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Petri nets (PN) and higher-dimensional automata (HDA) are both formalisms for modeling concurrent
systems. Petri nets are represented by places, transitions, arcs, and a marking of places. The marking
defines if we can activate a transition or not. On the other hand, higher-dimensional automata are a set
of points, edges, squares, (hyper-)cubes, etc. where we can find a path through a subset of the given
precubical set in order to join two cells. Even if they are very different, we know that a bounded Petri net
can be converted to a higher-dimensional automata. However, the reciprocal is not true. The purpose of
this project is to implement this algorithm to convert Petri nets to HDA. To achieve this goal, our primary
focuses are the conversion algorithm itself and the creation of a formalism to represent and save HDAs, as
no such standard exists.

Les réseaux de Petri (PN) et les automates en dimension supérieure (HDA) sont deux formalismes pour
modéliser les systèmes concurrents. Les réseaux de Petri sont représentés par des places, des transitions,
des arcs et un marquage des places. Le marquage définit si nous pouvons activer une transition ou non.
D’autre part, les automates en dimension supérieure sont un ensemble de points, arêtes, carrés, (hyper-
)cubes etc., où nous pouvons trouver un chemin à travers un sous-ensemble de l’ensemble précubique
donné afin de relier deux cellules. Même s’ils sont très différents, nous savons qu’un réseau de Petri borné
peut être converti en un automate en dimension supérieure. Cependant, la réciproque n’est pas vraie.
L’objectif de ce projet est de mettre en œuvre cet algorithme pour convertir des réseaux de Petri en HDA.
Pour atteindre cet objectif, nos principaux axes sont l’algorithme de conversion lui-même et la création
d’un formalisme pour représenter et sauvegarder les HDA, car aucune norme de ce type n’existe.
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Introduction

The study of concurrent systems is pivotal in computer science, particularly for modeling and
analyzing systems in which multiple processes occur concurrently. Two prominent formalisms
for representing these systems are Petri nets (PN) and higher-dimensional automata (HDA).
Petri nets, characterized by places, transitions, arcs and markings, provide a visual and straight-
forward method to depict distributed systems and manage resources. In a Petri net, the state
of a system is represented by the marking of places, indicating whether transitions can be ac-
tivated. This makes Petri nets a powerful tool for modeling system states and transitions in a
clear and concise manner.

In contrast, higher-dimensional automata (HDA) extend the traditional automata model by
incorporating higher-dimensional constructs, including points, edges, squares, and beyond.
This allows HDAs to represent more complex relationships and interactions within concur-
rent processes, thereby providing a detailed and nuanced view of systems behavior. Notwith-
standing the discrepancies in their structural and representational characteristics, it has been
demonstrated that a bounded Petri net can be transformed into a higher-dimensional automa-
ton. However, the inverse conversion has not yet been established as viable.

The motivation for converting Petri nets into higher-dimensional automata lies in harnessing
the strengths of both formalisms. While Petri nets are appreciated for their simplicity and intu-
itive graphical representation, HDAs offer a richer and more detailed depiction of concurrent
and parallel processes, which is particularly valuable in contexts mainly based on concurrency.
The objective of this research is to establish a connection between these formalisms by develop-
ing and implementing an algorithm that converts Petri nets into higher-dimensional automata.
Furthermore, due to the lack of a standard for representing and saving HDAs, this project will
also focus on developing a formalism for HDAs.

Contributions This paper presents several key contributions:

• The development and implementation of a theoretical algorithm to convert Petri nets to
higher-dimensional automata.

• The establishment of a formalism for representing and saving HDAs.

Overview of the Paper The remainder of this paper is organized as follows:

• Chapter 1 introduces the fundamental concepts that are essential for a comprehensive
understanding of the two models used: Petri nets and higher-dimensional automata. It
also defines the useful properties of these models and establishes a connection between
them.



• Chapter 2 presents the conversion algorithm as originally proposed by Glabbeek [4].

• Chapter 3 presents my own implementation process and choices and the HDA standard
format we want to introduce.

• Chapter 4 is a discussion about the limitations of the aforementioned algorithm.

Acknowledgements I would like to thank my supervisors, Hugo Bazille and Uli Fahrenberg,
for their guidance and support throughout this project.



Chapter 1

Preliminaries

1.1 Petri Nets

A Petri net (PN) is a mathematical model used to represent distributed systems and concur-
rency theory by processing some resources (tokens) [4, 7]. A Petri net can be seen as a bipartite
graph with two types of vertices: places and transitions. Places are used to store tokens while
transitions represent actions and are indeed labelled. The tokens represent the resources avail-
able in the place they are stored. A marking is the distribution of these tokens. It thus represents
the distribution of available resources within the different places. These resources will then be
used by transitions representing events. The distribution of tokens through places is therefore
a marking and the initial distribution is the initial marking. Some arcs make links from places
to transitions or from transitions to places. The set of arcs is the flow of the Petri net.

Definition 1. A Petri Net is a tuple N = (S, T, F,M0, l) where:

• S is a finite set of places, T is a finite set of transitions, and S ∩ T = ∅.

• F : (S×T ∪T ×S)→ N is the flow (a mapping defining directed (multi)arcs between transitions
and places).

• M0 : S → N is the initial marking.

