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This research project seeks to improve crowd counting and density estimation accuracy by combining
Convolutional Neural Networks (CNNs) with Graph Neural Networks (GNNs), an innovative approach
not yet widely explored in the field of crowd analysis. The main goal is to explore how these two architec-
tures can work together effectively for crowd analysis tasks. By leveraging the spatial feature extraction
capabilities of CNNs alongside the structural information processing strengths of GNNs, we aim to create
a novel framework that improves performance in crowd counting. This research includes an explanation
of the state of the art, detailing current methodologies and their limitations, followed by a presentation
of our work that integrates CNNs and GNNs, and our results. Finally, we discuss potential improve-
ments and future work to further enhance crowd management and surveillance techniques in different
real-world situations.

Ce projet de recherche vise à améliorer la précision du comptage des foules et de l’estimation de la densité
en combinant les réseaux neuronaux convolutifs (CNN) et les réseaux neuronaux graphiques (GNN), une
approche innovante qui n’a pas encore été largement explorée dans le domaine de l’analyse des foules.
L’objectif principal est d’explorer comment ces deux architectures peuvent fonctionner ensemble de ma-
nière efficace pour les tâches d’analyse des foules. En tirant parti des capacités d’extraction des caractéris-
tiques spatiales des CNN et des forces de traitement de l’information structurelle des GNN, nous visons à
créer un nouveau cadre qui améliore les performances en matière de comptage des foules. Cette recherche
comprend une explication de l’état de l’art, détaillant les méthodologies actuelles et leurs limites, suivie
d’une présentation de notre travail qui intègre les CNN et les GNN, et de nos résultats. Enfin, nous discu-
tons des améliorations potentielles et des travaux futurs pour améliorer encore la gestion des foules et les
techniques de surveillance dans différentes situations du monde réel.
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Chapter 1

Introduction

Crowd counting is a technique used in various domains to estimate the number of individuals
present in images or videos. With the increasing need for efficient crowd management and
surveillance, accurate crowd counting has become a significant area of research. Imagine a
crowded event or a busy public space captured in an image—estimating the number of people
in such scenarios manually can be a daunting task for humans due to the sheer volume of
individuals and complexities such as occlusions and variations in scale and perspective.

Over the years, various techniques have been developed to address the challenges of crowd
counting. From traditional methods relying on basic machine learning and computer vision
algorithms such as detection, regression, and density-based approaches, to CNN-based ap-
proaches showing significant promise in overcoming the limitations of traditional methods by
effectively capturing spatial features and learning complex representations.

This technical report aims to explore the integration of Convolutional Neural Networks (CNNs)
with Graph Neural Networks (GNNs) for dense crowd counting. By combining the strengths
of both architectures, we seek to address the challenges associated with crowd counting and
density estimation. Specifically, we propose a framework that combines a CNN for spatial fea-
ture extraction with a GNN for processing structural information within the crowd. The key
contributions of this work are:

• A hybrid model architecture that integrates CNNs and GNNs for crowd counting, lever-
aging their respective strengths in capturing local features and global structural patterns.

• A novel graph construction method that transforms crowd scene representations into
graphs, enabling the GNN to process structural information effectively.

• Experiments on the JHU-CROWD++ dataset, where our approach was tested under vari-
ous crowd densities and environmental conditions.

The report is structured as follows: Firstly, we will provide an overview of the context and
the state of the art in crowd counting techniques. Following this, we will detail our proposed
approach, which includes the integration of CNNs and GNNs, along with the design principles
behind our model architecture. Subsequently, we will outline the experimental setup, encom-
passing datasets, training procedures, and evaluation metrics. Next, we will present both the
quantitative and qualitative results obtained from our experiments. Additionally, we will delve
deeper into the implications of our findings and explore potential future directions. Finally, we
will conclude the report by summarizing the key points and contributions.



Chapter 2

Context and State of the Art

Static crowd counting and estimation involve determining the number of people in a crowd
using images. This task is important in several areas such as public safety, urban planning, and
event management. Accurate crowd estimation is essential for ensuring safety at large events,
efficiently managing resources, and making informed decisions.

2.1 Challenges in Crowd Counting

In crowd counting, several challenges arise:

• Occlusion: Individuals within a crowd often obstruct each other’s visibility, making ac-
curate counting difficult.

