TECHNICAL REPORT - Contributions to w-regular
energy problems

Rania Saadi
(supervisor: Philipp Schlehuber)

Technical Report n°output, July 8th 2024
revision bf5e93f

This report explores solutions for energy problems on w-regular automata as well as game theory con-
cepts and how they can be utilized for our solution. We introduce a method for solving w-regular energy
problems on generalized Biichi automata with multiple acceptance conditions in one run. The proposed
approach builds on a lattice structure that guarantees convergence to the same fixed point, regardless of
the back-propagation order, enabling parallelization. Upon full development and optimization, including
an extension for path retrieval, an implementation of the algorithm is planned on the Spot library.[1]

Ce rapport explore des solutions pour les problémes d’énergie sur les automates w-réguliers ainsi que des
concepts de théorie des jeux et comment ils peuvent étre utilisés pour notre solution. Nous introduisons
une méthode pour résoudre les problémes d’énergie w-réguliers sur les automates de Biichi généralisés
avec plusieurs conditions d’acceptation en une seule exécution. L'approche proposée utilise une structure
de treillis qui garantit la convergence vers le méme point fixe, quelle que soit 1'ordre de rétropropaga-
tion, permettant ainsi la parallélisation. Une fois pleinement développé et optimisé, y compris une exten-
sion pour la récupération de chemin, une implémentation de 1’algorithme est prévue sur la bibliotheque
Spot.[1]
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0.1 Introduction

Automata theory is a theoretical branch of computer science and mathematics, a tool math-
ematicians (such as Alan Turing, Alonzo Church, and John von Neumann) developed in the
mid-20th century by application and abstraction to imitate human actions seeking a way to
perform computations more efficiently and reliably. An automaton is an abstract model of a
machine that performs computations on an input by transitioning through a graph of states un-
til it reaches an accepting configuration. Systems described by automata were at first restricted
to a series of tasks that recieve a fixed set of inputs at predictable intervals then terminate.

finite automata: is used to recognize finite words, known as regular languages, they operate
on a finite set of states and transitions and are expressive enough to describe systems with finite
behavior.

timed automata: To work with real-time systems, we sometimes need knowledge of time that
decides behavior. Each transition is associated with a time constraint and the whole automaton
is associated with one or more clocks. While they are expressive enough to model systems
where behavior depends on time, they are often better translated to other types of automata for
easier problem-solving.

automata as weighted graphs: On a weighted graph we assign a cost to transitions between
states. In the context of automata theory, they often represent energy consumption or gain
which is useful to study feasible behavior. A well-known algorithm to study paths and behavior
relative to weights is the Bellman-Ford algorithm.

automata for infinite words: With the evolution of automation needs, we have progressed
towards reactive systems, systems that do not follow a definite sequence of actions and ter-
minate, but instead run indefinitely, responding continuously to input. We aim to be able to
formally prove their feasibility and robustness: feasibility is checked by solving for known ini-
tial conditions and costs, while robustness involves considering all possible responses from an
environment treated as an adversary against acceptance conditions. Applications range from
communication protocols to energy management in smart grids... etc.

Automata theory and temporal logic have proven effective in describing such systems. wr-
egular automata in particular, a subclass of finite automata, describes languages with infinite
words, which corresponds to infinite runs in automated systems. The letter "w" denotes an infi-
nite sequence, and "regularity” refers to describing automata with a finite number of states.
w-regular automata is mainly a tool to express liveliness properties that cannot be expressed
using looping automata as all states of looping automata are accepting and can only represent
a subset of w-regular languages that doesn’t involve eventuality. There are several classes of
w-regular automata tailored for various applications, such as Biichi automata, Rabin automata,
and parity automata. Each class is best suited for specific problems and acceptance conditions.
For theoretically infinite runs in timed weighted automata, we focus on Biichi automata.

w-regular languages A regular language A is a language that can be described by a regular
expression and verified with finite automata. A“ is the concatenation of A infinitely many times
and is an w-regular language for A not containing the empty word € (in which case A = A“).
The concatenation of A and A is, by definition, an w-regular language.

A¥ concatenated to A is not defined.
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The union of a finite number of w-regular languages is an w-regular language as well.
Every w-regular language is recognized by a nondeterministic Biichi automaton.

Our Objective:

We aim to extend the concept of energy feasible paths to energy w-regular problems. This in-
volves investigating multiple directions, including the use of a modified Bellman-Ford algo-
rithm to construct a coherent trace and reconstruct a run from it, and leveraging the game-like
interaction between the agent and the environment to handle multiple acceptance conditions.
In the following sections, we will introduce the w-regular energy problems and provide an
overview of the current literature. We will discuss trace extraction using the modified Bellman-
Ford algorithm[2] and its associated challenges. We will then introduce a unified solver al-
gorithm by gradually building on game theory concepts, highlighting similarities with parity
games[3]. We will delve into the details of our implementation and the benefits of using a lattice
structure[4]. Finally, we will conclude by outlining future improvements we aim to incorporate
into our research and discussing the potential of our solution. Additionally, we will briefly
mention recent advances made toward similar goals.

I would like to thank my supervisor, Philipp Schlehuber, for his guidance throughout this ex-
citing semester and for introducing me to the world of research, as well as for his valuable
feedback on my report.
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0.2 State of the art : w-regular energy problems

Consider a network of electric vehicle charging stations over a busy part of the city connected
to a smart grid. It would be ideal for the vehicles if energy were available for full charging
when they reach a station. What we seek is a good balance between preventing energy shortage
and responding to the vehicles’ needs. Each charging station has the eventuality of charging a
vehicle and operates under the different energy levels the grid supplies (energy constraint). In
this chapter, we explore tools to model such systems, check their feasibility, and extract their
feasible configurations.