• l : T → A is a labelling function (with A a set of actions)

ba

Figure 1.1: Petri Net graphical representation

With the Fig. 1.1, we can show the graphical representation of the components of a Petri
net. In this figure, places are represented with circles, transitions with rectangles and arcs with
arrows. Tokens are represented with black filled circles in places. We can also denote the initial
marking for this Petri net as a list of numbers representing the distribution of tokens for each
place, indexing the places from left to right, such that the available tokens for the place at index
i are the number at the same index in the marking list: M0 = (1, 1, 0). Finally, the labels are
letters inside transitions. For that Petri net, we have the label a for the first transition and the
label b for the last one.



The preset, and the postest of a transition t is the set of places that have an arc to, respectively
from that transition. They represent the input, respectively output of the transition t.

Example:
In the Fig. 1.1, the preset of the transition labelled a is only the first place and the postset of
that transition is only the second place.

Definition 2. Let N = (S, T, F,M0, l) be a Petri net. For all t ∈ T :

• •t = {s ∈ S |F (s, t) > 0} is the preset of the transition t.

• t• = {s ∈ S |F (t, s) > 0} is the postset of the transition t.

A transition t is enabled and can be activated if that transition has enough tokens in its input
places. We consider that such transition has enough tokens in its input places, if for all of the
places s in its preset, the number of tokens in that place is at least equal to the number of arcs
from the place s to the transition t.

Definition 3. Let N = (S, T, F,M0, l) be a Petri net. For all t ∈ T :

t is enabled ⇔ ∀s ∈ •t, M(s) ≥ F (s, t)

Example:
In the Fig. 1.1, the transition labelled a is enabled as well as the transition labelled b. In fact,
for the transition labelled a, the number of tokens in its only one input place is 1 and there is
exactly one arc from that place to the transition labelled a. The same reasoning can be used
for the transition labelled b.

If a transition t is enabled, it means we can activate it. The activation process will process the
tokens through the flow: we removed the one token per arc for each places in the preset and we
add one token per arc for each places in the postset. The activation of a transition will produce
a new marking representing the new distribution of tokens in places.

Definition 4. Let N = (S, T, F,M0, l) be a Petri net and M : S → N be the current marking. For all
t ∈ T such as t is enabled, the new marking resulting the activation of the transition t is:

M ′
t : S → N

∀s ∈ S, M ′
t : s 7→M(s)− F (s, t) + F (t, s)

We say that the marking M ′
t is reachable in one step from the marking M by activating the transition t

and we denote it: M t−→M ′
t such that M < M ′

t .

Example:
In the Fig. 1.2a, the activation of the transition labelled b will result in a new distribution of
tokens where the token in the second place was removed (because of the arc from it to the
transition studied) and a new token was added in the last place (because the last place belong
to the postset of the transition labelled b with one arc).

A run (or a fire sequence) is a succession of the activation of transitions until there is no more
enabled transitions. For one Petri net, there may be several possible run.



Definition 5. Let N = (S, T, F,M0, l) be a Petri net. A run (or firing sequence) of the Petri net
is a sequence of transitions σ = ⟨t1, t2, . . . , tn⟩ such that there exists a sequence of markings M0

t1−→
M1 ∧M1

t2−→M2 ∧ . . . ∧Mn−1
tn−→Mn where:

• M0 is the initial marking,

• ∀i ∈ {1, 2, . . . , n}, the transition ti is enabled at Mi−1 and activating ti results in the marking Mi.

b

a

(a) activation of transition b

b

a

(b) activation of transition a

b

a

(c) activation of transition b

Figure 1.2: A possible run for Fig. 1.1

Example:
The Fig. 1.2 illustrates one possible run for the Petri net described in Fig. 1.1. We start with the
initial marking M0 = (1, 1, 0). Then in Fig. 1.2a, we activate the transition labelled b resulting
in the new marking M1 = (1, 0, 1). After that, in Fig. 1.2b, we activate the transition labelled
a to create the marking M2 = (0, 1, 1) and we can finally activate the transition labelled b, in
Fig. 1.2c, to distribute the tokens according the marking M3 = (0, 0, 2). In that final marking,
we can notice that there is no more transition enabled, we reached the end of the run.

We want to consider that the activation of a transition is not instantaneous and need some
time to be achieved. In addition, we must be able to activate more than one transition simul-
taneously, enabled the concurrency of action in our run. To do so, we firstly need to define the
activation in two parts: the stating phase and the finishing phase. The starting phase, and the
finishing phase, denoted with a plus sign, respectively a minus sign in exponent, is the part
consisting of removing tokens from preset places, respectively adding tokens to postset places.
To start the activation of a transition, that transition must be enabled. Moreover, to finish the
activation of a transition, we need to start that transition first. With this activation definition,
we can now start multiples transition while they does not finished yet. With this new activation
process, a run is now a succession of starting and finishing phases such as all starting phases
occur before their corresponding finishing phases and all started transition must be finished.

Definition 6. Let N = (S, T, F,M0, l) be a Petri net and M : S → N be the current marking. For all
t ∈ T such as t is enabled, the activation of the transition t can be split into two steps:

• M+
t

′(s) = M(s)− F (s, t) is the starting phase.

• M−
t

′(s) = M(s) + F (t, s) is the finishing phase.