• Scale Variation: People may appear at different sizes in images due to their varying dis-
tances from the camera.

• Density Variation: Crowds can exhibit a wide range of densities, from sparse to highly
congested areas.

• Perspective Distortion: Camera angles can distort the perceived size and shape of indi-
viduals, impacting counting accuracy.

2.2 State of the Art in Crowd Counting

Recent advancements in machine learning, especially in deep learning, have enhanced the ac-
curacy and resilience of crowd counting systems. Here are the key approaches and techniques
that have been employed and are currently in use:

2.2.1 Methods that Rely on Detection
Counting by detection can be classified into three types based on the features used to identify
the crowd in images:

• Monolithic Detection: This approach trains a classifier using the full-body appearance
available in the training images, using typical features such as Haar wavelets and gradient-
based features like the histogram of oriented gradients (HOG). Learning methods such as
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Support Vector Machines (SVMs) and Random Forests are employed using a sliding win-
dow approach. Nevertheless, these methods are limited to sparse crowds. For dense
crowds, part-based detection is often more effective.

• Part-based Detection: Instead of considering the whole human body, this technique fo-
cuses on parts, such as the head or shoulders, and applies a classifier to them. While using
the head alone is not sufficient for reliable person detection, the combination of head and
shoulders is preferred in this technique.

Figure 2.1: Representation of the two main detection based approaches. Source: [1]

Figure 2.2: Example of the two main detection based approaches. Source: [2]

Below are two figures. The first one (Figure 2.1) illustrates the two methods of detection. The
second one (Figure 2.2) displays the two images corresponding to crowd counting by detection.
The left image represents monolithic detection, while the right image represents part-based
detection.

2.2.2 Methods that Rely on Regression
Counting by detection methods often struggle with accuracy in dense crowds and high back-
ground clutter. To address these challenges, counting by regression techniques have been em-
ployed. These methods involve mapping features extracted from local image patches directly
to the count, without the need for segmentation or individual tracking.

https://www.researchgate.net/figure/Crowd-counting-pipeline-using-regression-model-Image-from-47_fig1_344858924
https://www.researchgate.net/figure/Object-detection-based-crowd-counting_fig1_368323634
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One approach involves extracting low-level features such as edge details and foreground pix-
els, and applying regression modeling to map these features to the count. For instance, Chan et
al. [1] proposed a Bayesian regression-based method to estimate crowd sizes on subway plat-
forms, where the backdrop is eliminated and various foreground pixels are measured. These
pixels, such as total area or texture, are then used as inputs to the regression function. This
approach bypasses intermediate vision operations like object identification or feature tracking,
providing a direct estimation of crowd size based on low-level features.

Figure 2.3: Illustration of the Bayesian regression-based method. Source: [3]

2.2.3 Methods that Rely on Density Estimation
Another approach in crowd counting involves estimating density rather than focusing solely on
individual counts, thereby incorporating crucial spatial information from images. By learning
the mapping between local features and object density maps, this approach tracks groups of
individuals simultaneously, rather than learning each individual separately. The mapping can
be linear or nonlinear, with the latter demonstrated through techniques such as a Random Forest
Classifier.

One such method using a random forest regressor is described in the paper of Viet-Quoc
Pham et al. [2]. Here, the regressor votes for densities of multiple target objects, learning a non-
linear mapping between patch features and the relative locations of objects within the patch.
Additionally, a crowdedness prior parameter is defined to differentiate to help the system de-
cide whether a particular area of the picture is crowded with objects or not. Based on this
parameter, they create two separate sets of guesses (or forests), one for crowded areas and one
for less crowded areas. This way, the system can handle different scenarios appropriately.

Density estimation approaches offer significant advantages over traditional counting meth-
ods, particularly in addressing occlusion and clutter issues. These methods provide not only a
count but also a spatial distribution of individuals, as depicted in Figure 2.4 showing the den-
sity map for an image with ground truth and prediction. A summary of conventional crowd
counting methods is provided in Table 2.1.

