux algorithmes existants et des optimisations adaptées
aux jeux de Biichi, incluant des stratégies de décomposition des SCC (Strongly Connected Components) et
des structures de données spécialisées, des améliorations significatives des temps de résolution et de la
scalabilité sont obtenues.

Keywords
Biichi games, reactive systems, model checking, game theory, automata theory

LRE

LABORATOIRE DE RECHERCHE DE LEEPITA

Laboratoire de Recherche de I’'EPITA
14-16, rue Voltaire — FR-94276 Le Kremlin-Bicétre CEDEX — France
Tél. +33153 1459 22 — Fax. +33153 1459 13
grataud@lre.epita.fr —http://www.lre.epita.fr/

qrataud@lre.epita.fr
http://www.lre.epita.fr/

Copying this document

Copyright © 2023 LRE.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

1 Introduction

2 Preliminaries
2.1 Automata

2.1.1 Deterministic Finite Automata

21 Definition: Deterministic Finite Automaton (DFA)

22 Definition: Run on Finite Automaton

2.3 Definition: Complete Automaton

212 w-Automata

2.4 Definition: w-Automaton o

2.5 Definition: Run on w-automaton

2.1.3 Transitional Emerson-Lei Automata

2.6 Definition: Transitional Emerson-Lei Automaton (TELA)

214 Buchi Automata.

2.7 Definition: Transitional Biichi Automaton

22 Two-PlayerGames
221 Games

2.8 Definition: Game

2.9 Definition: Play

222 Strategies e

2.10 Definition: Strategy

2.11 Definition: Positional Strategy

2.12 Definition: Winning Strategy

3 Biichi Games

31 Concepts
3.1 Definition: Transitional Biichi Game

3.1.1 Controlled Predecessor

3.2 Definition: Controlled Predecessor (CPre)

312 Attractor e

3.4 Definition: Attractor (Attr) L.

313 Trap

3.6 Definition: Subgame oo

3.7 Definition: Trap

3.2 SolvingaBiichiGame
321 General Algorithm L

3.22 Time Complexity

a1

O \O© 00 00 00 00 G0 NI N 1

CONTENTS 4
4 Improvements 21
41 Strongly Connected Components 21
42 DataStructures 24
5 Conclusion 26
6 Bibliography 27

Chapter 1

Introduction

This paper addresses the challenge of optimizing SPOT’s solver for Biichi games, crucial in
verifying temporal logic properties. Biichi games are fundamental in modeling systems that
operate indefinitely, requiring precise analysis of infinite sequences of system behaviors against
specified requirements.

Problem Statement The existing approach in SPOT utilizes a generic solver that converts LTL
formulas into parity games, employing algorithm from Zielonka (1998). While effective in many
cases, this method encounters exponential complexity under certain conditions, leading to per-
formance bottlenecks. Specifically, Biichi games, a subset of parity games, demand tailored
strategies for efficient resolution due to the simplicity of their acceptance condition.

This research aims to enhance SPOT’s solver by specializing the solver for Biichi games.

Contributions In this paper, we present several key contributions:

¢ Specialized Biichi Game Solvers: Development and implementation of specialized solvers
tailored for Biichi games, focusing on transitional Biichi game variants.

¢ Algorithmic Enhancements: Introduction of novel algorithms that optimize the solving
process by leveraging structural insights into Biichi games. This includes efficient decom-
position strategies for strongly connected components (SCCs) and novel data structures
to expedite computation.

Guide for Future Students Additionally, this paper serves as a guide for future students join-
ing the LRE The concepts and methodologies described herein are aligned closely with the
conventions used by SPOT, the solver developed by the LRE. By providing comprehensive cov-
erage of necessary theories and techniques, this paper equips students with the foundational
knowledge needed to contribute effectively to 1t1synt, the synthesis solver of SPOT. It aims
to ensure continuity and ease of transition for new researchers aiming to build upon or extend
the capabilities of SPOT in the domain of reactive system verification.

Overview of the Paper The remainder of this paper is structured as follows:

¢ Chapter 2 introduces foundational concepts in automata theory and game theory essential
for understanding Btichi games and their applications in reactive system verification.

¢ Chapter 3 delves into the theory and strategic aspects of Biichi games, highlighting their
relevance in SPOT and outlining traditional solving algorithms.

* Chapter 4 presents our novel approaches to enhancing Biichi game solvers, focusing on
SCC decomposition and advanced data structures for improved efficiency.

Acknowledgments Before proceeding, we acknowledge the invaluable feedback and contri-
butions from our reviewers, whose insights have significantly enriched this work.

Chapter 2

Preliminaries

This chapter introduces foundational concepts in automata theory and game theory that form
the basis for subsequent discussions in this paper.

Section 2.1.1 introduces deterministic finite automata (DFA), which are fundamental math-
ematical models used to represent systems processing sequences of inputs. DFA are charac-
terized by their ability to transition between states based on input symbols, leading to specific
acceptance criteria for input sequences.

Section 2.1.2 introduces w-automata, which handle infinite inputs and are crucial in modeling
reactive systems that continuously interact with their environments. w-automata extend the
capabilities of DFA by introducing acceptance conditions adequate for infinite runs of input
sequences.

Section 2.1.3 then introduces Transitional Emerson-Lei Automata (TELA), which refine w-
automata to specify acceptance conditions using Boolean formulas over sets of states visited
finitely or infinitely often. TELA are particularly relevant in contexts such as reactive synthesis,
where verification and synthesis tasks demand precise handling of temporal logic constraints.

Then, Section 2.1.4 discusses Biichi automata, a special case of TELA with acceptance condi-
tions based on infinite occurrences of specific patterns within input sequences.