A run is now a sequence of start and end part of transitions σ = ⟨t+1 , . . . , t
+
i , . . . , t

−
i , . . .⟩ for all 1 ≤ i ≤

n such that there exists a sequence of markings M0
t+1−→M+

1 ∧. . .∧Mj
t+i−→M+

i ∧. . .∧Mk
t−i−→M−

i ∧. . .
where:

• M0 is the initial marking,

• ∀i ∈ {1, 2, . . . , n}, ∃Mj < M+
i , Mj

t+i−→ M+
i , the transition ti is enabled at a state Mj and starting

ti results in the marking M+
i . And ∃Mk < M−

i , M+
i < M−

i ,Mk
t−i−→ M−

i , the transition ti will be
finished from the state Mk resulting in the marking M−

i .

ba

(a) transition b+1

ba

(b) transition a+

ba

(c) transition a−

ba

(d) transition b+2

ba

(e) transition b−2

ba

(f) transition b−1

Figure 1.3: A possible run with concurrency for figure 1.1

Example:
The Fig. 1.3 presents a possible run for the Petri net Fig. 1.1 with the concurrency definition.
For example, when we start the transition labelled b in Fig. 1.3a, we only removed the token
in the second place. Later on, that transition is finished in Fig. 1.3f resulting in the addition of
a token in the last place (which is the only output place for that transition). In that example,
we can notice that the transition labelled a is activated while the transition labelled b is still
running. So we have a concurrence between the action b firstly activated and the action a.

1.2 Pomset

The Pomsets (partially ordered multi-set) is a labeled set with a finite partial order relation
which is transitive, irreflexive and anti-symmetric [1, 2]. Those sets represent events, and the
order relation is used to describe their precedence. Consequently, an event that has a predeces-
sor (i.e., another event that precedes it according to the set’s order relation) cannot begin until
its predecessor has finished. It must therefore wait for the predecessor to finish. This relation-
ship can therefore be used to represent sequential events. Furthermore, being partial, this order
relation does not apply to certain pairs of events, which can then evolve at the same time (with-
out restriction on waiting for the other). This enables the representation of concurrent events.
Pomsets thus represent the behavior of each event as a function of the others.

Definition 7. A pomset (partially ordered multi-set) over Σ is a triplet p = (E,≺, λ) where E is a
finite set, ≺⊆ E × E is a finite partial order and λ : E → Σ is a mapping from E to Σ.

A pomset p = (E,≺, λ) is without auto-concurrency if λ(x) = λ(y) implies (x ≺ y ∨ y ≺ x)
for all x, y ∈ E.



a

b

c

(
c
((a // b

)

Figure 1.4: pomset representation

a

b

c

( c

  //a //b //

)

Figure 1.5: IPomset representation

Example:
In the Fig. 1.4, we represent the interval representation of three events denoted a, b, c and the
corresponding Pomset. The interval representation allows us to easily display the time spent
by each event for completion, and the pomset is mainly used to formally represent the order
relation between those events. As we can notice, the events a and c occur before the event b
and, in the pomset, we represent that precedence relation by the arrows such as a ≺ b and
c ≺ b. Moreover, there is no order relation between the events a and c. Even if, in the interval
representation, the event a is started before the event c, we cannot order them because the
event a is not finished before the event c starts. We have concurrency between a and c.

Pomsets can be equipped with interfaces [3]. There are two distinct types of interfaces: start-
ing and terminating. This allows us to represent uncompleted events. In the context of event
representation, starting interfaces are used to denote unstarted events, that is, events that have
not been started. In contrast, terminating interfaces represent unterminated events, or events
that are not completed.

Definition 8. A pomset with interfaces (ipomset) (E,≺, S, T, λ) consists of a pomset (E,≺, λ) with 2
subsets S, T ⊆ E (source and target interfaces) such that ∀x ∈ S, ∀y ∈ E,¬(y ≺ x) and ∀x ∈ T, ∀y ∈
E,¬(x ≺ y).



Example:
In the Fig. 1.5, we represent the same three events as in the figure 1.4 but with two interfaces.
In fact, in the interval representation, the event a has not been started during the studied
time period and is therefore an unstarted event. On the other hand, the event b has not been
finished at the end of the time period and is therefore an unterminated event. Both events
are represented with an arrow to, respectively from the interface point event.

Some special pomsets and ipomsets have no elements in relation with each other. In other
words, all the events described by these pomsets are non-ordered and take effect at the same
time. These pomsets are concurrent lists (conclist). They are used to represent concurrent events
only.

Definition 9. A concurrency list (conclist) is a pomset P = (E,≺, λ) such that

∀x, y ∈ E, x ⊀ y ∧ y ⊀ x

Example:

For example,
( a //

b

)
is a conclist with an interface. On the other hand,

(
a // b

c

)
is not a

conclist as we have a ≺ b.

The gluing operation [3] is a fundamental concept in the study of ipomsets, enabling the
sequential composition of complex processes from simpler sub-processes. The aim of the gluing
operation is to merge two ipomsets in a way that respects the ordering constraints inherent to
each ipomset and creates a coherent combined process. This operation is only defined if the
terminated interfaces of the first ipomset, with the labels, are equal to the starting interfaces of
the second ipomset, with the labels. The goal is to merge (or glue) those common interfaces,
in order to create complete events by combining unterminated events with unstarted events.
Moreover, the order relation is preserved within each ipomset. Finally, the terminated events of
the first ipomset need to be achieved before the started events of the second one. In that sense,
we say that the first ipomset is precedent to the second one.