2.2.4 Methods that Rely on Deep Learning
Deep learning methods have garnered interest from researchers worldwide, particularly in the
field of image processing, where Convolutional Neural Networks (CNNs) have demonstrated
remarkable learning capabilities. This has led to a surge in CNN-based crowd counting projects.
While earlier applications of CNNs focused solely on computing the density of people without

https://www.cse.psu.edu/~rtc12/CSE586/papers/regr_ChanTIPjournal.pdf


9 Context and State of the Art

Figure 2.4: Estimation of the object density map and the number of objects (right) from an input
image (left). Source: [4]

Table 2.1: Comparison of Traditional Crowd Counting Approaches
Traditional Ap-
proach

Mechanism Pros & Cons

Detection-
based

Utilizes sliding window
for body part detection.

+ High accuracy for sparse crowds

- Not suitable for dense crowds due to
computational limitations

Regression-
based

Employs feature extractor
and regression function.

+ Provides better accuracy overall

- May overlook important spatial de-
tails in favor of a generalized count

Density estima-
tion

Utilizes density maps to
estimate crowd density.

+ Incorporates spatial information for
enhanced accuracy
- Requires robust preprocessing and
parameter tuning

considering the actual count, recent advancements have significantly improved CNN-based
crowd counting models. These modern approaches excel in handling diverse challenges such as
varying head scales, non-uniform density distributions, and changes in perspective and scene,
making them the predominant choice in current crowd counting research. In contrast to tra-
ditional approaches, contemporary computer vision techniques based on CNNs are achieving
superior accuracy. A plethora of CNN architectures has been devised specifically for crowd
density estimation, categorized into distinct groups for clarity:

• Basic CNNs: These encompass the initial deep learning methodologies, characterized by
fundamental convolutional layers, kernels, and pooling layers.

• Scale-aware models: These advanced CNN architectures incorporate multi-column or
multi-resolution designs to enhance robustness.

• Context-aware models: These models integrate both local and global contextual informa-
tion into CNN frameworks.

• Multi-task frameworks: In addition to crowd counting, these frameworks tackle auxiliary
tasks such as crowd velocity estimation and foreground-background subtraction.

https://openaccess.thecvf.com/content_iccv_2015/papers/Pham_COUNT_Forest_CO-Voting_ICCV_2015_paper.pdf
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Wang et al. [3] introduced one of the pioneering approaches utilizing a CNN regression model.
They used an AlexNet as the base neural network, replacing the final layer of 4096 neurons
with a single neuron to estimate crowd count. Additionally, the training data was augmented
with samples whose ground truth count was zero. Below (Figure 2.5) is a depiction of the five-
layer convolutional architecture initially employed for crowd identification. Zhang et al. [4]

Figure 2.5: The Five-Layer Convolutional Architecture for Crowd Identification in static images.
Source: [5]

presented a Multi-Column CNN architecture mapping images to their respective crowd density
maps. This model utilizes filters with varying receptive fields, enabling each column CNN to
adaptively learn features considering variations in people/head size due to perspective effects
or image resolution. The density map is accurately computed based on geometry-adaptive
kernels.

Boominathan et al. [5] proposed a hybrid approach combining deep and shallow fully con-
volutional neural networks. This strategy aims to capture both low-level and high-level fea-
tures for crowd counting. Their deep network, akin to the renowned VGG-16 architecture,
captures high-level semantics essential for crowd counting and density map generation. Addi-
tionally, they developed a shallow network tailored for identifying low-level head blob patterns
of people distant from the camera. The representation of this approach is depicted in Figure
2.6. Oñoro-Rubio et al. [6] present a significant contribution comprising two neural networks.

Figure 2.6: Representation of the Deep and Shallow Network. Source: [6]

Firstly, a Counting CNN serves as a regression model learning to map appearance features of
image patches to corresponding density maps. Secondly, a Hydra CNN is introduced as a scale-
aware counting model, utilizing image patches extracted at multiple scales to estimate the final
density. The architecture illustrating both networks is depicted in Figure 2.7.