Finally, Section 2.2 defines key concepts in two-player game theory, introducing games played
on structures akin to complete w-automata, where states are partitioned between two players:
the environment and the controller.

2.1 Automata

2.1.1 Deterministic Finite Automata

An automaton is a mathematical model used to represent systems that process sequences of
inputs over discrete time steps. When given a sequence of inputs, called a word, an automaton
processes these inputs one symbol at a time. Each symbol is chosen from a set called the input
alphabet. At any moment during its operation, the automaton is in one of its states. As it re-
ceives each input symbol, it transitions to a new state according to a transition function, which
determines the next state based on the current state and input symbol. The sequence of states
through which the automaton passes as it processes the input word is called a run.

In the context of Spot, the behavior of a controller can be represented as transitions within an
automaton, where each input corresponds to an action or signal received by the controller, and
each state represents a possible configuration of the system.

2.1 Automata 8

a ! b
start H
HO%

Figure 2.1: Example of Deterministic Finite Automaton

Definition 2.1 (Deterministic Finite Automaton (DFA)). A Deterministic Finite Automaton is a
quintuple A = (Q, %, 6, qo, F'), where:

* () is a finite set of states.

* Y is a finite set of symbols, called the alphabet.
* 0:Q %X X — Q is a transition function.

* qo € Q is the initial state.

o [C Q is the set of accepting states.

A transition d(q,a) = ¢’ indicates that the automaton moves from state ¢ to state ¢’ upon
reading the input symbol a. Figure 2.1 shows an example of finite automaton, where Q =

{90, 01,42, 43}, ¥ = {a, b}, 6(qo0, @) = g1, and F = {ga}.

Definition 2.2 (Run on Finite Automaton). A run of an automaton on a finite word

W = apa1az . ..an—1 € X" is a sequence of states r = qo, q1,q2, - - -, qn such that §(q;, a;) = qi+1 for
all i > 0. The word w is accepted by the automaton if the run ends in an accepting state, i.e., ¢, € F
for the last state g, of the run.

The automaton in Fig. 2.1 shows an example of finite automaton accepting any word contain-
ing an even number of ¢ and an odd number of b. For instance, on this automaton, the run on
the word abbab is the sequence qo, ¢1, g3, g1, go, g2. Since ¢ is an accepting state, the word abbab
is accepted by the automaton.

Definition 2.3 (Complete Automaton). An automaton is complete if all states always have at least
one outgoing transition for any given letter. More formally, an automaton A = (Q, %, 9, qo, F') is said
to be complete if for any state s1 € Q and any letter a € X, there exists a state so € @ such that
(s1,a,82) € 4.

2.1.2 w-Automata

Many of today’s problems in computer science involve systems that do not simply terminate
after processing a finite amount of data, but rather must continuously interact with their en-
vironment. Consider a smart traffic light system that continually receives sensor data about
waiting cars and adjusts its signals accordingly. Such systems are reactive, since they must
respond continuously and adaptively to changing inputs without ever terminating.

Unlike finite automata, w-automata handle infinite inputs. They process infinite words, w €
¥¥, using specific acceptance conditions to determine whether an infinite run is accepted.

9 Preliminaries

Inf(@) A Fin(Q))

Figure 2.2: Example of Transitional Emerson-Lei Automaton

Definition 2.4 (w-Automaton). An w-automaton is defined as a quintuple A = (Q, X, 6, qo, «), where
Q, X, 9, and qo are defined as in the Deterministic Finite Automaton, and o C X% is the acceptance set.

Definition 2.5 (Run on w-automaton). A run of an w-automaton on an infinite word
w = apaiaz ... € X¥ is an infinite sequence of states r = qo, q1, qo, - . - such that §(q;, a;) = g1 for all
i > 0. The run is accepted if it belongs to the acceptance set c.

2.1.3 Transitional Emerson-Lei Automata

Transitional Emerson-Lei automata (TELA) extend w-automata by specifying acceptance condi-
tions using positive Boolean formulas over sets of states visited finitely or infinitely often.

These automata are particularly relevant in the context of reactive synthesis tools like Spot,
which convert sets of Linear Temporal Logic (LTL) constraints into automata for verification
and synthesis tasks. The constraints typically yield specific acceptance conditions, such as com-
binations of “infinitely often” and “finitely often” behaviors, which are precisely captured by
TELA.

A Transitional Emerson-Lei Automaton is an w-automaton with an acceptance condition defined
as the conjunction of Inf(m) (the set of all runs where the mark m appears infinitely often) and
Fin(m) (the set of all runs where the mark m appears finitely often) conditions for various marks
m.

Definition 2.6 (Transitional Emerson-Lei Automaton (TELA)). Formally, a Transitional Emerson-
Lei Automaton is a tuple A = (Q, M, %, 4, qo,), where:

* () is afinite set of states.

M is a finite set of marks (or colors).

Y is a finite input alphabet.

§ C Q x X x 2M x Q is a finite set of transitions.

qo € Q is the initial state.

* « C ¢“ is the acceptance condition, defined as a Boolean combination of conditions Inf(m) (mark
m appears infinitely often) and Fin(m) (mark m appears finitely often), where m € M.

2.1 Automata 10

Inf(@) v Inf(O) v Inf(@) Inf(@)
@, (2 (0 (0
— o—
ol e
o @ (0

start *> start —

Figure 2.3: Example of weak Transitional Emerson-Lei Automaton and its corresponding Biichi
Automaton

Figure 2.2 shows an example of Transitional Emerson-Lei Automaton, where Q = {qo, ¢1,¢2},
M= {07 O}/ ¥ ={a,b}, (g2, b, {Q}a q) € 6,and a = Inf(@) A FIH(O)

A run of a TELA is an infinite sequence of transitions, and the acceptance condition « is
interpreted over the set of marks seen infinitely often during the run.