0.2.1 Biichi automata

A Biichi automaton is a tuple A = (M, S, so, T) with :

* M a finite set of colors representing acceptance conditions.
* Saset of states.
* 50 the starting state with 5o € S.

T asetof transitions t = (s, M,s’) with T C S x 2M x S. For a weighted Biichi automaton
(WBA) that expresses energy for example, we write t = (s, M, w, s') and T C Sx2M x Rx S
with w € R representing the assigned weight. For a finite WBA w is an integer.

A run in a Biichi automaton is a finite or infinite sequence of states p.

A concatenation of two runs p; ps is defined if p; is finite and the last state of pl is equal to the
first state of ps.

p., denotes infinite iteration and is the injective limit of p,, (or direct limit, could be thought of
as the point at which a composition returns the same object, the limit)

For a weighted Biichi automaton we also associate an accumulated weight called initial credit
ic to each state and limit it by an upper bound b.

0.2.2 w-regular energy problems

Energy problems are feasibility problems with additional energy constraints that need to be re-
spected throughout an infinite run. In the context of WBA, energy is represented by weights.
We cite[5]:

* Lower-bound problems: given an initial credit, the accumulated weight never drops be-
low 0 during a run. They express the feasibility of a run given an energy level.

¢ Interval-bound problems: the accumulated weight stays within a given interval. Mean-
ing the run is deemed invalid as soon as the energy crosses either bounds.

* Lower-weak-upper-bound problems: the accumulated weights never drop below zero
and are bounded at the weak upper bound if they exceed it. They express the feasibility
of a run given an energy level and a limited capacity.

Each one of these problems deals with different decidability properties and complexities. Dur-
ing the rest of the report, we will discuss lower weak upper bound problems as they are the
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closest to a physical system with bounds on availability and capacity. We define a weak upper
bound wup and an initial credit ic.

0.2.3 Emptiness check and path retrieval

A path is said to be (c, b)-feasible if accumulated energy is never negative for a given initial
credit and weak upper bound.

The problem is seen as equivalent to searching for (c, b)-feasible lassos which consist of a possi-
bly empty prefix that’s traversed only once and a cycle that’s looped indefinitely.

Such lassos are obtained by first finding all energy optimal paths to construct the prefix, run-
ning Couvreur’s algorithm to retrieve the SCCs, degeneralizing them then checking for energy
feasible cycles.

A modified Bellman-Ford algorithm allows the detection of negative cycles in polynomial time
(if energy is propagated in between iterations, which becomes necessary because of the weak
upper bound).

The algorithm answers for feasibility and leaves a useful trace but the latter needs to be recon-
structed as there are reasons that make it that the trace gets broken and overwritten.

For instance, loops that need to be taken a certain number of times to allow access to more re-
warding ones have their trace overwritten. To avoid the necessity for a complete reconstruction
of the path, modifications have been brought to the algorithm to store all predecessors.

The retrieval of the path is then done through backward exploration over lists of predecessors
which is essentially a combinatorial problem over all possible lists with repeated predecessors
for a standard graph traversal technique. This calls for optimization; therefore, a few lemmas
are established :

Lemma 1. Nested loops are not necessary for energy feasibility. Indeed, every path of the form
s—=(a—=y—= (1) =2y —a)t =d
can be rewritten as:
e s—=a—y — (1)T = ya = a — d when the inner loop and its suffix are energy optimal for d.

e s—a—y — (1)T =2 y2— (a = y1 = y2 = a)™ — d when the inner loop is energy optimal
for yo and the outer loop is energy optimal for d.

By decomposition, we can do the same for more than two nested loops. All runs can then be written as a
series of cycles and infixes, both possibly empty, that are taken one time followed by a looping cycle.

Y2 Y1

a0

Figure 1: Figure illustrating nested loops from [2]



0.2 State of the art : w-regular energy problems 8

Lemma 2. Given two strictly energy positive loops T, and 1o as in the figure below, sharing a common
reachable state that belongs to the path from the source to the destination. Given some initial credit and

Figure 2: Figure illustrating the loops 7; and 7 sharing a common reachable state from [2]

a weak upper bound, the maximal energy is attainable in d by one of the following paths:
* s—yr—~>a—>y —d
* syl —a—=Ys =T Sys—a—ys—d
o syl —a—Ys > Ty Sy —a—ys—d
* Syl a— Y3 T Sy a—ys > Ty S Ys—a—ys—d
* S Yl A Ys Ty S Ys—a—Y3 T S ys—a—ys—d
Depending on the energy optimal predecessors. This shows that revisiting an energy-positive loop is
never necessary.
0.2.4 The trace extraction algorithm

The algorithm propagates initial credit along a path and compares it to the minimum desired
energy at the destination. Following the last predecessors is not possible as they can lead to an
infinite loop. The notion of chronological coherence is then introduced.

A run is considered chronologically coherent with the extended predecessors P if and only if:

¢ Predecessors of states appearing once in a run are in P.

¢ For states appearing more than once, for a new P, of predecessors there exists a monotone
index array such that P,[i]| = P[idz[i]].

Due to the asymmetry caused by the weak upper bound, back-propagating over all chronolog-
ically coherent traces does not return the reversed path, checks of energy feasibility by forward
propagation are still necessary.
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This method works well for one acceptance condition but must be run multiple times for mul-
tiple acceptance conditions. This calls for the creation of an operator that can be applied to a
whole graph and stores more information on its trace. This takes us to the next chapter, unified
solver algorithms.
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0.3 Unified solver algorithms

In this section, our goal is to explore the foundations to develop an algorithm that holistically
analyzes the entire automaton and effectively eliminates the need for separate searches over all
back edges. To achieve this, we are going to propose a method inspired by parity game solvers,
which will be thoroughly introduced in the following sections. The reasons behind this choice
and the specific adaptations made to suit our problem will be discussed in detail in the next
section. Before that, we will present the fundamental principles of game theory, parity games,
and their solvers. Game theory is the study of strategic decision-making. Traditionally associ-
ated with economics and social sciences, it offers an effective model for settings where multiple
actors make interconnected dependent choices. Today, it finds its place in computer science,
particularly in the analysis of reactive systems; the systems on which we defined our energy
problems.