The advancements in crowd counting methodologies, ranging from traditional detection and
regression techniques to modern density estimation and deep learning approaches, have signif-
icantly enhanced the ability to accurately estimate crowd sizes under various conditions. De-
spite the progress achieved with CNNs, challenges such as varying head scales, non-uniform

https://yangliang.github.io/pdf/sp055u.pdf
https://arxiv.org/pdf/1608.06197
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Figure 2.7: Architecture Illustrating Counting and Hydra Convolutional Neural Networks.
Source: [7]

density distributions, and scene variations persist. To further address these challenges, this re-
port introduces a new approach that combines CNNs with GNNs. The subsequent chapters will
delve into my contributions, detailing the development and integration of this hybrid model for
crowd counting in static images.

https://www.researchgate.net/publication/306118084_Towards_Perspective-Free_Object_Counting_with_Deep_Learning
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Proposed Approach to Integrate
CNNs and GNNs for Crowd
Counting

In our work, we propose a novel approach that combines Convolutional Neural Networks
(CNNs) with Graph Neural Networks (GNNs) to quantify crowds. This unique combination,
not yet explored in the realm of crowd analysis, harnesses the respective strengths of both ar-
chitectures to create a robust and high-performing framework for crowd counting tasks.

Our approach begins with a CNN to extract dense spatial features from crowd images. CNNs
are adept at capturing detailed visual features, making them ideal for identifying individual
people and areas within an image. Specifically, the CNN’s goal is to predict rectangles contain-
ing people’s faces, identifying individuals within a crowd. These predicted rectangles are then
used to build a graph where each node represents a specific predicted face in the image, and the
edges capture the spatial relationships between these faces. This graph structure is processed
by a GNN, which excels at understanding higher-order interactions and structural dependen-
cies between different regions. This two-stage process allows our model to utilize local feature
information and global structural patterns for our crowd counting task.

3.1 Description of CNN and GNN Usage

3.1.1 CNN for Spatial Feature Extraction
U-Net
In our crowd analysis framework, we adopted the U-Net architecture for spatial feature ex-
traction. Initially designed for biomedical image segmentation, the U-Net offers an encoder-
decoder structure complemented by skip connections, facilitating seamless integration of both
local and global context. The UNet architecture, known for its strong performance in segmen-
tation tasks, is particularly well-suited for identifying and localizing individual people within
a crowd.

Let I represent the input image, where I is a matrix with dimensions W ×H × C. Here, W
and H denote the width and height of the image, respectively, while C represents the number
of channels, RGB channels in our case.
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1. Input Processing: Crowd images are fed into the U-Net, which consists of an encoder
chapter followed by a decoder chapter.

2. Encoder Convolutional Blocks: The encoder consists of multiple convolutional blocks,
each extracting hierarchical features from the input image. These blocks typically include
convolutional layers followed by activation functions such as ReLU and pooling layers
for downsampling. Let I represent the input image, Fi denote the i-th filter, and bi the
corresponding bias term. The output of the i-th convolutional layer is computed as:

Oi = ReLU(I ∗ Fi + bi)

where ∗ denotes the convolution operation.

Activation Functions: Non-linear activation functions, such as ReLU, introduce non-
linearity into the model, enabling it to capture complex spatial patterns.

Batch Normalization: Applied after each convolutional layer, batch normalization
stabilizes and accelerates training by normalizing activations. Given the input x to the
batch normalization layer, the output y is computed as:

y =
x− µ√
σ2 + ϵ

× γ + β

where µ and σ2 are the mean and variance of x, γ and β are learned parameters, and ϵ is a
small constant to prevent division by zero.

3. Decoder Convolutional Blocks: The decoder chapter reconstructs the spatial information
from the encoded features, gradually upsampling them to the original image resolution.
Skip connections from the encoder to the decoder help preserve fine-grained details.

4. Output Feature Map: The U-Net model generates a feature map showing key details
about the crowd in the image. This map identifies and distinguishes individual people or
groups. It contains rectangles that indicate the locations of faces within the crowd.

3.1.2 GNN for Structural Information Processing
A graph G consists of a set of nodes V and a set of edges E. We represent graphs as G =
(V,X,A), where X ∈ Rn×d is a matrix of node features with n nodes and d dimensions, and
A ∈ {0, 1}n×n is the adjacency matrix representing the connections between nodes. Graph Neu-
ral Networks (GNNs) leverage message-passing techniques to learn node representations and
perform various tasks on graphs, such as node classification, graph classification, link predic-
tion, or clustering.

In our crowd counting approach, the Graph Neural Network (GNN) plays a crucial role in
processing the graph structure derived from the embeddings extracted from the U-Net bottle-
neck. Within this graph, each node represents a predicted face, and edges signify the proximity
between these faces within the crowd. The representation of each node u ∈ V undergoes re-
finement through message-passing and aggregation of information from its neighboring nodes.
This iterative update process spans multiple layers of the GNN, enabling nodes to accumulate
insights from their multi-hop neighbors and generate structure-aware representations.

