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Segmentation is a computer vision process used in medical imaging to support the diagnosis of various
pathologies by healthcare teams. The purpose of my work is to develop a neural network that can per-
form segmentations on MRI images of human brains and provide prediction on the progression of the
tumor through the potential contamination of different voxels. To improve the reliability of the model, we
intend to develop 2 additional algorithms for quantifying uncertainty: Monte-Carlo Dropout and Deep
Ensembles. Monte-Carlo Dropout is based on generating multiple predictions by randomly deactivating
neurons, and Deep Ensembles train several networks with different initializations and architectures. These
methods will enable the computation of uncertainty by measuring metrics such as standard deviation from
the mean.

La segmentation est un processus de vision par ordinateur utilisé en imagerie médicale pour aider les
équipes de soins de santé à diagnostiquer diverses pathologies. L’objectif de mon travail est de dévelop-
per un réseau de neurones capable de réaliser des segmentations sur des images IRM de cerveaux hu-
mains et de fournir des prédictions sur la progression de la tumeur à travers la contamination potentielle
de différents voxels. Pour améliorer la fiabilité du modèle, nous prévoyons de développer deux algo-
rithmes supplémentaires pour quantifier l’incertitude : le Monte-Carlo Dropout et les Deep Ensembles.
Le Monte-Carlo Dropout se base sur la génération de multiples prédictions en désactivant aléatoirement
des neurones, tandis que les Deep Ensembles entraînent plusieurs réseaux avec des initialisations et des
architectures différentes. Ces méthodes permettront de calculer l’incertitude en mesurant des métriques
telles que l’écart type par rapport à la moyenne.
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Chapter 1

Introduction

In the field of medical imaging, the use of deep learning algorithms for diagnostic assistance
exhibits remarkable potential due to their ability to detect complex patterns and anomalies in
data such as MRI scans. These models are increasingly favored for their efficiency and rapid
learning capabilities, adapting to a wide array of application contexts. However, despite the
often high accuracy of these algorithms, they present a major challenge related to uncertainty
management: they tend to offer their predictions with excessively high confidence levels, with-
out indicating the limits of their knowledge.

This issue of poorly calibrated confidence is clearly manifested when, for example, a classi-
fier trained to recognize images within a defined set of categories encounters images outside
of this set. The model might then provide erroneous predictions with great assurance. This
phenomenon is particularly critical in the medical field where diagnostic stakes are high, as
overconfidence in incorrect results can lead to diagnostic errors with severe consequences for
patients.

The ability of a model to express "I don’t know" is thus crucial, especially in medical applica-
tions where accuracy and safety are paramount. The transparency of these models is a necessity
to build trust in their clinical use, highlighting the importance of reliably quantifying the level
of certainty associated with their predictions.

My research project addresses this challenge. It aims to develop a convolutional neural net-
work (CNN) capable of performing segmentations on brain MRIs to identify potential tumors.
The goal is twofold: not only to enhance the precision of segmentation but also to integrate an
uncertainty estimation to accompany each prediction with a confidence measure. Through this
approach, the project seeks to enhance the reliability of AI-based diagnostics by providing not
just a result, but also an evaluation of its certainty, thereby facilitating medical decision-making.



Chapter 2

Context and State of the Art

In the field of deep learning, quantifying uncertainty effectively is vital for decision-making,
especially in areas such as medical imaging where safety and reliability are essential.

Segmenting an area on an image involves classifying each pixel of the image. To quantify the
uncertainty in the predictions, we will construct for each input a set of predictions, each time
different, in order to study the distribution of the membership probabilities of each pixel. The
goal is then to construct a final prediction formed as the average of the results obtained.

During this semester, I focused my work on studying two basic but essential metrics. First, it
is very interesting to study the standard deviation map for each pixel to get an overview of the
distribution of the pixel membership probabilities.

How It Works : Standard deviation measures the variability or dispersion of predictions
around the mean. It directly quantifies the spread of predicted probabilities for each input,
making it useful for identifying areas of high and low uncertainty. The formula for the standard
deviation is :

σ =
1

N

N∑
i=1

(pi − p̄)2

where:

• σ is the standard deviation.

• N is the total number of predictions.

• pi is the probability of the i-th prediction.

• p̄ is the mean of the probabilities of all predictions.

Next, I also calculated the Shannon entropy for each set of predictions. This metric allows us
to quantify the degree of certainty the model has in its predictions.