Interactive computation, a paradigm shift from the classical view of input-output processes, rec-
ognizes that modern computational systems have to take into consideration their environment
as they don’t simply execute and terminate. They run indefinitely and maintain a dialogue with
the environment.

The model allows a rich set of tools and operations to study the properties of a setting. The
system and its environment represent players, their possible actions represent moves in the
game, and the desired outcome becomes the winning condition. We find ourselves answering
the same questions, feasibility and robustness.

In addition to the new perspective we get on our energy problems, we also move to more global
definitions of the solutions on our automata instead of path-like separated ones.

0.3.1 Weighted automata and games
We start by presenting the defining components of a game.
Definition 1. An arena is a tuple A = (V, Vo, V1, E) with

* V a finite set of vertices.

o Vo, Vi C V disjoint subsets such that V- = Vi, UV, denoting the vertices of Player 0 and Player 1
respectively.

* E CV xV asetof (directed) edges such that every vertex has at least one outgoing edge (the
automaton must be non-blocking).

We also define a sub-arena of A induced by v as:
AVO = (Vﬁ%a%m‘/ELVI ﬂVo,Eﬁ(Vb X V0)>

Definition 2. A play is an infinite sequence p = pop1p2 - -- € V¥ such that (pn, pny1) € E holds for
every n € N. The set of plays in A is denoted by Plays(A), the set of all plays starting in v by

VW CV, Plays(A, V) = U Plays(A,v)
veV)

Definition 3. Vi € {0, 1}, a strategy for Player i in an arena (V, Vo, V1, E) is a function

o:V* xV; = V such that
Yw e V* Yo € V;, W € V with o(w,v) =" and (v,v') € E
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Now that we defined the building blocks, there are a few interesting properties that can be
associated with a game to give information about the nature of the solution we are looking for
and how to approach it.

Definition 4. A consistent play popi1p2 - - - in an arena A = (V,Vy, Vi, E) is consistent with a strat-
egy o for Player i in A if:

Vn € an+1 = O'(po' pn) ZUZthpn eV

Given a vertex vy, we denote the set of plays that are consistent with o and start in vo with Plays(A, vo, o).
Finally, we define Plays(A, Vo, 0) for Vo CV by

Plays(A,Vy,0) = U Plays(A,v,0)
veVy

Definition 5. A game G = (A, Win) consists of an arena A with a vertex set V and a set of winning
sequences Win C V“.
A sequence p is winning for Player 0 if, and only if, p € Win, otherwise, it’s winning for Player 1.

Definition 6. The winning region W;(G) of Player i in a game G is the set of vertices from which
Player i has a winning strategy.

Lemma 3. We have Wy(G) N W1 (G) = 0 for every game G.

Definition 7. A winning strategy o for Player i in A is a winning strategy from a vertex v € V if
every play that is consistent with o and starts in v is winning for Player i. We write:
o is a winning strategy if Plays(A,v, o) C Win for i = 0 and Plays(A,v,c) C V¥ \ Win for i = 1.

Definition 8. A positional strategy o for Player i in an arena A = (V, Vy, Vi, E) is positional if:
Y(w,v) € V* x V;; o(wv) = o(v)

Identifying when a game can be won using a positional strategy is crucial, as it allows for
significant optimization of computational resources. Positional strategies focus solely on the
current state of play, eliminating the need to store or process information about past moves or
future possibilities. This approach substantially reduces memory requirements and computa-
tional complexity, leading to more efficient algorithms.

Definition 9. Determinacy and Positional Determinacy. Let G be a game with vertex set V. We say
that G is determined if Wo(G) U W1 (G) = V.

In addition to that, if one of the players has a positional winning strategy from every vertex in the Arena,
we say that G is positionally determined.

Definition 10. A uniform positional winning strategy. Let the game G = (A, Win). A strategy o
for Player i is a uniform positional winning strateqy if it is positional and winning from every vertex in
the winning region W;(G).

To develop strategies, we analyze patterns in how moves are controlled by regions and estab-
lish the following definitions.

Definition 11. A trap. Let A = (V, Vo, V4, E) be an arena and let T C V. T is a trap for Player i, if
fora PlayeriVv € TNV;,¥Y(v,v') € E,;v' €T
and

foraPlayer1-iVv e TNVi_;, 3 € T;(v,v') € E
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Lemma 4. Let T be a trap for Player i in an arena A.
1. The restriction Ap of A to T is a valid sub-arena.
2. If T" is a trap for Player i in Ay, then it is also a trap for Player i in A.

To make use of traps in our strategies and identify whether they can be used in a game con-
figuration we define prefix independence.

Definition 12. Prefix-independence. A winning condition Win C V¥ is prefix-independent, if:
Vpe V¥ peWin < YweV* w-pe Win

Lemma 5. Let G = (A, Win) be a game with prefix-independent winning condition Win. Then, W;(G)
is a trap for Player 1 — 1.

Definition 13. A game on weighted automata is a tuple G = (S1, S, so, T') where:
* Sy and Sy are two disjoint sets of locations (states).
® sq is the initial location.
e T C(51US2) xR x (S1USy) is the set of transitions.

Ag = (51U Sa, 80, T) is a weighted automaton.

 The automaton has to be non-blocking, meaning, every location has at least one outgoing transition.
According to Martin’s determinacy theorem, such games are determined.