We define h
(l)
i as the representation of node i at iteration (layer) l, and AGGR(., .) as the

aggregation method. The update rule for node representations can be expressed as follows:

h(l)
u = AGGR(h(l−1)

u , {h(l−1)
i |i ∈ N(u)})
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Here, h(l−1)
u represents the previous layer’s representation of node u, and {h(l−1)

i |i ∈ N(u)}
denotes the set of representations of node u’s neighbors, where N(u) is the set of neighbors
of node u. The aggregation function combines these representations to compute the updated
representation h

(l)
u for node u at layer l.

In our GNN model, we implement this message-passing mechanism using graph convolu-
tional layers. The architecture of the GNN is designed to iteratively refine node embeddings by
aggregating information from neighboring nodes. The process is detailed as follows:

1. Graph Construction: We construct a graph where nodes correspond to the predicted rect-
angles (faces) in the image, while edges denote spatial relationships (proximity) between
these faces.

2. Graph Convolutional Layers: The GNN processes the graph using graph convolutional
layers, which iteratively aggregate and transform the features of each node based on its
neighbors’ features.

3. Higher-Order Interactions: Stacking multiple graph convolutional layers enables the
GNN to capture higher-order interactions and dependencies, facilitating the learning of
complex structural patterns essential for accurate crowd counting.

4. Global Mean Pooling: Following the convolutional layers, a global mean pooling oper-
ation is applied. This operation aggregates node features, generating a comprehensive
graph-level representation that summarizes information from all nodes.

5. Fully Connected Layer: The pooled representation is fed into a fully connected layer,
which maps the hidden features to the final output dimension. This layer produces the
ultimate crowd count estimate for the input image.

Figure 3.1: UNet Architecture. Source: [8]

https://github.com/milesial/Pytorch-UNet


15 Proposed Approach to Integrate CNNs and GNNs for Crowd Counting

Figure 3.2: GNN Architecture.

3.2 Combined Model Architecture and Design Rationale

1. UNet Backbone: The UNet architecture serves as the backbone for our model, particu-
larly its downsampling component, which is critical for extracting embeddings from the
bottleneck layer corresponding to the predicted rectangles.

2. Embedding Extraction: The embeddings from the UNet’s bottleneck layer represent pre-
dicted faces. By knowing the number of pooling layers and coordinates of each face, we
can determine their scaled coordinates within the bottleneck. These embeddings provide
the feature representations for each predicted face.

3. Feature Map to Graph Conversion: Using the embeddings from the UNet’s bottleneck,
we construct a graph where each node represents a face embedding of shape 1× 1× 1024.
Edges between nodes are established based on the spatial proximity of the face coordi-
nates. Specifically, we compute the average distance between centroids of rectangles. Let
uss denote the centroid of a rectangle as Ci = (xi, yi), where xi and yi are the coordinates
of the centroid of rectangle i. The distance between two centroids Ci and Cj is given by
the Euclidean distance formula:

dij =
√
(xi − xj)2 + (yi − yj)2

The average distance between centroids of all pairs of rectangles is calculated by summing
up all such distances and dividing by the total number of pairs of rectangles, which is
n(n−1)

2 , where n is the number of rectangles.

So, mathematically, the average distance D between centroids can be expressed as:

D =

∑n−1
i=1

∑n
j=i+1 dij

n(n−1)
2

D =

∑n−1
i=1

∑n
j=i+1

√
(xi − xj)2 + (yi − yj)2

n(n−1)
2

Where:

• n is the number of predicted rectangles.

• (xi, yi) represents the centroid of the i-th rectangle.
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• dij represents the distance between the centroids of the i-th and j-th rectangles.

This average distance captures the spatial relationships between faces in the crowd. If
the distance between any two centroids is less than or equal to this average, an edge is
created, reflecting the proximity of the corresponding rectangles.

4. Graph Neural Network: The GNN component processes this constructed graph using
multiple graph convolutional layers. These layers aggregate information from neighbor-
ing nodes, iteratively refining the feature representation to capture higher-order structural
patterns within the crowd.

5. Integration and Output: After processing through the GNN, we get a final scalar value
representing the crowd count estimate.