Definition 10. The gluing composition of two ipomsets P = (EP ,≺P , SP , TP , λP ), Q = (EQ,≺Q

, SQ, TQ, λQ) such that TP = SQ ∧ λTP
= λSQ

is P ∗Q = (EP ∪ EQ,≺, SP , TQ, λ) where:

• x ≺ y if x ≺P y or x ≺Q y or (x ∈ P ∩ TP ) ∧ (y ∈ Q ∩ SQ)

• λ(x) =

{
λP (x) if x ∈ P
λQ(x) if x ∈ Q

Example: (
//a //

��

b //

c //d

)
∗

 //b //e //

f

 =

 //a //

��

b //e //

c //d //

??

f


In fact, we are merging the interfaces labelled b to create a complete event. We are also
conserving the order relation inherent to each ipomset. Finally, we are adding some relation
to make the first ipomset before the second one. To achieve so, we need to add relations
to make the events a, c, d precedent to the events e, f . As a ≺ d and c ≺ d, and by the
transitivity of the order relation, we just need to make the event d before the events e and f .



Definition 11. Let P1, P2, . . . , Pn be a sequence of IPomsets. The∗ operation applied from i = 1 to
n is defined as the gluing operation of those IPomsets in the given order. The notation∗n

i=1 Pi represent
the sequential gluing operation of the IPomsets P1, P2, . . . , Pn. Explicitly, this can be written as:

n∗
i=1

Pi = P1 ∗ P2 ∗ . . . ∗ Pn

The step decomposition of an ipomset is a method of breaking down a complex, partially
ordered structure into a sequence of simpler, concurrent steps. Each step consists of a set of
elements that can be executed in parallel, meaning there are no order dependencies between
the elements within the same step. The overall process can be reconstructed by sequentially
gluing these steps together.

Definition 12. Let P = (E,≺, S, T, λ) be an IPomset. The step decomposition of the IPomset P is a
sequence of IPomset P1, P2, . . . , Pn (with Pi = (Ei,≺i, Si, Ti, λi)) such that:

•
⋃n

i=1 Ei = E

• for each Pi, x, y ∈ Ei =⇒ x ⊀i y ∧ y ⊀i x (Pi is a conclist)

• the IPomset P is the gluing composition of its decomposition: P =∗n
i=1 Pi

Example:
Given the following ipomset, the step decomposition is obtain through this decomposition
process:  //a //b //

��

c

d //

??

e //f //

 =

( //a //

d

)
∗

(
//a //b

e //

)
∗

(
c

//e //f //

)

=

( //a //

d

)
∗

( //a
e //

)
∗

(
b

//e //

)
∗

( c //

//e

)
∗

( //c
f //

)

1.3 Higher-Dimensional Automata

In the context of Higher-Dimensional Automata (HDA) [1, 2, 4], cells are fundamental compo-
nents that represent various states and transitions. A 0-cell represents a state, a 1-cell represents
a transition (like an edge in a graph), and higher-dimensional cells represent more complex
interactions and concurrent transitions. The boundaries of these cells are lower-dimensional
faces that form the structure of the cell. In an HDA, those cells represent, respectively to there
dimension, the vertices, edges, faces, cubes, hypercubes, ...

Definition 13. An n-cell is an element representing an n-dimensional hypercube. Let Xn be the set of
all n-cell. Each n-cell is composed of a conclist of n elements and boundaries which are 3n − 1 faces of
dimension 0 ≤ i < n.



Example:
In the Fig. 1.6, there are four 0-cells: x, y, v, w representing states and the vertices of the
square. We also have four edges (or 1-cells): e, f, g, h. The edge e for example is composed
of two 0-cells boundaries: v, w. Finally, there is a 2-cell representing the square in Fig. 1.7 la-
belled q such as its boundaries are x, y, v, w, e, f, g, h (3d − 1 = 32 − 1 = 8 = |boundaries(q)|).

An event in HDA corresponds to a transition (or an action). Each cell is composed of a list of
concurrent events represented with the conclist thus there are as many concurrent events as the
dimension of the cell. Therefore, there is no event for 0-cells (states), and elementary event for
1-cells (transitions / edges). An n-cell is composed of n concurrent events.

Definition 14. Let □ a set of conclists, the events of cells is defined with the mapping function C : X →
□ such as, for x ∈ Xn, |C(x)| = n. For a conclist U ∈ □, we write X[U ] = {x ∈ X|C(x) = U}.

Example:
In the HDA Fig. 1.7, associated to the set of cell in Fig. 1.6, the 0-cells are not associated with
events, the 1-cells represent the activation of one event, like the cell e witch is associated with
the event a. Finally, the n-cells with n ≥ 2 represent n concurrent events and are useful to
represent multiple events. In our example, the cell q enables both a and b and therefore enable
the conclist

(
a
b

)
.

In our set of cell, we have the following events and associated cells:

• X[∅] = {x, y, v, w}

• X[a] = {e, f}

• X[b] = {g, h}

• X[[ ab ]] = {q}

Face maps are functions that describe how higher-dimensional cells are attached to lower-
dimensional ones. We have the lower face maps (δ0A) and the upper face maps (δ1A) who trans-
form the cell x into a cell where the events in A have not yet started, respectively have termi-
nated.