Definition 14. A Polish space is a topological space homeomorphic (topologically equivalent) to a com-
plete metric space (a set with a defined distance function between its elements). Furthermore, the space
must possess a countable dense subset, meaning a subset where every point in the space is arbitrarily
close to at least one point in this subset.

Theorem 1. Martin’s determinacy theorem: every two-player perfect information game (all players have
complete knowledge of moves made in the game) where players take turns playing natural numbers, and
the set of all possible moves forms a Polish space, is determined.
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0.3.2 Biichi games

Definition 15. Let A = (V,V,, V1, E) be an arena and let F C 'V be a subset of A’s vertices. Then, the
Biichi condition Biichi(F) is defined as:

Biichi(F') :== {p € V¥ | Inf(p) N F # (0}
We call a game G = (A, Biichi(F)) a Biichi game with recurrence set F.

to build the attractor-based method to finding the winning region of a Biichi game we define
F" C F that represents vertices to which recurring visits are still desirable for Player O for a
given round n.

We initialize with F® = F, as every vertex in F is potentially desirable at the start of a game.
Then, in each round, we determine the vertices from which Player 1 can prevent reaching F™
at all. They represent the n-th under-approximation of W{* and they become undesirable so we
remove them to obtain the new set F"*! and we repeat the process described above until the
under-approximations become stationary. The final approximation yields the winning region
of Player 1 from which we can deduce the winning region of Player 0.

Formally we write the construction below:

Construction 1 (Recurrence). Let A = (V,Vy, V1, E) be an arena and let F C V. The recurrence
construction for Player i is defined inductively as:

e FO=F
o W =V \ Attro(F"™) for everyn > 0
o Fntl = [\ CPre; (W) for every n > 0
Lemma 6. Let G = (A, Biichi(F)) be a Biichi game. Then,
Wi(G) = | W and Wo(G) =V \Wi(G)

neN

0.3.3 Co-Buchi games

Before defining a Co-Biichi game we define a dual arena to establish the link with Biichi games.

Definition 16 (Dual Arena). Let A = (V,Vy, Vi, E) be an arena. The dual arena A’ of A is defined as
A= (V,V1,V, E)

Co-Biichi games are the dual of Biichi games, Player 0 aims to visit vertices from a given set
C only finitely often. Stated differently, from some point onwards the play has to be restricted
to the complement of C.

Definition 17. Let A = (V,V,), V1, E) be an arena and let C C 'V be a subset of A’s vertices. Then, the
co-Biichi condition is defined as:

co-Biichi(C):= {p € V¥ | Inf(p) C C}

We call a game G = (A, co-Biichi(C)) a co-Biichi game with persistence set C.

Lemma 7. Since co-Biichi and Biichi games are dual. Consequently, we conclude the same results for
co-Biichi games as for Biichi games.

Just like Biichi games :

Theorem 2. Co-Biichi games are determined with uniform positional winning strategies and can be
solved in polynomial time in the number of edges of the underlying arena.
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0.3.4 Parity games

In Biichi games, Player 0’s goal is to reach a fixed set of vertices infinitely often or at least once
for co-Biichi games. The vertices of the target set have equal priorities. A generalization of that
and a more expressive game is a game where each state is assigned a different priority and the
Player aims to satisfy a condition on the highest priority state encountered. Such games are
known as Parity games.
In a parity game, each state is assigned a color, natural numbers that represent priority. In
general, Player ¢ wins a play if and only if the minimal (or maximal depending on the type of
game) encountered infinitely often is of parity 7. There exist multiple configurations of parity
games combining min max and parity. In the context of this report, we focus on the min even
parity games during which Player 0 ensures that the minimal color seen infinitely often is even.
Parity games play a central role in the theory of infinite games and have important applica-
tions in logic and automata theory.

Definition 18 (Parity Game). Let A = (V, V), V1, E) be an arena and let 2 : V' — N be a coloring of
its vertices. The parity condition is defined as:

Parity(Q) := {p € V¥ | min Inf(Q(po)2(p1)2(p2) - - ) is even}
We call a game G = (A, Parity(Q)) a parity game.

Lemma 8. Every parity condition Parity(S2) is a boolean combination of Biichi conditions (thus equiv-
alently, of co-Biichi conditions).

Due to Biichi and co-Biichi games being expressible as two colors parity games (color 0 to ver-
tices in F' and color 1 to the rest of vertices for a Biichi game), we can make the same conclusion
as with Biichi games.

Theorem 3. Parity games are determined with uniform positional winning strategies.

0.3.5 A parity games solver with progress measures

The idea behind progress measures is to conceptualize a witness for worst-case scenarios for
Player 0 over the whole automaton. And a monotone operator that pushes the witness towards
a fixed point that outlines a loss region for Player 0. This also implies the need to define values
on the witness after which we are certain that a state is not desirable for our Player[6].

Definition 19 (Score Sheets). Let G = (A, Parity(QY)) be a parity game with vertex set V and let n, =
{v € V' | Q(v) = c}| denote the number of vertices labeled by color ¢ with d = max{c € Q(V') | c odd}
being the largest odd color in G.

A score sheet s of G is a tuple of counters:

s =(81,83,-..,84-2,84) € H [ne + 1)
ce{1,3,...,d}

with the element T representing a tuple with all its counters maxed out.

The set of all score sheets of G is denoted by Sh(G).

Score sheets are partially ordered according to their lexicographical order which represents desirability
for Player 0.
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Definition 20 (Score Sheet Update). We define the update of a score sheet s by a color c.

s®c=T ifs=T

. ($1,--+y8¢—1,0,...,0) if ¢ is even
S Cc =
(s1,---38¢7—2,8c +1,0,...,0) ifcisoddand c is defined
T otherwise.

where ¢ = maxc* < c | c* odd and sc<p, .

Lemma 9.
Vso,51 € S,Ve € C:(sg<s1) = (s0Dc<s1Dc)

Where:

S is the set of all score sheets.