The Transitional Emerson-Lei Automaton in Fig. 2.2 accepts all words that contains infinitely
many times the subsequence abb, but finitely many times the subsequence aba.

2.1.4 Biichi Automata

A weak TELA is one in which all transitions within a strongly connected component share the
same color. These automata can always be transformed into an automaton with the acceptance
condition Inf((@). Figure 2.3 shows an example of a weak TELA. The states can be partitioned
into three distinct strongly connected components:

 {q0,q1,q2}, containing only mark (@ ;
* {g¢s}, containing only mark O ;
* {q4}, containing only mark @ .

In the context of Spot, many simple formulas yield weak Transitional Emerson-Lei Automata.

Definition 2.7 (Transitional Biichi Automaton). A Transitional Biichi Automaton is a special case of
a TELA where the acceptance condition is Inf(m) for a particular mark m.
Formally, it is defined as A = (Q, %, 9, qo, B), where:

* () is afinite set of states.

* 3 is a finite input alphabet.

0 C Q x ¥ x Qis afinite set of transitions.

* o € Q is the initial state.

® B C ¢ is the set of Biichi transitions, that is, the set of all transitions marked with m.

A run of a Transitional Biichi Automaton is accepting if it traverses some Biichi transitions
infinitely often.

11 Preliminaries

Inf(@) A Fin(Q)

Figure 2.4: Example of a two-player game

2.2 Two-Player Games

2.2.1 Games

In the context of automata theory, a game is played on a structure that can be viewed as a
special kind of complete w-automaton, where states are partitioned between two players: the
environment and the controller. Formally, a game is defined as follows:

Definition 2.8 (Game). A game is a tuple G = (Qo, @1, %, 6, o), where:

Qo is a finite set of states belonging to the environment.
Q1 is a finite set of states belonging to the controller.

Q = Qo U Q1 usually denotes the set of all states.

Y is a finite set of input symbols (the alphabet).

0:Q x X — Q is the transition function.

* o C Q) x XY is the acceptance condition.

Note that in this definition, a game does not necessarily include an initial state. This is because
in this paper, we are mainly interested uniform games, where we want to solve games for all
possible initial states. Following the conventions of Spot in this paper, the states in @y are
usually represented by circles, and the state in ()1 are represented by diamonds.

Figure 2.4 shows an example of a game, where Qo = {¢1,¢2}, @1 = {qo0,¢3}, £ = {a,b},
0(qo, a) = q1, and « is the set of all infinite words containing the subsequence ab infinitely many
times and containing the sequence aa finitely many times.

Definition 2.9 (Play). A play p = (qo,w) € Q x £ in the game is akin to a run in an w-automaton
from initial state qo, where each transition of the infinite word is chosen either by the environment or
the controller, depending on the current state. Specifically, if the current state is in Qq, the environment
decides the next transition, otherwise, the controller makes the decision.

The acceptance condition « determines if a play is accepted or not by the game. This condition
specifies the set of plays that are accepted. Usually, the controller (Player 1) works towards
having the play accepted, whereas the environment (Player 0) works towards having the play

2.2 Two-Player Games 12

Inf(@) A Fin(Q)

Figure 2.5: Example of a winning positional strategy for the environment.

not accepted. If a play p satisfies the acceptance condition « (p € «), then we can say that the
controller is winning, otherwise, the environment is winning.

In the game depicted in Fig. 2.4, the two players will take turn outputting a letter. The con-
troller succeeds if the resulting play contains the subsequence ab infinitely many times and the
sequence aa finitely many times.

2.2.2 Strategies

The concept of strategies determines the behavior of each player during the game. A strategy
prescribes how a player should move through the game, potentially based on the history of the
play so far.

Definition 2.10 (Strategy). Formally, a strategy o : Q x ¥* — X for Player i € {0,1} (where i is
either O for the environment or 1 for the controller) is a function defined for any initial state gy € () and
any ongoing play w € ¥* that started from qo and is currently in a state ¢ € Q;. The function then
returns the symbol a from the transition 6(q,a) = ¢’ the player i will select.

By convention, we denote strategies for the controller by ¢ and counter-strategies for the
environment by 7. The play induced by two strategies o and 7 starting from an initial state
qo € @ is the sequence where

it = 7(qo, pop1 - - - pn) if pendsin Qo
+1= i]
! o(qo, pop1 - --pn) if pendsin @y

While the general definition of a strategy allows it to depend on the entire history of the
play, in practice, we often consider simpler forms of strategies known as positional strategies. A
positional strategy makes its decisions based only on the current state, ignoring the history of
the play.

13 Preliminaries

Definition 2.11 (Positional Strategy). Formally, a strategy o is positional if for any ongoing play
w € X* starting from the initial state gy € Q and currently ending on state g,,, 0(qo, w) = o(gn)-

Thus, a positional strategy for Player ¢ can be represented as a function o : Q); — X. We typ-
ically denote such positional strategies in this manner. Following Spot conventions, positional
strategies are represented by coloring the chosen transition 7(go) in red for all states gy € Qo,
and coloring the chosen transition o (¢) in green for all states ¢; € Q1. Figure 2.5 shows the po-
sitional strategy chosen by the environment. Whenever the active state is ¢;, the environment
will produce the letter a, and whenever the active state is g2, the environment will produce the
letter b.

Definition 2.12 (Winning Strategy). We say that a strategy o is winning from a state qo € @ for
Player i € {0,1} if, for all counter-strategy T for player 1 — 14, the play induced by o and T is still
winning for Player i.

The set of all states where Player i has a winning strategy is denoted as his winning region W;.

Theorem 2.13. For any game G = (Qq, Q1, %, 6,), Wo N W7 = 0.