Definition 15. Let x ∈ Xn an n-cell, for A ⊆ C(x) a set of events, the face maps of x are defined as
follow:

δ0A, δ
1
A : Xn → Xn−|A|

such as: C(δ{0,1}A (x)) = C(x) \A

For a conclist U ∈ □, A ⊆ U , we can write δ
{0,1}
A : X[U ]→ X[U \A]

For U ∈ □, A,B ⊆ U , such as A ∩B = ∅, for µ, ν ∈ {0, 1}, δνAδ
µ
B = δµBδ

ν
A

Example:
In the Fig. 1.6, each cell of dimension greater or equal to one, is linked to its face maps with
labelled arrows from the studied cell to its face maps. For example, the 1-cell e representing
the event a is linked to two 0-cells v, w such as v (which is the δ0a(e)) is the cell where the
event a has not yet started, and the 0-cell w = δ1a is the cell where the event a is finished.
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δ0a δ1a

δ0a δ1a

δ0a δ1a

δ0b

δ1b
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δ0b

δ1b
δ1ab

δ0ab

Figure 1.6: The precubical set representation of a two dimensional HDA

For the cell of dimension two (q), there is 8 boundaries but only 6 face maps: g, e, x unstart
the events a, b, [ ab ] and h, f, y finish those events (respectively).

A precubical set is a combinatorial structure that encodes higher-dimensional transitions us-
ing cells and face maps. It invokes the C function to map a conclist of events for each cell,
indicating the events involved. Each cell also uses the face maps δ0 and δ1 providing a way to
navigate between different dimensions of cells, by starting or finishing events, thus capturing
the relationships between various states and transitions in a concurrent system. This union of
all the face maps of a cell represent a part of its boundaries.

Definition 16. Let X be the set of cells, □ the set of conclist, the precubical set is:

X = (X, C, {δ0A, δ1A|U ∈ □, A ⊆ U})

with:

• C : X → □ mapping a conclist for all cells.

• δ
{0,1}
A for U ∈ □, A ⊆ U , the face maps of cells x ∈ X|U | such as C(x) = U .

The Fig. 1.6 represent a precubical set, with all the elements already studied in previous ex-
amples.

An HDA extends the concept of traditional automata to higher dimensions by using a pre-
cubical set. The start cells represent initial states from which the computation begins, and the
accept cells represent the final states where the computation can successfully terminate.

Definition 17. Let X be the precubical set, the HDA H is defined as follow:

H = (X,⊥X ,⊤X)

with: ⊥X ,⊤X ⊆ X the start and accept cells.

Example:
The Fig. 1.7 represents the HDA associated to the studied precubical set in figure 1.6. We
can notice the different cells with q in the gray square representing the 2-cell. We can also
notify the events of each edge, such as the 2-cell square execute events of its boundaries in
concurrence. Boundaries of a n-cell with n ≥ 2 can be paired such as there are opposite and
identified by the same events. For the boundaries of the 2-cell q, we can pair (f, e) as well
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Figure 1.7: HDA associated to the precubical set in Fig. 1.6
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Figure 1.8: A three dimensional HDA

as (g, h) as they both activate the event a, respectively b. In this HDA, we represented the
starting and accepting cells with the ⊥ and ⊤ sign. We have the starting cells ⊥X = {v, g}
and the finishing cells ⊤X = {g, h, y}.

The HDA in Fig. 1.8 is a cube. It therefore represents three concurrent events: a, b, c.

1.4 Languages

1.4.1 ST-Traces

ST-Traces are one of the formal languages of Petri nets [4, 6, 7]. It is a set of execution traces.
Those execution traces represent the activation sequence of the transitions of the Petri net. In
other words, those traces are a succession of transitions, indexed if multiple, with a plus or a
minus sign to indicate the start or the end of the activation of the transition.

Definition 18. Let N be a Petri net and RUN : N → Σ∗ a non-deterministic function that associate to
the Petri net N an activation sequence.

ST (N) = {RUN(N)}



Example:
For the Petri net in Fig. 1.1, the ST-traces are:

ST (N) =



a+a−b+1 b
−
1 b

+
2 b

−
2

a+a−b+1 b
+
2 b

−
1 b

−
2

a+a−b+1 b
+
2 b

−
2 b

−
1

a+a−b+2 b
−
2 b

+
1 b

−
1

a+a−b+2 b
+
1 b

−
2 b

−
1

a+a−b+2 b
+
1 b

−
1 b

−
2

a+b+1 b
−
1 a

−b+2 b
−
2

a+b+1 a
−b−1 b

+
2 b

−
2

a+b+1 a
−b+2 b

−
1 b

−
2

a+b+1 a
−b+2 b

−
2 b

−
1

b+1 b
−
1 a

+a−b+2 b
−
2

b+1 a
+b−1 a

−b+2 b
−
2

b+1 a
+a−b−1 b

+
2 b

−
2

b+1 a
+a−b+2 b

−
1 b

−
2

b+1 a
+a−b+2 b

−
2 b

−
1

Where each line represent a possible run of the Petri net. The indexing is very important,
especially in the case of auto-concurrency, as we want to separate the cases where we end the
first transition we activated or the second for example.

1.4.2 Language of HDA

In the context of HDA, a path is a continuous mapping from a time interval to the automaton’s
cells.

Definition 19. Let H be an HDA and X the set of cells of H , a path in that HDA is defined with:

γ : [0, 1]→ X

where γ(0) ∈ ⊥X and γ(1) ∈ ⊤X .

Example:
In the Fig. 1.9, the orange edges represent a possible path. This path starts in the only one
initial cell in the upper left corner and finishes in the only one accepting cell in the lower right
corner. It goes through the first 2-cell square associated to the conclist of events [ ab ] and then
go through a 1-cell edge identifying the event b.