C'is the set of all colors.

o < s the partial order on score sheets.

@ is the update operation defined for score sheets and colors.

Definition 21 (Progress Measure). Let G be a parity game with vertex set V. A function p : V —
Sh(G) is a progress measure for G if

* Vv e Vo, € Succ(v) : p(v) > p(v') & Q(v)
* Yu e Vi,V € Succ(v) : p(v) > p(v') & Q(v)

PM(QG) is the set of all progress measures for G.
The evaluation || - || : PM(G) — 2V of a progress measure g is defined as the set of vertices for which the
score sheet isn’t maxed:

lpll ={veV|p()# T}

Definition 22 (Progress Measure Ordering). Let G = (A, Parity(Q2)) be a parity game with vertex
set Vandlet PG = {p | p: V — Sh(G)}.
We define a partial order < on PG via p < ¢ if Vv € Vp(v) < ©'(v)

Definition 23 (Lift-operator). Let G = (A, Parity(Q)) be a parity game with A = (V,Vy, V4, E). For
every v € V, we define a function Lift : PG — PG via

o(u) ifu # v,
Lift (p)(u) = { max{p(v), min{p(v') ® Q(v) | (v,v') € E}} ifu=vandu € Vy,
max{p(v), max{p(v’) ® Q) | (v,v') € E}} ifu=vandu e V.
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(2,1)/4 @ T/2 (2,2)/4 @ T/2 (2,2)/4 @ T/2

@ (0,0)/0 T/1 @ (0,0)/0 T/1 @ (0,0)/0 T/1
(0,0)/2 0. 0)/0 (0,0)/2 u.u)/o (0,0)/2 @‘@

Figure 3: A few iterations from the progress measures algorithm from [7]

0.3.6 Extended progress measures for energy Biichi problems

The progress measure method for solving parity games is notable for its structure, which is
particularly advantageous for algorithms operating on entire sets of states. This characteristic
aligns well with our ultimate goal of solving generalized energy problems on generalized Biichi
automata. Moreover, adapting this method would enable us to extend our modified version to
parity games as well, thus broadening its applicability[7]. Before detailing our solution, let’s
first explore the mathematical structure of progress measures.

Lemma 10. Let G = (A, Parity(S2)) be a parity game with vertex set V. Then, every lift-operator Lift,
is =-monotonic, i.e., p =X ¢’ implies Lift (p) =< Lift, (¢').

Lemma 11. Let G be a parity game. Then, (PG, <) is a complete lattice.

Lattices are an important structure for computation as they help define an order for events
in distributed computations thus guaranteeing both robustness and termination of algorithms.
They are frequently used in model checking as they are ideal for static analysis and verification
of properties like correctness.

0.3.7 Lattices

Definition 24. A lattice is a partially ordered set (poset) in which every pair of elements has a unique
supremum (least upper bound) and a unique infimum (greatest lower bound). We define it as the tuple
(L,,,) with:

o [ aset of elements.
* < a partial order relation on L.
* (meet) is the infimum operation.
* (join) is the supremum operation.
V(a,b) € L:
* a A bis the greatest element of L that is less than or equal to both a and b.

* aV bis the least element of L that is greater than or equal to both a and b.
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Properties

¢ Idempotent Laws:
aNa=a and aVa=a

e Commutative Laws:
aANb=bAa and aVb=DbVa

e Associative Laws:

(anb)Ahec=an(bAc) and (aVb)Ve=aV (bVc)

Absorption Laws:
aN(aVvb)=a and aV(aAb)=a

* Monotonicity: If a < b, then:

aANc<bAc and aVe<bVec

Example

The power set of {a, b, c} ordered by set inclusion (C):
o L= {0,{a}, {0}, {c}, {a. b}, {a,c}, {b, ¢} {a, by},
e Meet (M) is set intersection (N).

¢ Join (V) is set union (V).

Some types of lattices

¢ Complete Lattice: A lattice in which every subset has both a supremum and an infimum.

Bounded Lattice: A lattice with a greatest element (top) and a least element (bottom).

Distributive Lattice: A lattice that satisfies the distributive laws:
aN(dBVe)=(anb)V(aAc)

aV({bnrc)=(aVDb) A(aVec)

Complemented Lattice: A lattice L is complemented if every element a has a complement
b such that:
avVb=1 and aAb=0

Boolean Lattice: A complemented distributive lattice.

Lattices in game theory

In game theory, lattices can represent the structure of strategy spaces. In a two-player game, the
set of strategy profiles (complete specification of strategies for all players in a game) can form
a lattice, where the partial order represents the dominance relation between strategies. The
strategy profiles in the progress measures method for parity games are encoded in the score
sheets.
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Tarski’s Fixed Point Theorem

Theorem 4.

Let (L, =) be a complete lattice.

Let f : L — L be an increasing mapping.
Let F be the set (or class) of fixed points of f.
Then (F, =) is a complete lattice.

Let S € F and s = \/ S be the supremum of S in L. We define the upper closure of s:
U=[s,T]={ze€L:s=<uz}
We prove that U is closed under f:

VaeS:a=s = a= f(a) <
= s = f(s)
VeeU:s<ax = f(s)=<f
= s = f(x)
= fl)eU

f(s)

(by definition of supremum)
(

)

(transitivity)

Since U is a closed interval in a complete lattice, (U, <) is also a complete lattice. The restric-
tion of f to U is an increasing mapping from U to U (a mapping that also preserves the order
relations between the elements of the set).