How It Works: Shannon entropy measures the overall uncertainty of a probability distribu-
tion. It is particularly useful for classification tasks as it captures the spread of probabilities
across all classes. The formula for Shannon entropy in binary classification is:

H(p) = −(p log(p) + (1− p) log(1− p))
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where p is the predicted probability for the positive class. Higher entropy indicates greater
uncertainty, meaning the predictions are more evenly spread across possible outcomes.

Utilizing Both Metrics: By using both Shannon entropy and standard deviation, I aim to
capture a more comprehensive view of uncertainty:

• Shannon Entropy provides insights into the overall distributional uncertainty, indicating
how spread out the probabilities are across different classes.

• Standard Deviation offers a measure of the localized variability in predictions, highlight-
ing the consistency of the model’s predictions around the mean.

Utilizing Both Metrics: By using both Shannon entropy and standard deviation, I aim to cap-
ture a more comprehensive view of uncertainty :

• Shannon Entropy provides insights into the overall distributional uncertainty, indicating
how spread out the probabilities are across different classes.

• Standard Deviation offers a measure of the localized variability in predictions, highlight-
ing the consistency of the model’s predictions around the mean.

This dual approach ensures that both the distributional and localized aspects of uncertainty
are adequately captured, providing a deeper analysis of prediction uncertainty.

After determining the means to quantify uncertainties, the next step is to construct the set
of predictions. One existing solution is the Bayesian neural network approach. This involves
constructing a neural network where all parameters are random variables. By building such a
model, it becomes possible to obtain a different result for each prediction. This solution works
well in theory but is quite complex to implement, as training models with several million pa-
rameters following probability distributions can be very complicated and time-consuming.

However, there are currently several alternative methods for effectively quantifying uncer-
tainties in Deep Learning. The two most renowned and effective methods are the Monte Carlo
dropout method, developed by Yarin Gal and Zoubin Ghahramani, and the Deep Ensembles
method, developed by Balaji Lakshminarayanan. A clear understanding of the mechanics of
these methods is important to understand the direction and objectives of my research for this
semester.

Firstly, the Monte Carlo dropout method was developed in 2016 by two Professors in Ar-
tificial Intelligence at the University of Cambridge, Yarin Gal and Zoubin Ghahramani. This
method involves using the dropout technique, originally designed as a regularization method
to prevent overfitting, during both the training and inference phases. It provides an approxi-
mation to Bayesian inference. The method works as described below :

Training with Dropout: During training, neurons in the network are randomly switched off
with a given probability p. This ensures that the network is not overly dependent on certain
neurons, thus improving its ability to generalize on unknown data.

Inference with Dropout Activated: In standard usage, the dropout is deactivated during in-
ference. However, the interest of the Monte Carlo dropout method is to maintain this random
neuronal deactivation during prediction. By running a certain number of predictions with the
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dropout activated, we obtain a different result for each prediction, enabling us to model a prob-
abilistic distribution.

By aggregating all predictions, it is then possible to calculate statistics such as the mean and
standard deviation of predictions. This creates a predictive distribution, where the variance
among outputs indicates the model’s uncertainty level (higher variance suggests greater uncer-
tainty). This makes it possible to estimate a probability distribution over the predictions, giving
a measure of uncertainty.

The advantage of the Monte Carlo dropout method is its ease of implementation, as it does
not require major modifications to the model architecture and can be easily integrated into a
neural network.

Utilizing Both Metrics: By using both Shannon entropy and standard deviation, I aim to
capture a more comprehensive view of uncertainty:

• Shannon Entropy provides insights into the overall distributional uncertainty, indicating
how spread out the probabilities are across different classes.

• Standard Deviation offers a measure of the localized variability in predictions, highlight-
ing the consistency of the model’s predictions around the mean.

This dual approach ensures that both the distributional and localized aspects of uncertainty
are adequately captured, providing a deeper analysis of prediction uncertainty.

After determining the means to quantify uncertainties, the next step is to construct the set
of predictions. One existing solution is the Bayesian neural network approach. This involves
constructing a neural network where all parameters are random variables. By building such a
model, it becomes possible to obtain a different result for each prediction. This solution works
well in theory but is quite complex to implement, as training models with several million pa-
rameters following probability distributions can be very complicated and time-consuming.