These paths can be identified by pomsets such that the ipomset identifying a path is the result
of the gluing composition of all the conclists of the cells traversed along the path. A pomset can
identify multiple paths. In an HDA, a pomset denoting a possible path through it is a part of
the language of that HDA. Therefore, the language of an HDA is the set of all possible pomset
representing a valid path [1, 2].
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Figure 1.9: A possible path through an HDA

Definition 20. Let γ : [0, 1]→ X one path over the HDA H . The IPomset associated to this path is:

P = ∗
i∈[0,1]

C(γ(i))

Example:

In the Fig. 1.9, the orange path can be associated with the pomset
(
b
''a // b

)
by applying the

gluing composition to the conclists of the traversing cells: the conclist of the 2-cell
(
a
b

)
is

glued to the conclist of the 1-cell ( b ) traversed along the path. This same pomset can also be
used to define a multitude of paths, such as the blue path on the neighboring HDA. Finally,
a finite HDA is defined by a finite set of pomsets forming its language. The pomsets of the
language of the HDA in Fig. 1.9 are all those (and only those) in figure 1.10.

Even though the last 2 cases in Fig. 1.10 are the same according to the transition labels, since
they are not the same transition, we want to separate them (by indexing them, for example) so
that we can differentiate between them. Thus, we have

(
a // b1 // b2

)
and

(
a // b2 // b1

)
which are 2 distinct cases.

Example:
If an n-cell, with n ≥ 1 is either an initial or an accepting cell, then the pomset denoting a path
starting, respectively finishing at this cell, is an ipomset with a starting interface, respectively
a terminating interface. In the Fig. 1.11, the path terminates on an edge denoting the event
b. In the corresponding ipomset, the event labelled b is not terminated ant is therefore a
terminating interface.
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Figure 1.11: A Path associated to an IPomset



This language exhibits a number of interesting properties for HDAs. It permits a decomposi-
tion whereby each ipomset is a conclist of one of the traversed cells.

1.4.3 Link between ST-traces and Pomsets

To ensure the coherent and similar behavior of the HDA resulting from the conversion of a
Petri net, it is important to define a link between their languages (ST-traces and pomsets). We
will therefore seek to link pomsets to execution traces by defining pomset traces as a set of all
possible start and end orders of pomset events.

Definition 21. Let P = (EP ,≺P , λP , SP , TP ) be a IPomset with λP : EP → ΣP . The execution
traces over that pomset are:

ST (P ) = {w ∈ Σ
|w|
ST }

with:

• |w| = 2× |EP | − |SP | − |TP |

• ΣST = (Σ+
P ) ∪ (Σ−

P )

• ∀x ∈ EP ,∀w ∈ ST (P ), x−x+ /∈ Π{x+,x−}(w)

• ∀x, y ∈ EP ,∀w ∈ ST (P ), x ≺P y ⇐⇒ Π{x−,y+}(w) = x−y+

with ΠI(w) the projection of the elements in I from the ST-trace w conserving the order.

Example:

The execution traces of the pomset P =
(
a

((b // c

)
are the following:

ST (P ) =


a+b+a−b−c+c−

a+b+b−a−c+c−

b+a+b−a−c+c−

b+a+a−b−c+c−

In fact, we want the order relation to be maintained as a ≺ c and b ≺ c but as there is no
order relation between a and b. In that sense, we must finish a and b before starting c but but
neither of the 2 events (a or b) can be completed before starting the other. In the latter case,
there would be an order relationship between the 2.

In the context of HDA, the blue path of the HDA in the Fig. 1.9 can easily be decomposed
such as we start a b transition, we make a complete a transition, we finish our firstly started b
transition, and we finally achieve a b event. The ST-traces of that path, according to the given
description, is b+a+a−b−b+b−.

An HDA therefore behaves in a similar way to the source Petri net if, for each pomset in the
language of the HDA, its execution traces are included in the set of execution traces for the
Petri net, and if each execution trace in the source Petri net finds a pomset in the resulting HDA
language that generates the same trace.

Definition 22. Let H be an HDA resulting from the conversion of the Petri net N :

P ∈ L(H) ⇐⇒ ST (P ) ⊆ ST (N)



similarly:
⋃
ST (Pi ∈ L(H)) = ST (N)



Chapter 2

Algorithm

The conversion algorithm [4] aim to generate all possible reachable marking and execution
traces from a Petri net and to map an HDA cell for each of them.

Definition 23. Let N = (S, T, F,M0, l) be a Petri net. The HDA H = (X = (X, C, {δ{0,1}}),⊥X ,⊤X)
is given by:

• Xn = {x ∈ ST (N)| |x| − |{y− ∈ x}| = n}

• δ0A(x ∈ Xn) = {y ∈ Xn−|A|| C(y) = C(x) \A,A(M(y), {t+k |k ∈ A}) =M(x)}

• δ1A(x ∈ Xn) = {y ∈ Xn−|A|| C(y) = C(x) \A,A(M(x), {t−k |k ∈ A}) =M(y)}

• ⊥X = {x ∈ X0|M(x) = M0}

• ⊤X = ∅

• C(x ∈ Xn) = {l(c)|x ∈ ST (N), c ∈ x \ {y− ∈ x}}

with:

• M : X →M a mapping from cells of HDA to the corresponding marking M when the cell was created.

• A : M × Tn →M the successive activation of the given n transitions from the given marking.

The algorithm outline is as follow:

• Initialization: Load the Petri net and its initial marking M0 and initialize the HDA with
the initial cell corresponding to the marking M0.