Figure 3.3: CNN Component of the Framework.

Figure 3.4: GNN Component of the Framework.

The rationale behind this architecture is to leverage the complementary strengths of UNet
and Graph Neural Networks (GNNs). UNet excels at capturing fine-grained spatial features,
while GNNs are adept at understanding complex structural relationships. By transforming
the feature embeddings into a graph and utilizing a GNN to process this graph, the model
integrates both local feature details and global structural patterns. This synergy allows for
dynamic refinement of face embeddings, where the graph structure and GNN facilitate better
differentiation of overly similar embeddings and merging of overly dissimilar ones, based on
their spatial relationships and feature similarities.
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Experiments

4.1 Description of Datasets Used for Evaluation

To evaluate our proposed model, we used a widely recognized dataset in the field being known
for its diversity and comprehensive annotations, JHU-CROWD++ dataset.

• JHU-CROWD++ Dataset: This dataset contains a large number of images with varying
crowd densities, ranging from sparse to extremely dense crowds. The dataset is challeng-
ing due to the presence of occlusions, varying perspectives, and diverse environmental
conditions. Each image is annotated with the precise location of each person, provid-
ing reliable ground truth for both training and evaluation. The dataset includes various
subsets that allow for extensive evaluation across different types of scenes and crowd
densities.

The JHU-CROWD++ dataset was selected for its rich variety and detailed annotations, en-
suring that our model is tested across different scenarios, including both low and high-density
crowds, as well as diverse environmental settings.

4.2 Details of Training Procedures and Hyperparameters

The training procedures and hyperparameters are essential components of our model’s devel-
opment, ensuring optimal performance for crowd counting.

• Training Procedure:

Data Preprocessing: Due to variations in size among images in the JHU-CROWD++
dataset, resizing to (480 × 384) was performed to standardize dimensions, ensuring con-
sistency in input size for the UNet, and accelerating training by simplifying the compu-
tational workload and memory requirements. Additionally, normalization of pixel values
was conducted to scale the intensity range between 0 and 1, facilitating convergence dur-
ing model training and enhancing its generalization capabilities.

Training Split: The dataset is divided into three subsets: training, validation, and test
sets. The training set, which constitutes 80% of the data, is used for model training. The
validation set, comprising 10% of the data, aids in hyperparameter tuning and mitigating
overfitting. The remaining 10% forms the test set, which is employed to assess the final
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Figure 4.1: A Sample from Custom Dataset.

model performance. For our dataset, this distribution translates to 2272 samples in the
training set, 500 samples in the validation set, and 1600 samples in the test set.

The UNet model was trained using original images as inputs and corresponding masks as
targets, enabling it to learn to accurately segment objects within the images. Subsequently,
the Graph Neural Network (GNN) was trained using graphs derived from the UNet’s
predictions, along with the ground truth data specifying the number of people in the
crowd as targets.

• General Hyperparameters:

Learning Rate: The initial learning rate is set to 1× 10−3, with a learning rate sched-
uler that reduces the rate by a factor of 0.1. This factor in the learning rate scheduler
determines the rate at which the learning rate is decreased when the validation loss stag-
nates for a certain number of epochs.

Batch Size: A batch size of 8 is employed, mitigating potential computational effi-
ciency issues.

Optimizer: The Adam optimizer is employed to minimize the loss function, with
default parameters β1 = 0.9 and β2 = 0.999.

• UNet-specific Hyperparameters:

Training Duration: The model underwent 500 epochs of training with early stopping
implemented, which halts the training process if the validation loss fails to improve for 25
consecutive epochs.

Loss Function: The loss function is a combination of Binary Cross-Entropy Loss and
Dice Loss, computed as:

Loss = Binary Cross-Entropy Loss + Dice Loss

where the Binary Cross-Entropy Loss measures the dissimilarity between the predicted
and ground truth masks. It is calculated as:

Binary Cross-Entropy Loss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]
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where N is the number of samples, yi represents the ground truth label (0 or 1), and pi is
the predicted probability of the positive class (between 0 and 1). This loss function penal-
izes deviations from the ground truth labels, encouraging the model to produce accurate
predictions. The Dice Loss is defined as:

Dice Loss = 1− Dice Coefficient

The Dice Coefficient measures the similarity between two samples and is defined as:

Dice Coefficient =
2× Intersection + ϵ

Summation + ϵ

where ϵ is a small constant (typically 1× 10−6) added to avoid division by zero, the Inter-
section represents the overlap between predicted and ground truth masks, and the Sum-
mation is the sum of the pixels in both masks. This loss function penalizes deviations from
the intersection over union (IoU) metric, encouraging the model to produce accurate and
spatially coherent segmentation masks.