However, there are currently several alternative methods for effectively quantifying uncer-
tainties in Deep Learning. The two most renowned and effective methods are the Monte Carlo
dropout method, developed by Yarin Gal and Zoubin Ghahramani, and the Deep Ensembles
method, developed by Balaji Lakshminarayanan. A clear understanding of the mechanics of
these methods is important to understand the direction and objectives of my research for this
semester.

Firstly, the Monte Carlo dropout method was developed in 2016 by two Professors in Ar-
tificial Intelligence at the University of Cambridge, Yarin Gal and Zoubin Ghahramani. This
method involves using the dropout technique, originally designed as a regularization method
to prevent overfitting, during both the training and inference phases. It provides an approxi-
mation to Bayesian inference. The method works as described below:

• Training with Dropout: During training, neurons in the network are randomly switched
off with a given probability p. This ensures that the network is not overly dependent on
certain neurons, thus improving its ability to generalize on unknown data.

• Inference with Dropout Activated: In standard usage, the dropout is deactivated during
inference. However, the interest of the Monte Carlo dropout method is to maintain this
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random neuronal deactivation during prediction. By running a certain number of predic-
tions with the dropout activated, we obtain a different result for each prediction, enabling
us to model a probabilistic distribution.

• Bayesian Approximation: By aggregating all predictions, it is then possible to calculate
statistics such as the mean and standard deviation of predictions. This creates a predic-
tive distribution, where the variance among outputs indicates the model’s uncertainty
level (higher variance suggests greater uncertainty). This makes it possible to estimate a
probability distribution over the predictions, giving a measure of uncertainty.

The advantage of the Monte Carlo dropout method is its ease of implementation, as it does
not require major modifications to the model architecture and can be easily integrated into a
neural network.

Figure 2.1: Illustration of the Monte Carlo Dropout Method

Secondly, another very famous method for estimating uncertainties in deep learning is the
Deep Ensembles method. Developed by Stanford University professor Balaji Lakshminarayanan
in 2017, this method involves training several independent neural network models with the
same architecture but with different random initializations. The Deep Ensembles method is
currently considered the most effective, offering highly accurate and powerful results. Here’s
how it works:

• Training Independent Models: Several neural network models are trained independently,
each with different parameter initializations. This method involves training multiple in-
stances of the same model, each starting with different initial weights and potentially
exposed to different mini-batches of data during training. This diversity of training en-
ables various representations of the parameter space to be captured, enriching the model’s
ability to generalize and avoiding overfitting specific to a single model configuration.

• Combination of Predictions: During inference, the predictions of the different models
are combined to obtain a final estimate. This combination can be achieved in a number
of ways, such as taking the average of each model’s probabilistic predictions, or using
majority voting for classifications.

The strength of Deep Ensembles lies in their collective ability to handle out-of-distribution
data effectively, a typical shortfall of traditional single-model approaches. Consensus among
the models signals high confidence, whereas significant variance indicates uncertainty, advising
caution.
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Experimentations

3.1 iSEG-2017: Refining MRI Segmentation Algorithms for Com-
prehensive Analysis of Neonatal Brain Development

During this semester, my research has primarily centered on the iSEG-2017 dataset. The aim
of this project is to enhance segmentation algorithms for MRI scans of newborn brains, facilitat-
ing a comprehensive analysis of early brain development.

3.1.1 Overview of Iseg

The iSEG-2017 dataset, released as part of the iSEG Grand Challenge at MICCAI 2017, is
specifically designed for the segmentation of infant brain tissues, providing a significant tool
for medical imaging researchers. This dataset is especially valuable because it targets a devel-
opmental stage where brain tissue undergoes rapid and profound changes. The high-resolution
T1 and T2 weighted MRI scans included in iSEG offer a detailed view of the infant brain, facili-
tating a better understanding of its complex structures during critical growth periods.

3.1.2 Data Composition

The iSEG-2017 dataset includes MRI scans of 10 infants aged between 6 and 24 months, a pe-
riod during which developmental changes in the brain are highly dynamic. Each scan includes
expertly annotated ground-truth labels delineating three crucial brain tissue types :

- White Matter (WM): Vital for the transmission of signals through the brain’s neural net-
works. Segmentation of white matter enables us to study its development and integrity, which
are essential for cognitive development and motricity.

- Gray Matter (GM): Important for the processing and interpretation of information flowing
into the brain, understanding the development of gray matter provides a better understanding
of the neurological basis of sensory processing, memory and decision-making.