This theorem is crucial for progress measures in parity games as it guarantees the algorithm’s
termination. It ensures that the Lift, our order-preserving function, applied to the complete
lattice of score sheets, will converge to a fixed point—the solution.
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0.3.8 The algorithm

Given a weighted directed graph, G = (V,T') with V the finite set of vertices being the N first
integers and T' C V' x N x V the set of transitions ¢ = (v,w,?’) a transition from v to v’ with

the cost of w. A finite run r = vg, v1,- -+ ,vr—1,vr is called energy feasible for the initial credit
ic and the weak-upper bound b if the energy accumulated along the run never falls below zero.
The corresponding energy sequence es = e, e1,--- ,er_1 is defined as

€p = C

€e; = min(ei_l + w, b) for (vi_hw,vi) eT

We denote e;,_; the attained energy of the run.

Energy Reachability

A typical question for such graphs is the energy optimal reachability problem which answers
for the maximally attainable energy for some states given a weighted graph G, an initial state
50, an initial credit ic and a weak-upper bound b.

As discussed in the previous chapter for Lower-weak-upper-bound problems, even in the pres-
ence of energy-positive loops, applying Bellman-Ford algorithm until a fixed point is reached
yields the solution. The algorithm can be simplified as shown in Alg. 1.

Algorithm 1 Forward BF
. E=[-1,---,-1]
2: Elz]=c¢
3: while true do
4 Fo=F
5 for (v,w,v") € T do
6: ¢/ = min(Eo[v] + w, b)
7 if ¢/ > 0 then
8 E[v'] = max(Eo[v'],¢)
9 end if
10: end for
11: if £ = Fo then
12: break
13: end if

14: end while

In Alg. 1, an energy of —1 for a state indicates that it is not energy reachable.

Minimal Initial Credit

To build a question that aims for a more descriptive solution, consider the following problem,
given the graph G, some final vertex y, and a weak-upper bound b, what is the minimal initial
credit required such that there exists an energy feasible run to y from some or all states? This
problem can be treated as the dual of the Energy Reachability problem. Rather than calculating
how far energy can spread from a starting point, we traverse the graph backward to determine
the minimum energy needed at a potential starting point to reach a specific end state. Suppose
we have some state v’ with necessary initial energy ¢’ and there is a transition (v, w,v"). We
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want to find the necessary initial energy e in v such that a passage through the transition puts
us at energy ¢’. That can be expressed with:

e=¢ée —w

One must still keep in mind that several due to asymmetry, cases can occur depending on the
values w, e, and b controlling determining the value of the initial energy e:

1 ife! —w>b
e= M
max(0,e/ —w) else

While the second case is normal propagation with the restriction that initial credit can not be
negative (as needing negative energy is nonsensical), the first case corresponds to transitions
that can not be taken since the initial credit is bounded by the weak-upper bound (we would
need more energy than the upper bound allows us to store).

This problem can also be solved by a modified version of Bellman-Ford as shown in Alg. 2

Algorithm 2 Forward BF
. E=b+1,---,b+1]
2: E[y] =0
3: while true do
4 Fo=F
5 for (v,w,v") € T do
6: e = max(0, Fo[v'] — w)
7
8
9

if e < b then
E[v] = min(FEo[v],e)
end if
10: end for
11: if £ = Fo then
12: break
13: end if
14: end while

A state is assigned the necessary initial energy of b+ 1 if there is no energy-feasible path from
it to the target state y. It’s a value we will never encounter in a normal run, we can replace it to
our convenience for application of other operations as long as it doesn’t conflict with existing
possible energy values.

A progress measure for Biichi automata

After establishing how we're going to reason about energy we will construct our extended
progress measures for Biichi automata with, this time, a positive witness. The solution will
be obtained by means of a fixed point computation as with classic progress measures with the
exception of the starting point which will be the worst element for each state since we are oper-
ating with a positive witness.

Preliminaries Consider the unweighted Biichi automaton B and some finite run
r = vg, V1, - ,VL_2,Vr—1. s it possible to find a simple structural condition on the run that
allows us to infer that there exists a subrun rs = vy, V11, , Vm—2,0m With0 <n <m < L—1
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that is with certainty an accepting cycle? meaning is we have v,, = v,, and there is at least one
accepting transition in the subrun.
Note that we do not yet look for proof of the shortest such run nor do we demand that the cycle
has to be simple. We aim to find a condition that implies an accepting cycle. We are not trying
to decide if there exists a cycle on where the run the condition must hold.
Under these assumptions, we argue that a simple condition is to count the number of accepting
transitions in the run r. If the latter exceeds the number of accepting transitions in B, then the
run is guaranteed to include an accepting cycle as at least one accepting edge has to be visited
at least twice.

We assume a finite run containing N, + 1 accepting transitions
T = V0, U1, Uny Untly -« -y Umy Ut 1s - - -, VL —1 Withn < m < L.
Since we encountered N, + 1 accepting transitions, there must be one repeated accepting tran-
sition in the run.
Let’s mark its first occurrence (v, v,+1) and its second occurrence (v, Um+1), which implies
Un = Um and Un4+1 = Um41-
A finite run with a repeated state is a cycle. What's left to prove is that this cycle must contain
an accepting transition.

¢ Case 01:
m=n-+1,v, =41
Un = Um = Unt1 = Um+1
Our cycle is thus a self-loop containing the accepting transition (vy,, vy41).

¢ Case 02:
m>n+1
There exists a path between v,, and v,,, and it contains v,,;, which means it contains the
transition (v, v,+1), implying at least one accepting transition.
In all cases, we obtain a sub-path that is a lasso (prefix, cycle) with the prefix possibly
empty and the cycle starting at the first repeated transition, which is guaranteed to hap-
pen the latest at v,.

Simple Biichi measure for acceptance

We transform the condition detailed above into a simple measure for Biichi automata. This
measure tracks the number of accepting transitions visited to help infer the existence of an
accepting cycle.

The score sheet Sh for the simple Biichi measure is a natural number as it’s essentially a
counter. It’s updated by incrementing whenever an accepting transition is encountered. From
the previous condition we established for accepting cycles, we bound the value by the number
of accepting transitions in the graph plus one. Once this value is reached, we are sure that there
exists at least one accepting transition that was visited at least two times.