• GNN-specific Hyperparameters:

Training Duration: The model underwent 200 epochs of training.

Input Dimension: The input dimension aligns with the dimensionality of embed-
dings extracted from the UNet (1× 1× 1024).

Hidden Dimension: Set at 64, the hidden dimension for GNN layers enables the
model to capture complex representations.

Number of Layers: The GNN architecture comprises 2 graph convolutional layers,
facilitating the capture of higher-order interactions between nodes.

Loss Function: The Mean Squared Error (MSE) loss function is employed to quantify
the disparity between predicted and true values, helping the model in generating accu-
rate predictions. This metric computes the average of the squares of the errors between
predicted and actual counts, offering insight into the variability of these errors.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

Here, yi denotes the true value, ŷi represents the predicted value, and N is the total num-
ber of samples. This loss function guides the model to minimize the average squared
differences between predictions and ground truth, enhancing its predictive accuracy.

4.3 Evaluation Metrics Used for Assessing Crowd Counting Per-
formance

To comprehensively evaluate the performance of our crowd counting model, we used 2 stan-
dard metrics tailored to different components of our model:

4.3.1 CNN
• Dice Coefficient: This metric was used for the UNet component to evaluate the overlap

between the predicted rectangles and the ground truth. It provides a measure of spatial
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accuracy.

Dice =
2
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

The Dice coefficient ranges from 0 to 1, with 1 indicating perfect overlap.

4.3.2 GNN

• Mean Absolute Error (MAE): This metric measures the average absolute difference be-
tween the predicted and actual crowd counts, providing a direct measure of the model’s
accuracy.

MAE =
1

N

N∑
i=1

|yi − ŷi|

where yi is the ground truth count, ŷi is the predicted count, and N is the number of test
samples.

These metrics offer a comprehensive evaluation of the model’s performance, illuminating
its accuracy and robustness across various crowd counting scenarios. On one hand, BCE and
Dice Coefficient metrics provide insights into the spatial accuracy of the UNet’s predictions,
capturing nuances in segmentation performance. On the other hand, MAE and MSE metrics
offer a balanced perspective on the GNN’s efficacy in crowd count estimation, shedding light
on the model’s ability to minimize errors and provide reliable count estimates.
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Results

5.1 Quantitative and qualitative results obtained from experi-
ments.

Figure 5.1: CNN Prediction Example.

In Figure 5.1, we present an illustrative example of one of our Convolutional Neural Network
(CNN) prediction. The image on the left captures a crowded scene depicting 359 individuals
gathered together. On the right, we showcase the CNN’s segmentation of the crowd scene,
wherein each person is outlined by a rectangle. Notably, some rectangles may not perfectly
conform to the shape of individuals, as observed in the bottom-left corner. This deviation occurs
as the network attempts to predict non-overlapping rectangles.

Figure 5.2 illustrates various post-processing techniques implemented on our segmentation
outcomes. In the top row, binary representations stem from the CNN prediction map using a 0.5
threshold. Below, the original crowd image is juxtaposed with identifying red points denoting
individual instances based on their prediction maps.
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Figure 5.2: Post-Processing Examples.

In the right column, an additional refinement step involves erosion.
First, the output matrix O is converted into a binary image B using a threshold value, defined

as:

Bij =

{
1 if Oij > threshold
0 otherwise

Erosion is then applied to B using a 3 × 3 kernel K, resulting in an eroded binary image E.
This morphological operation shrinks the boundaries of objects, defined as:

Eij = min
(k,l)∈K

Bi+k,j+l

This step refines instance segmentation by reducing the size of objects, contributing to more
precise delineation. However, erosion can cause very small predicted rectangles to disappear.

The application of erosion decreased the number of connected components from 291 to 259.
This reduction is notable, especially given that the target was 359 connected components.