- Cerebrospinal Fluid (CSF): Acts as a cushion and shock absorber for the brain, circulating
nutrients and eliminating waste. CSF segmentation is crucial for assessing normal brain physi-
ology and pathology in infant neurodevelopment.
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The inclusion of these annotated tissue types enables accurate segmentation and the study of
morphological changes during early brain development. The multimodal nature of the dataset,
including both T1- and T2-weighted images, provides diverse contrasts, enhancing the ability
to effectively differentiate between these tissue types.

Figure 3.1: Example of a 2D Slice for Patient 1

Here’s an example of an average slice (slice number sz//2) for patient 1, showing three dif-
ferent views: T1-weighted, T2-weighted and VT (ventricular tissue) images. These slices offer
a complete perspective of the infant brain, highlighting the different tissue contrasts and struc-
tures essential for segmentation and analysis.

- T1-weighted image : This image highlights the differences between white matter and gray
matter, offering a clear view of the brain’s overall structure.

- T2-weighted image : This image provides detailed contrast for cerebrospinal fluid and gray
matter, complementing the information from the T1-weighted image.

- Ground Truth Segmentation (GT Image): This image represents the ventricular system,
which is essential for identifying and analyzing brain abnormalities. It serves as the ground
truth for evaluating the accuracy of segmentation algorithms.

Based on this dataset, the aim of my research work this semester was to propose a quantifi-
cation of the uncertainties on the different segmentations of T1 and T2 slices by applying both
the Deep Ensembles method and the Monte Carlo dropout in order to compare the results. To
achieve this, I have used a famous convolutional neural network widely found in the field of
medical imaging segmentation, the U-net.

3.2 U-net

3.2.1 Overview of U-net

The U-net is a type of convolutional neural network (CNN) designed specifically for image
segmentation tasks. Developed by Olaf Ronneberger in 2015, the U-net has a U-shaped archi-
tecture, hence its name.

3.2.2 U-net architecture

- Encoding Path : This part of the network progressively reduces the spatial size of the image
while increasing the number of features. It uses convolution layers followed by pooling layers
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to extract important features from the image.

- Decoding Path : This part reconstructs the image at its original resolution while refining de-
tails. It uses up-scaling layers to increase the spatial size of the image and combine the features
extracted by the contraction path.

- Skip Connections : These direct connections between the corresponding layers of the con-
traction path and the expansion path enable the preservation of high-resolution information
lost during pooling operations.

3.2.3 Applications in Medical Imaging

U-net is widely used in medical imaging for segmentation tasks, where it is crucial to distin-
guish different anatomical structures in complex images such as MRI, CT scans and ultrasound.
Here are some specific applications:

- Segmentation of brain tissue : Identify and segment different brain regions (gray matter,
white matter, ventricles) in MRI images.

- Tumor detection : Locate and segment tumors or other abnormalities in various imaging
modalities.

- Organ analysis : Segmentation of internal organs for detailed anatomical studies and radio-
therapy treatment plans.

3.2.4 Using U-net in the context of my work

For my work, I used U-net with the following specifications:

- Number of layers : 23
- Parameters : Several million parameters (the exact number depends on the input and output

dimensions)
- Dropout : 0.5 for deep layers

In order to focus my efforts on quantifying uncertainty rather than on the challenges of pro-
ducing an accurate segmentation of complex structures, the first part of my semester was de-
voted to running a binary segmentation on brain slices. The initial objective was to distinguish
the brain structure from the rest of the image. This brain structure includes cerebrospinal fluid,
white matter and gray matter.

3.3 Initiating with Binary Segmentation of Brain Slices

Separating the brain area from the background of the input image requires that we perform
a binary segmentation to categorize the pixels of the brain from those of the background. Input
images are initially composed of pixels divided into four categories:
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1. Background

2. Cerebrospinal fluid

3. White matter

4. Gray matter

To separate the background from the brain region, therefore, the data must first be labeled
so that all background pixels are set to 0 and all other pixels are set to 1. For the median slice
(sz//2) of patient 0, this labeling yields this result :

Figure 3.2: Comparison of Unlabeled and Labeled Brain Slices

• Left : Unlabeled image showing the initial classification of pixels into four categories:
background (purple), cerebrospinal fluid (green), white matter (blue), and gray matter
(yellow).

• Right : Labeled image where background pixels are set to 0 (purple) and all other pixels
(cerebrospinal fluid, white matter, and gray matter) are set to 1 (yellow), demonstrating
the binary segmentation approach.