We denote the number of accepting transitions in B as N,.. and we define the following opera-
tions for updates

a®® b=min(a +b,K) and a ® b = max(a + b, K)

6% and Sx are defined in a similar manner.
As before, the progress measure is defined as a function that associates a score sheet to each
vertex: p: V +— Sh(B) with additional constraints that we will talk about in detail later.
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Lift operation and algorithm

The Lift operation updates the score sheet of some vertex given the current progress measure.
For just the current score sheet, it is defined as follows:

p(v) ifu v
max({p(v') &Nt acc | (v,acc,v’) € T}) else

Lift, (p)(u) = { 2)

That is the new score for some vertex is the best of the successors” scores updated with their
respective transitions. Note that the value does not depend on the current value. Unlike score
sheets for parity conditions that can both increase and decrease depending on the parity and
the magnitude of the color we are adding, score sheets that measure the number of encountered
accepting transitions can’t decrease, as long as we take the best transitions the sum will be the
same.

We say that p is a progress measure for B if it is a common fixed point for all vertices. The
states that can be extended to accepting runs are those with p(v) = Ng.. + 1. The strategy to
find an accepting lasso is to prolong a run with the first (in the order of outgoing transitions)
transition to a state for which p(v") = Ny + 1 holds as well until a cycle is found.

Simple Weighted Biichi Measure for acceptance and energy

we will now construct a score sheet to solve the Energy Biichi Problem in its minimal initial
credit form. To this end, the score sheet is extended to be a tuple: (ic, ent,) with ic being the
necessary initial credit and cnt;, being the counter of the simple Biichi measure.

Preliminaries
Consider some finite run in a weighted Biichi automaton B, » = vg, v1,- -+ ,vr—2,vr—1 With a
weak upper bound b.
Now let us use the score sheet of simply weighted Biichi measure on this trace, by constructing
a sequence of them seq = scg, sc1,- -+ ,ScL—_2,scr—1. As the score sheet is back propagated we
have
scr,—1 = (0,0) 3)
sci—1 = s¢; © (w, acc) with (v;_1,w, acc,v;) € T 4)

where © is defined between a score sheet and an accepting condition is defined as
sc’ = (ic,enty) = sc ® (w, acc) = (ic, entp) ® (w, acc) = (ic — w, enty + acc) (5)

The sequence of score sheets, as constructed, allows us to draw conclusions about potential
accepting runs.
As already seen, if the required initial credit is less than or equal to b, the run is considered
energy feasible given an initial energy of at least ic_0 (derived from scy = (ico, cnty) ).
For acceptance, cnt, keeps track of the number of accepting transitions encountered during
the run. If this number exceeds N,.., we can conclude that a Biichi accepting cycle exists,
disregarding energy. However, this alone does not confirm the existence of an energy-feasible
cycle.

To find a condition that satisfies both energy feasibility and acceptance, let’s divide the run
into three segments: 1'pre, Teye, and Tpost-
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In a scenario where 7,,5: does not contain any accepting transitions and requires an initial credit
of 0 before it is executed, r.,. represents the cycle containing all accepting transitions. The
energy accumulated during a single traversal of this cycle is —1, meaning that the necessary
initial credit increases by one with each traversal in the reverse direction. Lastly, r,,,. is energy
neutral and does not contain any accepting transitions. In this situation, r.,. can be traversed b
times before the total run becomes unfeasible and we can visit b(N,.. + 1) accepting transitions
this way. Reversely, this means that if we have (b + 1)(Nge. + 1) accepting transitions, then
not only are we certain that we have found an accepting cycle, but also we enforce its energy
feasibility by repetition.

We have already proven that a path with N,.. + 1 accepting transitions is an accepting cycle.
To prove that it is energy feasible, we look for a cycle in energy, meaning we cycle back to the
initial credit that allowed us to take the accepting cycle. Our possible values are modulo b, and
with a minimal step of 1, we can take b steps to cycle back to our starting energy. For any bigger
step, we go back to the starting initial credit after n < b+ 1, n being the number of steps.

(a+nc) modb=a modbd

nc modb=0 modbd

There has to exist an nc that is divisible by b, n = b at worst.

Simple Weighted Biichi Measure

We transform the condition detailed above into a simple measure for weighted Biichi automata,
called simple weighted Biichi measure (swbm).

To achieve this goal, we monitor the required initial energy and the count of accepting tran-
sitions visited, similar to the approach used for the simple Biichi measure. However, due to
the eventuality of two competing acceptance conditions, maintaining a single sheet per state is
insufficient. This suggests the existence of a memoryless strategy, which is not feasible in this
case. There may exist states that need to differentiate between an energy-optimal successor and
an acceptance-optimal successor.

Upon examination of the score sheet, it becomes apparent that a definitive comparison be-
tween, for example, the score sheet (10,10) and (5,5) cannot be established as the former re-
quires higher initial energy but allows to traverse a greater number of accepting transitions
while the latter demands less energy but ensures fewer encounters with accepting transitions.
Each option presents its advantages and drawbacks; these elements are incomparable. We con-
clude that the score sheets can only be considered partially ordered

To circumvent this problem, instead of associating a single score sheet to each state, we as-
sociate a state to a set of score sheets, reflecting the different possibilities that are still desir-
able. Since they are partially ordered, we can restrict ourselves to the set of Pareto optimal
elements[watanabe_Pareto]. For example the score sheets (10, 10) and (20, 8) are comparable
so we only need to keep (10,10). We call this Pareto optimal set of score sheets an extended
score sheet (ESh).