Proof. Suppose there exists a state ¢ € Wy N W;. Then there exist a winnning strategy 7 from
state ¢ for the environment, and a winning strategy o from state ¢ for the controller. Let p be
the play induced by 7 and ¢ from state ¢. Since 7 is winning from state g for the environment,
we must have p ¢ «, and since o is winning from state ¢ for the controller, we must have p € «,
thus leading to a contradiction. O

Interstingly, we do not necessarily have WoUW; = Q. We denote a game where WoUW; # Q
as undetermined. Following Spot conventions, the winning regions are represented by coloring
the states in red for all states gy € Wy, and in green for all states ¢; € W;. Since the strategy
depicted in Fig. 2.5 is always winning for the environment no matter the initial state, all the
states belongs to the winning region of the environment.

Chapter 3

Biichi Games

In this chapter, we will focus into the theory and applications of Biichi games, with a specific fo-
cus on the transitional Biichi game variant. Transitional Biichi games are particularly relevant in
the context of Spot, where most of the computation is done on transition-based structures. This
focus allows us to explore the strategic aspects of gameplay and the computational methods
employed to analyze and solve Biichi games efficiently.

Section 3.1 defines the foundational concepts of Biichi games, including the transition system,
Biichi conditions, and the game structure itself. We introduce strategies employed by both
players — the controller and the environment — to achieve their respective objectives within
the game. Key theoretical constructs such as the controlled predecessor and attractor sets are
then explored in detail, providing tools for determining optimal strategies and analyzing game
outcomes.

Then, Section 3.2 will introduce the traditional algorithm to solve any Biichi game in O(nm)
time, determining optimal positional strategies for both players, for all states of the game.

3.1 Concepts

A Biichi game is a type of two-player game where the objective is to satisfy a Biichi condition.

In a standard Biichi Game, the controller aims to ensure that a specific subset of states is visited

infinitely often. However, as most of the computations done in Spot are transition-based, we

will focus on a variant called Transitional Biichi Game, ' where the controller aims to ensure that

a set of transitions is visited infinitely often, while the environment tries to prevent this.
Formally, a transitional Biichi game is defined as follows:

Definition 3.1 (Transitional Biichi Game). A transitional Biichi game isa tuple G = (Qo, Q1, 9, B),
where:

* Qo and Q) are the sets of states controlled by the controller and the environment, respectively,
e 0 C Q x Q is the transition relation,
* B C ¢ is the set of Biichi transitions.

Figure 3.1 shows an example of a transitional Biichi game, where Qo = {qo,¢3,q4}, Q1 =
{a1,92,95}, (1, 93) € 0 and (g1, q2) € B.

ISince this paper will only focus on transitional Biichi games rather than standard ones, all future mentions of a
Biichi game in this paper will refer to the transitional variant.

15 Biichi Games

Inf

Figure 3.1: Example of a Biichi game

Figure 3.2: Controlled Predecessor of the
Biichi transitions for the controller

A run in a Biichi game is an infinite sequence of states qo, ¢1, g2, - . . such that (¢;, ¢;+1) € ¢ for
all i > 0. The controller wins the game if the set of Biichi transitions B appears infinitely many
times in the run. Otherwise, the environment wins by preventing this condition from being
satisfied. Following the strategy o highlighted in green on Fig. 3.1 and starting from the state ¢;
will produce the run q1, g2, ¢1, g2, - - . . Since the transition (g1, g2) € B is a Biichi transition, this
run will be winning for the controller.

In the definition, ¢ is a transition relation, meaning it is a set of ordered pairs of states. This
abstraction removes the need to consider an alphabet or symbols associated with the transitions,
which simplifies the structure. Considering multiple transitions between the same pair of states
is unnecessary because the controller always prefers marked transitions, while the environment
can always choose unmarked ones. Therefore, reducing 0 to a simple set of transitions without
additional symbols makes the model less heavy and focuses on the strategic aspect of the game.

3.1.1 Controlled Predecessor

The following definition of controlled predecessor is an extension of the one that can be found
in Zimmermann et al. (2016) for transitional games.

Definition 3.2 (Controlled Predecessor (CPre)). Let G = (Qo, Q1, 9, B) be a Biichi game and con-
sider a set S C QU0 of states and transitions. A state q belongs to the Controlled Predecessor of S for
Player i, denoted as CPre(S), if:

* g € Q; and q has at least one outgoing transition (q,q’) such that ¢ € S or (q,q") € S;
* g € Q1—; and q only has outgoing transitions (q,q’) such that ¢ € Sor (¢,¢') € S.

Figure 3.2 shows a Biichi game were CPre;(B) = {¢2,¢5}. ¢5 belongs to the controlled pre-
decessor since all of the outgoing transitions from g5 are Biichi transitions. ¢; belongs to the
controlled predecessor since there is at least one outgoing transition that is a Biichi transition.
For all states in the controlled predecessor belonging to the controller, an example of strategy
o guaranteeing that a Biichi transition will be taken next turn is highlighted in green. Simi-
larly, for each state that is not in the controlled predecessor belonging to the environment, an
example of counter-strategy 7 guaranteeing that no Biichi transition will be taken next turn is
highlighted in red.

3.1 Concepts 16

Figure 3.3: Attractor of the Biichi transitions for the controller

Theorem 3.3. Let G = (Qo, Q1,0, B) be a Biichi game and consider any set S C @ U 6 of states and
transitions. Then, there exist a positional strategy for Player i from any state q forcing the next move to
either take a transition in S or set the next active state in S if and only if ¢ € CPre;(95).