• Generate reachable markings: For each transition in the Petri net, determine if it is en-
abled based on the current marking. If the transition is enabled, compute the new marking
reached after the transition has been activated. Create a new HDA cell corresponding to
this new marking.

• Create HDA cells: For each reachable marking, create an HDA cell (edge) associated with
the transition activated. Define the boundaries for each newly created cell. Ensure that
the boundaries respect the partial order of events, maintaining the causal relationships.

• Construct higher-dimensions: For concurrent events, construct higher-dimensional cells
(2-cells, 3-cells, ...). Each higher-dimensional cell represents the simultaneous execution of
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Figure 2.1: Generate cells from Petri net execution of Fig. 1.1

multiple transitions. Create boundaries for each of this newly created higher-dimensional
cell.

• Finalize HDA: Define the initial and accepting cells of the HDA. Ensure all execution
traces from the Petri net are captured in the HDA structure.

Example:
The Petri net in Fig. 1.1 can be converted in the HDA in Fig. 1.9 enumerating the tuples
marking, execution traces as shown in figure 2.1. In the last figure, we can distinguish the 2
squares with each one cell (marking) in their center. Even if this marking is the same ((0, 0, 0)),
the events are not the same ([ ab ] for the upper one and

[
b
b

]
for the lower one).

The theoretical complexity of the conversion algorithm can be analyzed in terms of the num-
ber of markings and the dimensions of the HDA cells.

Markings Let n be the number of places in the Petri net. The number of reachable markings
can be exponential in the number of places, up to O(2n) in the worst case.

Cells Let m be the number of transitions in the Petri net. For each reachable marking, a cell is
created in the HDA. The creation of higher-dimensional cells involves combinatorial complex-
ity. Specifically, for k concurrent events, the number of higher-dimensional cells is 3k, leading
to a total complexity of O(3m).



Thus, the overall complexity is dominated by the exponential growth in the number of reach-
able marking and the creation of higher-dimensional cells, making the worst-case complexity
O(2n3̇m).



Chapter 3

Implementation

3.1 Conversion algorithm

The initial step is to delineate the various objects that will be employed in the algorithm. There
are five distinct types. The five types of objects are as follows: HDA, cell, marking, transition,
and PN.

transition A transition in a Petri net is represented by two sets, one associated with the preset
and the other with the postset of that transition, as well as a label that represents the event name
during its activation.

• preset (vector<integer>): the set of indexes of the preset places.

• postset (vector<integer>): the set of indexes of the postset places.

PN A Petri net (PN) is represented by two sets: the places and the transitions. Each element
in each vector is indexed by its position, allowing for a unique description in subsequent oper-
ations.

• places (vector<place>): a set of indexed places in the Petri net.

• transitions (vector<transition>): a set of indexed transitions in the Petri net.

Marking A marking is defined as a vector of integers (vector<integer>). Each element of
this vector, indexed by i, represents the number of tokens available at the place represented by
the unique identifier i.

cell A cell is made up of a conclist of events active in that cell, and two sets of cells, which
form the cell’s face maps (and its boundaries). The cells in the face maps of the current one are
those with dimensions exactly equal to the dimension of the current cell minus one.

• dim (integer): the dimension of the current cell.

• conclist (vector<transition>): the list of events active in that cell.



• d0 (vector<cell>): the list of the lower face maps of that cell (representing δ0) such as
∀c ∈ d0, dim of c = (dim of current cell) - 1.

• d1 (vector<cell>): the list of the upper face maps of that cell (representing δ1) such as
∀c ∈ d1, dim of c = (dim of current cell) - 1.

HDA HDAs are just a list of cells (vector<cell>) representing all the cells forming that
HDA, such as all cells are accepting and only the first one cell, associated to the initial marking
of the Petri net, is an initial cell.

I decided to implement the algorithm in C because that’s the language I was most comfortable
with, and also because I tried to base myself on Thomas Kahl’s PG2HDA program for HDA
representation (in memory).

Algorithm 1 PN2HDA

Require: out: HDA, PN: PN, save: Hashmap<Marking, vector<cell>>,
currentConclist: vector<transition>, M0: Marking

Ensure: c : cell
1: procedure PN2HDA(out, PN, save, currentConclist, M0)
2: c← cell(dim: length(currentConclist), conclist: currentConclist)
3: add (M0, c) in save
4: add c in out
5: for all t ∈ transitions of PN do
6: if t is enabled then
7: M ← start_activate t from M0
8: if M ∈ save & ∃ c′ ∈ save[M], conclist of c′ = (conclist of c) + t then
9: ▷ If conclists are the same, their dimensions also match as the conclist

contains dim elements
10: add c in d0 of c′

11: else
12: add c in d0 of PN2HDA(out, PN, save, currentConclist + t, M)
13: end if
14: end if
15: end for
16: for all t ∈ currentConclist do
17: M ← end_activate t from M0
18: if M ∈ save & ∃ c′ ∈ save[M], conclist of c′ = (conclist of c) - t then
19: ▷ We do not compare their dimensions for the same cause as above
20: add c′ in d1 of c
21: else
22: add PN2HDA(out, PN, save, currentConclist - t, M) in d1 of c
23: end if
24: end for
25: return c
26: end procedure
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Figure 3.1: HDA representation of the software output in Fig. 2

3.2 Software input: PNML

In this software, we take as entry a standardized PNML (Petri Net Marking Language) file [5]
describing a Petri net under an XML format. We can distinguish states (with the initial marking),
transitions and arcs. An example is provided in the annexes Fig. 1 for the Petri net in Fig. 1.1.