Below, an image of the graph generated from the embeddings of the UNet bottleneck is pre-
sented in Figure 5.3. This graph illustrates the relationships and connections between different
features extracted during the segmentation process. By leveraging the embeddings from the
UNet bottleneck, we can visualize the inherent structure and patterns within the segmented
data. Analyzing this graph provides insights into the underlying representation of features,
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aiding in understanding the segmentation process and potentially informing further refinement
strategies.

Figure 5.3: Graph Visualization Example.

We can observe that, in this case, there are 5 connected components.

5.2 Evaluation Phase

Figure 5.4: GNN Predictions.

Figure 5.4 displays the results from testing the GNN model for predicting the number of
people’s faces in a given input graph. The first row shows the ground truth, representing the
actual number of connected components without erosion on the CNN feature map output. The
second row displays the ground truth number of connected components with erosion applied
to the CNN output. The Actual output row presents the actual ground truth values (i.e., the
number of people in the crowd image) for the corresponding inputs. The Predicted output row
presents the predictions made by the GNN model for these inputs. Notably, the predictions and
actual outputs are presented in batches of eight.

It is evident that the results did not meet our expectations, as there is a significant discrepancy
between the predicted values and the actual outputs. In the next section, we will delve into
potential reasons for the discrepancies, explore possible avenues for improvement, and provide
insights gained from evaluating the performance of the GNN model.
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Discussion

This report introduces a novel approach that merges CNN and GNN networks to quantify the
number of people in a crowd. Nonetheless, our experiments have yielded unsatisfactory results,
which deviate from the current state-of-the-art scores.

One potential challenge may arise from the use of erosion in post-processing, as it can inad-
vertently remove too-small components, leading to a loss of accuracy in predictions. Addition-
ally, the rectangular shape of predictions may not accurately represent the true oval shapes of
faces, potentially impacting the performance of our approach.

Moreover, the resizing of original images could result in shape deformation within the crowd,
further complicating the segmentation process and potentially affecting the accuracy of our
predictions. The distortion of faces’ original shapes caused by image resizing may also hinder
the CNN’s performance, introducing inconsistencies in segmentation results and affecting GNN
interpretation.

Future research could explore alternative post-processing techniques that better preserve the
original shapes, investigate methods to handle the ovular or round shape of faces within crowds
more accurately, and develop strategies to mitigate the impact of image resizing on shape de-
formation.

Furthermore, it would be beneficial to examine the impact of hyperparameters in models,
or kernel size in our erosion refinement step, impacting the performance of our method. Un-
derstanding these parameters’ effects can provide insights into enhancing the robustness and
effectiveness of our approach in quantifying dense crowds.



Chapter 7

Conclusion

In this technical report, we have presented a new approach that combines Convolutional Neural
Networks (CNNs) and Graph Neural Networks (GNNs) for dense crowd counting. By lever-
aging the strengths of both architectures, our model aims to capture both local spatial features
and global structural patterns within crowd scenes, offering a fresh perspective on tackling the
challenge of crowd counting.

Our approach uses a CNN backbone to extract spatial features from crowd images, followed
by the construction of a graph where nodes represent predicted faces and edges capture their
spatial relationships. This graph is then processed by a GNN, which refines the node embed-
dings by aggregating information from neighboring nodes, capturing higher-order interactions
and structural dependencies.

In experiments conducted on the challenging JHU-CROWD++ dataset, we sought to evalu-
ate the efficacy of our approach in managing diverse crowd densities and environmental condi-
tions. Despite our efforts, our results did not surpass existing benchmarks, indicating that our
method did not demonstrate superior effectiveness in this context.

Future research directions could explore alternative post-processing strategies, investigate
methods to handle the ovular or round shape of faces within crowds more accurately, and de-
velop techniques to mitigate the impact of image resizing on shape deformation. Additionally,
conducting a comprehensive analysis of hyperparameter sensitivity and its impact on model
performance could offer valuable insights, ultimately leading to the refinement and enhance-
ment of our model’s robustness and effectiveness in real-world applications.

In conclusion, this work represents a step towards integrating CNNs and GNNs for crowd
analysis tasks, paving the way for more advanced techniques that can leverage the comple-
mentary strengths of these architectures. By addressing the limitations identified in this report,
future research could unlock even greater potential for accurate and reliable crowd counting,
fostering advancements in various real-world applications, including crowd management, ur-
ban planning, and surveillance systems.
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