Proof. Consider any set S of states and transitions in G, and consider any state ¢ in @). Then,

e If ¢ € CPre;(S) N Q;, then ¢ has a successor ¢’ such that (¢,¢') € S or ¢ € S. Setting
o(q) = ¢’ will either directly take a transition in S or set the next active state in 5.

e If ¢ € CPre;(S) N Q1—;, then ¢ only has successors ¢’ such that (¢,¢') € Sor¢ € S. No
matter the counter-strategy, the active state will either directly take a transition in .S or set
the next active state in S.

e If ¢ € CPre;(S) N Q,, then ¢ must have no successor nor outgoing transitions in S. No
matter our strategy, we cannot directly take a transition in S nor set the next active state
inS.

e Finally, if ¢ € CPre;(S) N Q1—;, then ¢ must have a successor ¢’ such that (¢,¢') ¢ S and
q ¢ S. Setting 7(¢) = ¢’ as a counter-strategy proves that no strategy will allow Player ¢
to force the next active state in .S or force to directly take a transition in S.

O

3.1.2 Attractor

More generally, the attractor of a set of states or transitions S for a player i describes the set of
states from which Player ¢ has a strategy to either set the active state in S or eventually take a
transition in S in a finite amount of moves. The following definition is also an extension of the
one that can be found in Zimmermann et al. (2016) for transitional games.

Definition 3.4 (Attractor (Attr)). Let G = (Qo, Q1, 9, B) be a Biichi game and consider any set S C
Q U ¢ of states and transitions.
The attractor Attr;(R) of the set S is defined inductively as follows:

Attrd(S) = SN Q,
Attr? () = Attr(S) U CPre; (Attr? (S) U S),
Attri(S) = | Attr}(9).

neN

17

Biichi Games

Intuitively, Attr(S) describes the set of all states from which Player i can force to eventually
take a transition in S or reach a state in S in no more than » steps.

Figure 3.3 shows the attractor Attr; (B) of the Biichi transitions for the controller. The step by
step computation of Attr,(5B) would be as follows:

Attr?(B) = BN Q = 0, meaning the controller cannot start on a state that is already
marked, since there is none;

Attri (B) = Attr?(B)UCPre; (Attr{(B)UB) = CPre;(B) = {2, ¢5 }, meaning the controller
can force to immediately take a transition in B from state g5 or gs;

Attr?(B) = Attr}(B)UCPre; (Attri(B)UB) = {q2, g5 } UCPre; ({2, g5} UB) = {q0, 2, q5 },
meaning the controller can force to take a transition in B in at most two steps from state
o, g2 or ¢s. Notice the importance of the union of states and transitions as parameter to
the CPre function, as gy only belongs to the controlled predecessor since it has the choice
between taking a transition in B to ¢, or taking a transition not in B to g¢s;

Attr3(B) = Attr?(B) U CPre;(Attr?(B) U B) = {q0, 92,95} U CPre1({qo, q2,q5} U B) =
{q0, ¢1, 92, ¢5}, meaning the controller can force to take a transition in B in at most three
steps from state qq, q1, g2, OT ¢s5;

Finally, Attr}(B) = Attr$(B) U CPre; (Attri(B) U B) = Attr(B). It can be shown that no
additional states will ever enter the attractor.

Theorem 3.5. Let G = (Qo, Q1,0, B) be a Biichi game and consider any set S C Q U § of states and
transitions. Then, there exist a positional strategy for player i that will guarantee to visit a state in S or
a transition in S in a finite amount of steps from a state q if and only if ¢ € Attr;(.S).

Proof. We will use a constructive proof for this argument.

Suppose ¢ € Attr;(S). We will prove that any element in Attr}(S) can be forced in S by a
strategy o in no more than n steps.

If ¢ € Attr?(S) = SN Q, The active state is already in S. Otherwise, there must exist a n
such that ¢ € Attr?(S) and g ¢ Attr?_1 = gq € CPrei(Attr;’_l(S) UsSs). If g € Q, set
o(¢) = ¢’ as in Theorem 3.3. Using this strategy, we know that we will force the active
state to either directly be in S or in Attr?~'(S) in one step. By induction, we can extend
our strategy o to include the strategy forcing the active state to reach .S in no more than
n — 1 steps from any state in Attr? ' (S). As ¢ ¢ Attr!'~'(S), the strategy o is well-defined
and will force the active state in S in no more than n steps.

Suppose ¢ ¢ Attr;(S). Then, we must have ¢ ¢ CPre;(Attr;(S) U S). Set the counter-
strategy 7(¢) = ¢’ as described in Theorem 3.3. Then, we know that the next state ¢’ will
stay out of S and of Attr;(.S). Since ¢’ ¢ Attr;(.5), this process can be repeated indefinitely,
and the existence of a counter-strategy T guaranteeing that the active state never reaches
S proves that no strategy for Player i exists to reach S in a finite amount of steps.

O

3.1.3 Trap

Definition 3.6 (Subgame). Let G = (Qo, Q1, 9, B) be a Biichi game and consider a region R C Q) of
G. We define the subgame of G induced by R as follows:

GNR=(QyNR,Q1NR,{N(RxR),BN(R x R))

This subgame is only well-defined if all states in G U R have at least one outgoing transition.
Similarly, we define the subgame of G induced by the removal of R as

G/R=GNR

3.1 Concepts 18

Definition 3.7 (Trap). Let G = (Qo, Q1, 0, B) be a Biichi game and consider a region R C Q. The
region R is a trap for Player i if:

* Every state ¢ € RN Q; has only successors in R, i.e., (¢,¢') €6 = ¢ € R,
® Every state ¢ € RN Q1_; has at least one successor in R, i.e., there exists ¢ € R such that

(¢,4') €6.

Theorem 3.8. Let G = (Qo, Q1,0, B) be a Biichi game and let R C Q be a trap for Player i. Then, if at
any point the active state q,, enters the trap (¢,, € R), Player 1 — i has a positional strategy forbidding
the active state to ever exit the trap.