Given a weighted Biichi automaton B,,, a simple weighted Biichi measure is a function asso-
ciating an extended score sheet to each vertex together with additional constraints which will
be detailed in the next part.
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Figure 4: An example of a Pareto front join for ic and cnt,,

Propagating score sheets

(Back) propagating a score sheet s¢’ along a transition (v, w, ace,v’) is done in the following
manner:

(ic’ ©o w, entl, @OTVWacetl gee) ific’ Sgw < b

6
1 else ©)

sc = (ic,cnty) = sc’ O, (w,acc) = {
With | being a special symbol representing the smallest/worst score sheet of all others.

Propagating extended score sheets

Propagating extended score sheets along an edge is done element-wise, score sheet per score
sheet, we have

esc = esc Op, (w,acc) = {sc’ ©p, (w,acc)minsc’ € esc’}

by abuse of notation.

Lift operation and algorithm

The Lift operation is responsible for updating the extended score sheet of a specific vertex,
taking into account the current progress measure. The core concept of this operation involves
retaining the most favorable elements from all successors, which are propagated along their
corresponding edges. It is important to note that the symbol L remains invariant under propa-
gation. It is defined as follows:

ifu#wv

Lift, (p) (u) = {p () )

@({p(v') ©p,, (w,acc) | (v,w,acc,v’) € T})
Where:

* ® denotes the operation of constructing a new Pareto front from all elements contained in
a set of Pareto fronts. Again this should be monotone as it always considers all successors.

* pis a progress measure for B,, once a common fixed point for all vertices with respect to
Lift is attained.
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The measure is initialized by assigning to each state the extended score sheet {(0,0)}.

States that can be used as a starting point for a feasible run have a score sheet in their extended
score sheet attaining the values described by the previous energy and acceptance conditions: a
value of (b + 1)(Ngee + 1) for cnty (a score sheet with a negative ic is maxed to 0 and a score
sheet with an ic superior to b is impossible and directly set to the worst element, thus, verifying
cnty, suffices). The strategy to construct the word /run is more involved.

8
[(ic = 0, acc = 0)]

0,1
Y
0
[(ic = 0, acc = 0)]

ﬁﬂ

1
[(ic = 0, acc = 0)]

2 5 7
[(ic = 0, acc = 0)] [(ic = 0, acc = 0)] [(ic =0, acc = 0)]
3 4 6
1,0 1,0 1,0
[(ic = 0, acc = 0)] ) ’ [(ic = 0, acc = 0)] ) ’ [(ic = 0, acc = 0)] ) ’

[(ic = 0, acc = 11), (ic = 2.0, acc = 12)]

[(ic = 0, acc = 10), (ic = 2.0, acc = 12)] (ic = 0, acc = 10), (ic = 2.0, acc = 12)] [(ic = 0, acc = 11), (ic = 2.0, acc = 12)]

M L-i.o.:)\).o \1:?%100
[(ic = 0, acc = 10), (ic = 2.0, acc = 12)] )1,0 [(ic = 0, acc = 11), (ic = 2.0, acc = 12)] DLO [(ic = 0, acc = 10), (ic = 2.0, acc = 12)] DLO

Figure 5: Extended score sheets method, initialization step, and fixed point
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0.3.9 Implementation

Algorithm 3

change = true
acceptanceBound = (wup + 1)(Nacc + 1)
while change do
change = false
for each v in V do
for each (u,w, acc,v) in G do
for each pmv in PM[v] do
newAce = min(acceptance Bound, pmv.acc + acc)
newlc = max(0, pmuv.ic — w)
if newlc > wup then
newlc = +o0o
newAcc = —oo
end if
accepted = update paretosront()
accepted = false
for each pmu in PM[u] do
if newAcc > pmu.acc and newlc <= pmu.ic then
P M u).remove(pmu)
accepted = true
end if
if newlc > pmu.ic and newAcc == pmu.acc then
PM[u].remove(pmu)
accepted = true
end if
end for
if accepted then
PMul].add((newlc,newAcc))
change = true
end if
end for
end for
end for
end while
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0.4 Discussion

The complexity of the extended score sheets algorithm for energy Biichi problems, for now,
is proportional to the number of transitions and the weak upper bound as our fixed point is
at (b + 1)(Nycc + 1) and since we keep incomparable score sheets in a Pareto structure if the
weights on the transitions are small compared to b, we end up with a complexity approaching
that of duplicating the automaton for different energy levels.

However, it is important to note the advantage of this method as it utilizes a lattice structure
and the algorithm is thus guaranteed to converge to the same fixed point regardless of the
back-propagation order. This feature enables parallelization, a powerful tool for segmented
structures like graphs.

Furthermore, the algorithm capitalizes on the game-like interaction between the agent and
the environment, making it adaptable to parity games as well. We are optimistic that further
exploration of properties related to acceptance and energy will lead to a reduced bound and the
development of a weak upper bound-independent algorithm that remains parallelizable.

0.5 Conclusion

In this report, we have discussed energy problems on w-regular automata, explored the problem
under a game theory lens, and presented an extended score sheet method to better adapt to
generalized Biichi automata. Our method leverages a lattice structure to ensure convergence
and supports parallelization, making it well-suited for large-scale and segmented structures
like graphs.

The energy problem on generalized Biichi automata has been approached differently in other
research. We cite the p-calculus[8] approach[9], which is advantageous in terms of complexity
as it isn’t dependent on the weak upper bound.

On the other hand, our extended score sheet method is better suited for parallelization, espe-
cially in practical implementations involving large state spaces. Moreover, the integration with
game-like environments allows for greater flexibility in handling diverse problem settings.

While our current method does not cover path retrieval yet, it leaves a global trace that is con-
venient for multiple acceptance conditions. Ongoing research aims to construct runs from this
trace. Future work will focus on enhancing path retrieval capabilities and further optimizing
the algorithm to maintain its parallelization and adaptability benefits.
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