3.3 Software output format

3.3.1 Current format

You can discover, in annexes Fig. 2, the output HDA from the software. It is corresponding to
the HDA in Fig. 1.9. For a shake of readability, you can find its representation in Fig. 3.1.

For now, due to a lack of time, and because we want to make the algorithm working fine
before going through new steps, the output of the software is pretty simple and assume the first
cell is the only one inital and all cells are accepting.

3.3.2 Standardised format

The ideal format we want to introduce to represent HDAs is based on the YAML (Yet Another
Marking Language) file format, as it was designed to be structured, human-readable and easily
parsable and writable.

HDA Under that format, we want the HDA to be represented with:

• name: an optional string providing a name for the HDA.

• description: an optional string offering a brief description of the HDA.

• cells: a list of cell objects, representing the vertices, edges, and higher-dimensional cells
of our HDA.

• initial: a list of integers representing the IDs of the initial cells of our HDA.

• accepting: a list of integers representing the IDs of the accepting cells of our HDA.

cell In that HDA, each cell is composed of the following fields:

• id: a unique integer identifier for the cell.



• conclist: a list of strings denoting the concurrent events. This is absent for vertices.

• d0: a list of integers containing the IDs of the lower face maps (δ0) of the current cell. This
is absent for vertices.

• d1: a list of integers containing the IDs of the upper face maps (δ1) of the current cell. This
is absent for vertices.

In the file 1, there is the detailed wanted format file to modelise an HDA. File 2 presents the
HDA in Fig. 3.1, associated to the actual output in Fig. 2 in the wanted YAML format. It is really
similar to the output we get in the Fig. 2 and the process to transform the output we currently
have to the presented format we want will be very straightforward.



Chapter 4

Limits of the Algorithm

The conversion algorithm, while theoretically sound, has several limitations.

• Scalability: The exponential growth in the number of reachable markings and higher-
dimensional cells limits the scalability of the algorithm. For large Petri nets with many
places and transitions, the resulting HDA can become unmanageably large.

• Computational resources: The algorithm requires significant computational resources
(memory and processing power) to store and process the large number of cells, especially
for high-dimensional constructs.

• Unbounded Petri nets: The program execution time must be bounded, and the output
HDA cannot, for obvious technical reasons, be infinite. As we want to work on finite
sets and finite HDA, we cannot generate a potentially infinite HDA. This is mainly why
we cannot work on unbounded Petri nets as they lead to infinite execution traces and
configuration.

a

Figure 4.1: An unbounded Petri net



Example:
In the Fig. 4.1, there is an example of an unbounded Petri net. In that case, there is always
a token in the first place. Thus, we can always activate a transition a to generate as many
tokens as we want in the last place. This leads to an infinite number of executions.



Conclusion

In conclusion, this research presents an advance in the modilization of concurrency systems,
offering an approach to bridge the gap between Petri nets and higher-dimensional automata.
By developing and implementing a conversion algorithm, we have been able to leverage the
strengths of both formalisms, thereby offering a more detailed representation of concurrent
systems. The establishment of a formalism for HDAs addresses the absence of a standard in this
field, providing a foundation for future research and development. Moving forward, further
improvements to the algorithm and further exploration of additional applications will continue
to enhance our understanding and utilization of these powerful modeling tools.
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Appendix PNML file

Figure 1: PNML file for Petri net in Fig. 1.1

Appendix output HDA

Figure 2: Software output HDA

Appendix YAML format to represent HDA

Source Code 1: HDA standard format description



1 HDA:

2 name: <optional string> # Name of the HDA

3 description: <optional string> # Description of the HDA

4

5 cells: # List of cells in the HDA

6 - id: <integer> # Unique identifier for the cell

7 conclist: <list of strings> # List of concurrent events, optional

8 d0: <list of integers> # Lower face maps of the current cell, optional

9 d1: <list of integers> # Upper face maps of the current cell, optional

10

11 initial: <list of integers> # List of initial cells IDs

12 accepting: <list of integers> # List of accepting cells IDs

Appendix YAML format example to represent the HDA in Fig. 2

Source Code 2: HDA standard format example

1 HDA:

2 cells:

3 - id: 0

4 - id: 1

5 - id: 2

6 - id: 3

7 - id: 4

8 - id: 5

9 - id: 6

10 conclist: ["a"]

11 d0: [0]

12 d1: [3]

13 - id: 7

14 conclist: ["b"]

15 d0: [3]

16 d1: [2]

17 - id: 8

18 conclist: ["b"]

19 d0: [2]

20 d1: [1]

21 - id: 9

22 conclist: ["b"]

23 d0: [4]

24 d1: [1]

25 - id: 10

26 conclist: ["a"]

27 d0: [5]

28 d1: [2]

29 - id: 11

30 conclist: ["b"]

31 d0: [3]



32 d1: [4]

33 - id: 12

34 conclist: ["b"]

35 d0: [0]

36 d1: [5]

37 - id: 13

38 conclist: ["a", "b"]

39 d0: [6, 12]

40 d1: [7, 10]

41 - id: 14

42 conclist: ["b", "b"]

43 d0: [7, 11]

44 d1: [8, 9]

45

46 initial: [ 0 ]

47 accepting: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
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