Proof. Since R is a trap for Player i, every state ¢ € RN Q;—; must have at least one successor ¢’
in R. Define o(q) = ¢’ for each of these states.
Then, let the active state ¢,, be any state in R.

o If g, € Q, then ¢, € RN Q;, and therefore the state has only successors in R. Hence
qn+1 € R.
o If an € Qlfi/ then dn+1 = J(Qn) € R/ hence qn+1 € R

By induction, the strategy o will be a valid trapping strategy for Player i — 1, and the active
state will never exit the trap. O

Considering the Biichi game in Fig. 3.1, the region {qo, ¢1,¢2} is a trap for the environment,
whereas the region {g¢s, ¢4, ¢s} is a trap for the controller. The highlighted strategies are exam-
ples of trapping strategies for both players.

Theorem 3.9. Let G = (Qo, Q1,9, B) be a Biichi game and consider S C B U ¢ to be any subset of

transitions and states. Then, G N Attr;(S) is a well-defined subgame.
Proof. Consider any state ¢ ¢ Attr;(S). Then, we have ¢ ¢ CPre;(Attr;(S) U S).

* If g € Q;, then all of the outgoing transitions of ¢ must not belong to S nor end in Attr;(.5),
therefore, all outgoing transitions of ¢ must end in Attr;(S). Since G is a well-defined
game, there must be at least one outgoing transition of ¢ ending in Attr;(S).

e If ¢ € Q1_;, then there must exist at least one outgoing transition of ¢ which does not
belong to S nor end in Attr;(S). Therefore, there must be at least one outgoing transition
of ¢ ending in Attr;(S) as well.

O

Theorem 3.10. Let G = (Qo, Q1,9, B) be a Biichi game, S C §U B be a subset of states and transitions,
and consider R = Attr;(S). Then, R is a trap for Player i.

Proof. Consider any state ¢ € R. Then, we have ¢ ¢ CPre; (Attr;(S) U S).

* If g € Q;, then all of the outgoing transitions of ¢ must not belong to S nor end in Attr;(.S),
therefore, all outgoing transitions of ¢ must end in R.

e If ¢ € Q1_;, then there must exist at least one outgoing transition of ¢ which does not
belong to S nor end in Attr;(S). Therefore, there must be at least one outgoing transition
of g ending in R as well.

O

19

Biichi Games

3.2 Solving a Biichi Game

3.2.1 General Algorithm

Algorithm 1: Main algorithm to solve a Biichi game

Input: A transitional Biichi game G = (Qo, Q1, 6, B).
Output: The set W; of winning states in G for the controller.
do

R+ AttI‘l (B) ;
L +— Attro(R) ;
(Q07Q17573) — (Q07Q1;57B)/L;

while R # ();
return Qo U Q1 ;

The algorithm to solve a Biichi game involves computing the attractors for both players iter-
atively until a fixed point is reached. The steps to solve a Biichi game are as follows:

1. Compute R = Attr(B), the set of all states from which the controller has a strategy to

reach any Btichi transition at least once in a finite number of steps. This is a necessary
but not sufficient condition for a state to be winning for the controller, therefore we have
W1 C R, and therefore R C Wy. Theorem 3.10 proves that Risa trap for the controller,
and the trapping strategy 7 described in Theorem 3.8 is a winning counter-strategy for the
environment in R.

. Compute L = Attrg(R). All states in L must be losing for the controller since Theorem 3.5

guarantees the environment has a counter-strategy 7 that will reach R in a finite number
of steps. Once the active state enters R, the previous steps extends the strategy 7 to ensure
no more Biichi transition is ever reached.

. Since L is an attractor for the environment, Theorem 3.10 states that L is a trap for the

controller, and Theorem 3.9 proves that G/L is a valid subgame. Therefore, we can set
G’ = G/L, removing only from our states any outgoing transition to L from the game.
This may induce a smaller subset of Biichi transitions B’ C B, since some Biichi transitions
may be removed from the game.

. Repeat the process until a fixed point is reached. Then, we must have Attr(B) = Q, @

being the remaining states in G. Since the controller can reach a Biichi transition from
anywhere in the remaining part of the game and still stay in this winning region, the
strategy o depicted in Theorem 3.5 is a winning strategy for the controller in Q.

Theorem 3.11. Biichi games are always determined with uniform positional strategies.

Proof. The previous description of Algorithm 1 constructs a winning strategy from all states ¢

of the game. It remains to prove that the algorithm eventually terminates. This will be proven

with an upper bound on the number of iterations in Theorem 3.13. O

3.2.2 Time Complexity
Theorem 3.12. Let G = (Qo, Q1, 6, B) be a Biichi game. Then, the attractor Attr;(S) of any subset

S C 6 UQ of states and transitions can be computed in O(m) time, where m = |4|.

3.2 Solving a Biichi Game 20

Proof. The following algorithm works by recursively removing from the game any state that
belongs to the attractor, or any transition that either belongs to S or ends in the attractor.
First, remove all transitions in S N ¢ and all states in S N @ from the game.

* When any transition (g, ¢') is removed, if ¢ € @Q;, then ¢ belongs to the attractor: remove ¢
from the game. Otherwise, if ¢ € ()1—;, is there are no more outgoing transition from g, it
also belongs to the attractor: remove ¢ from the game.

* When any state ¢ is removed from the game, remove all of the ingoing transitions of ¢
from the game.

The set of all states that has been removed from the game defines the attractor. This algorithm
will always delete any transition that has been visited, so no transition can be visited twice,
ensuring a maximal time complexity of O(m). O

Theorem 3.13. Let G = (Qo, 1,0, B) be a Biichi game. Then, Algorithm 1 can solve the game in
O(nm) time, where n = |Q| and m = |0|.

Proof. Any iteration of the main loop consists of at most two attractors being computed. Theo-
rem 3.12 shows that this can be done in O(m) time.
For every iteration,

e either R # (), then L # () and therefore at least one state is removed from G during the
iterati@,
e either R = () and the algorithm halts.

Since there can be no more than n states to be removed, the algorithm performs at most n
iteration of the loop, ensuring a maximal time complexity of O(nm). O

Chapter 4

Improvements

This chapter goes into key improvements to algorithms for solving Biichi games, focusing on
two main areas: the decomposition of strongly connected components (SCCs) and the opti-
mization of data structures. These enhancements address the efficiency and scalability issues
encountered in previous methods, proposing new approaches that streamline computations
and adapt to various game configurations.

Section 4.1 introduces a significant improvement for Algorithm 1, which struggles with cer-
tain game classes where it runs in Q(nm) time. By decomposing the game into its strongly con-
nected components before applying the algorithm, the process is made more efficient, some-
times reducing the time complexity to linear time for specific classes of games. This section
details the improved algorithm, presents a proof of its efficiency, and discusses its implications
for parallel processing and overall computational performance.

Section 4.2 shifts focus to data structures, highlighting the limitations of existing implementa-
tions when dealing with SCCs. A novel data structure, designed to facilitate efficient partition-
ing and processing of each component, is proposed. This structure aims to provide quick access,
deletion, and iteration capabilities tailored to the needs of Biichi solvers, thereby enhancing the
overall performance and manageability of the algorithms.

4.1 Strongly Connected Components

Chatterjee et al. (2008) identified a class of standard Biichi games from which the traditional
Biichi solving algorithm runs in 2(nm) time, and proposed a different algorithm to solve these
specific kind of games in linear time, while being at worst O(m) slower than the traditional
algorithm. Figure 4.1 represents a class of transitional Biichi games roughly equivalent to the
class depicted in Chatterjee et al. (2008), adapted for transitional games, where Algorithm 1
runs in (nm) time.

However, a simple improvement on Algorithm 1 allows it to also run in linear time over
this class of games, while still being at worst O(m) slower than the original algorithm. This
improvement, detailed in Algorithm 2, consists in decomposing the game in strongly connected
components at first, and then running Algorithm 1 on every component.

4.1 Strongly Connected Components 22

Algorithm 2: Improved algorithm to solve a Biichi game

Input: A transitional Biichi game G = (Qo, Q1, 6, B).
Output: The set W; of winning states in G for the controller.
Wi +— @,'
Decompose G into strongly connected components R = (Ry, Ry, ..., R,);
foreach R; € R, in topological order do
foreach (¢,¢') € N (R; x R;) do

5 (6/(a,4) U (¢,);

if ¢ € Wy then

| B+— BU(q,q);

end
end
W1 «— Wi U Algorithm 1(G N R;);
end
return W ;

In more details, let G = (Qo, @1, d, B) be a transitional Biichi game.

¢ First, the algorithm decompose the game into strongly connected components. This can
be done in O(m) time thanks to algorithms such as the one of Tarjan (1972).

¢ Sort the components topologically so that when a component R; is being processed, all of
its successors are already processed.

* For each strongly connected component R;, replace the outgoing transitions of the compo-
nent by self loops. If the transition was heading toward a winning state, add the transition
to the set B of Biichi transitions. Then, call Algorithm 1 on the component alone.

* Once all components have been processed, the results can be easily combined.

nf(@)

SRR

Figure 4.1: Class of Biichi games where Algorithm 1 runs in Q(nm) time
Inf

e,

Figure 4.2: Decomposition of the game in Fig. 4.1

23 Improvements

Osr -l @@v/@

Figure 4.3: Class of Biichi games where Algorithm 2 runs in Q(nm) time

Theorem 4.1. Let G = (Qo, Q1,9, B) and consider two strongly connected components Ry and R;.
Calling Algorithm 1 on GNRy then GNR; is at least as fast as calling Algorithm 1 once on GN(RyURy).

Proof. Let ng = |Ry|,n1 = |R1| be the number of states in the two components. Suppose Algo-
rithm 1 over G N (Ry U R;) performs k iterations of the main loop. The total run time of this call
will be proportional to k(ng + n1), whereas calling Algorithm 1 over G N Ry then G N R; will
perform at most k iterations of the main loop for each call. The total run time of these two calls
would be at most proportional to kng + kny.

Therefore, splitting the game into components cannot asymptotically slow down the execu-
tion of the solver. O

Theorem 4.2. Algorithm 2 is at worst O(m) slower than Algorithm 1, while also being able to process
the games in Fig. 4.1 in linear time.

Proof. Theorem 4.1 shows that the worst situation for Algorithm 2 is when G consists of single
strongly connected component. In that case, Algorithm 2 will detect the component in O(m),
then run the original algorithm on the whole game without editing it, thus causing an O(m)
additional processing time at worst.

Regarding the class of games in Fig. 4.1, the games are decomposed into O(n) strongly con-
nected components of constant size. Each composant is thus processed by Algorithm 1 in con-
stant time, resulting in a O(n) total time complexity. O

However, while the decomposition in strongly connected components can also benefit the
other algorithms in Chatterjee et al. (2008), Algorithm 2 alone is not always faster than their
algorithms. For instance, Fig. 4.3 shows a class of games where Algorithm 2 runs in (nm) time,
since the whole game consists of a single strongly connected component, but some algorithms
of Chatterjee et al. (2008) still work in linear time. Algorithm 2 should be adapted to use other
algorithms than Algorithm 1 to process every strongly connected components.

As a last note on this algorithm, the decomposition of the game is also an important improve-
ment in parallelizability. Two independant strongly connected components can be solved in
parallel with no drawback, and there is also room for parallel solving two components that are
dependant, either by making assumptions on the winners of the destination of the linking tran-
sitions, or by waiting just enough to know the winners of these specific states instead of waiting
for the whole component to be solved.

4.2 Data Structures 24

4.2 Data Structures

Bailey (2010) describes some data structures to implement most Biichi solvers. However, these
structures are not adapted to efficiently process components of the game in isolation. This
section proposes a structure, partitioned_dlist, aiming at efficiently partitioning and pro-
cessing each component of a game efficiently.

Starting by looking into Algorithm 1, the game should be stored in a structure allowing:

* Quick deletion of any state in the game,

* Quick access to the data (such as the owner, ingoing transitions, and the out-degree) asso-
ciated with any state in the game,

* Quick iteration over all states in the game that are not yet deleted.

From the C++ standard template library, unordered_set and unordered_map achieve all
of these feats in optimal complexity: deletion and access can be done in constant time, and iter-
ation can be done only over states that are still active. However, these structures are internally
using hash maps, which are slow and unnecessary for our purpose.

Satisfying only the needs for Algorithm 1, a first draft of a convenient structure is depicted in
Fig. 4.4. Since we know in advance all of the states, we can store them statically. Deleted and
active states can be marked with a simple boolean, and a pointer next can indicate the next
active state, to allow efficient iteration over active states. In order to delete a state ¢, we need to
set the next of the previous active state from g to the next of ¢, thus skipping ¢ in the following
iteration. However, this requires to also maintain a pointer prev to the previous active state for
all states.

This yields a structure ressembling a doubly linked list, stored statically. Access to any state
can be done in constant time, as well as the deletion of any state, and traversing only the active
state is as easy as traversing a linked list.

q0 q1 q3 qa qs5 (]

qo q1 q3 qa (]

Figure 4.4: Deletion of a state in game represented as a static doubly linked list

25 Improvements

This structure can be easily adapted to support the decomposition of a game into strongly
connected components. The main idea is to replace the boolean with an indicator of which
connected component the state is part of, and linking all states of the same connected compo-
nent together. The resulting structure ressemble multiple doubly linked lists stored contigu-
ously and statically. The structure also features multiple heads, one for each component of the
game. Giving the head of any component to Algorithm 1 will allow the algorithm to efficiently
process the component in total isolation of the rest of the game.

Figure 4.5: Sample Biichi game and its associated partitioned_dlist

Chapter 5

Conclusion

In this paper, we have explored and addressed the challenges associated with efficiently solving
Biichi games, specifically focusing on transitional variants crucial for reactive system verifica-
tion. Our work underscores the significance of optimizing SPOT’s solver to mitigate the perfor-
mance bottlenecks traditionally associated with these games, which often exhibit exponential
complexity.

Future Directions While our current work has made substantial strides in Biichi game solving
within SPOT, several avenues for future research remain promising:

¢ Further Algorithmic Refinements: Exploring additional algorithmic strategies and opti-
mizations could potentially yield even greater improvements in solver performance, par-
ticularly for challenging classes of Biichi games. For instance, combining the improve-
ment on strongly connected components with other algorithms than Algorithm 1, the
traditional algorithm, could significantly improve again the efficiency of SPOT’s solver.

¢ Parallelization: Investigating the integration of parallel computing paradigms or general
programming on graphical processing units (GPGPU) could unlock new possibilities for
multiplying the speed of the Biichi game solvers.

e Standardization of partitioned_dlist: The partitioned_dliststructure could
very well benefit to other algorithms of the SPOT solver, for instance for the implementa-
tion of the algorithm of Zielonka (1998). Using a common data structure for many parts
of the solver could benefit to multiple solvers at once.

Chapter 6
Bibliography

Bailey, R. (2010). A comparative study of algorithms for solving biichi games. (page 24)

Chatterjee, K., Henzinger, T. A., and Piterman, N. (2008). Algorithms for btichi games. (pages
21 and 23)

Renkin, F.,, Schlehuber-Caissier, P., Duret-Lutz, A., and Pommellet, A. (2022). Dissecting ltlsynt.
Formal Methods in System Design, 61(2):248-289.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM]. Comput., 1(2):146—
160. (page 22)

Zielonka, W. (1998). Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135-183. (pages 5 and 26)

Zimmermann, M., Klein, F,, and Weinert, A. (2016). Infinite games. (pages 15 and 16)

	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.1.1 Deterministic Finite Automata
	2.1 Definition: Deterministic Finite Automaton (DFA)
	2.2 Definition: Run on Finite Automaton
	2.3 Definition: Complete Automaton

	2.1.2 -Automata
	2.4 Definition: -Automaton
	2.5 Definition: Run on -automaton

	2.1.3 Transitional Emerson-Lei Automata
	2.6 Definition: Transitional Emerson-Lei Automaton (TELA)

	2.1.4 Büchi Automata
	2.7 Definition: Transitional Büchi Automaton

	2.2 Two-Player Games
	2.2.1 Games
	2.8 Definition: Game
	2.9 Definition: Play

	2.2.2 Strategies
	2.10 Definition: Strategy
	2.11 Definition: Positional Strategy
	2.12 Definition: Winning Strategy

	3 Büchi Games
	3.1 Concepts
	3.1 Definition: Transitional Büchi Game
	3.1.1 Controlled Predecessor
	3.2 Definition: Controlled Predecessor (CPre)

	3.1.2 Attractor
	3.4 Definition: Attractor (Attr)

	3.1.3 Trap
	3.6 Definition: Subgame
	3.7 Definition: Trap

	3.2 Solving a Büchi Game
	3.2.1 General Algorithm
	3.2.2 Time Complexity

	4 Improvements
	4.1 Strongly Connected Components
	4.2 Data Structures

	5 Conclusion
	6 Bibliography