3.3.1 Results Using the Monte Carlo Dropout Method

Using these labeled images, it was therefore possible to train the U network to perform the
segmentations. To quantify uncertainty using the Monte Carlo dropout method described by
Yarin Gal, it is recommended to make between 30 and 100 predictions for each input in order to
obtain a realistic and usable distribution.

In my work, I have chosen to make 100 different predictions for each input to ensure an ac-
curate assessment of uncertainty. This approach captures the variability of the predictions and
provides a reliable estimate of the uncertainty associated with each segmentation.

The aim was then to construct an average image from the 100 samples, where each pixel in
the image is calculated as the average value of the corresponding 100 pixels in the samples. The
figure below shows the result obtained for a slice of patient 1.

Figure 3.3: Segmentation Process for Mid-Slice (sz//2) of Patient 1 : T1 - T2 - Predictions -
Ground Truth
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From left to right :

1. T1-weighted Image: Shows the T1-weighted MRI scan

2. T2-weighted Image: Shows the T2-weighted MRI scan

3. Average Prediction: Displays the average segmentation prediction using the Monte Carlo
dropout method with 100 predictions

4. Ground Truth (GT): Represents the ventricular tissue as labeled in the ground truth

The above result shows that the average prediction is very close, if not almost identical, to the
ground truth. This indicates that the network has learned very well and that the 100 predic-
tions are highly consistent with each other and with reality. Additionally, the reliability of the
result can be observed by examining the standard deviation map, which models the standard
deviation of each pixel relative to its average.

Figure 3.4: Standard Deviation Map for
Monte Carlo Dropout

Figure 3.5: Shannon Entropy for Monte
Carlo Dropout

By examining the uncertainty map, we observe that the area representing the boundary be-
tween the brain region and the background is clearly identifiable as the zone with the highest
standard deviation. This result indicates ambiguity in the contours, showing that even for a
binary classification task, which is supposed to be relatively easy, the five networks do not nec-
essarily predict the same classes consistently.

The results obtained using the Monte Carlo dropout method are consistent with our theo-
retical expectations. Indeed, we observe that the 100 predictions are effective in identifying
the background of the image and the brain region, with almost no differences between the 100
predictions. However, there is noticeable ambiguity near the segmentation boundaries. This
outcome confirms the intuition to conduct additional checks when approaching the contours.

In contrast, the Shannon entropy shows an inconsistency. Specifically, we observe high en-
tropy for the background of the image (yellow color), which is higher than expected. We would
expect lower entropy in these areas, similar to the brain region within the segmentation. We will
now compare these results with those obtained using the Deep Ensembles method to determine
which is more effective. This comparison will help us identify any notable differences between
the two methods or confirm if their results are similar.



3.3 Initiating with Binary Segmentation of Brain Slices 14

3.3.2 Results Using the Deep Ensembles Method

To perform the segmentation using the Deep Ensembles method as described by Balaji Lak-
shminarayanan, I trained 5 models with different initializations. The figure below shows the
results of the 5 models for the prediction of the mid-slice (sz//2) of patient 1.

Figure 3.6: Predictions of Mid-Slice (sz//2) of Patient 1 Using Deep Ensembles

We observe that the results are quite similar except for the third model. This prediction indi-
cates that there was an error in the training of this network, leading to a segmentation failure.
This conclusion is further supported by examining the Dice scores of the 5 predictions compared
to the ground truth :

Figure 3.7: Dice Scores of Predictions Compared to Ground Truth

We can see that the Dice score for Model 3 is significantly lower. This result will therefore
influence the construction of the average prediction and the standard deviation map.

Figure 3.8: Average Prediction for Mid-Slice (sz//2) of Patient 1 Using Deep Ensembles
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From left to right:

1. T1-weighted Image: Shows the T1-weighted MRI scan

2. T2-weighted Image: Shows the T2-weighted MRI scan

3. Average Prediction: Displays the average segmentation prediction using the Deep En-
sembles method

4. Ground Truth (GT): Represents the ventricular tissue as labeled in the ground truth

In the average prediction, we observe blue traces resulting from the poorly trained network’s
prediction. However, the overall result remains coherent, as it is mitigated by the four other
predictions from the networks that were trained correctly.

Figure 3.9: Standard Deviation Map for
Deep Ensembles

Figure 3.10: Shannon Entropy for Deep En-
sembles

Here are several observations on this map: First, the yellow traces present in the average
prediction correspond to the areas with the highest standard deviation (around 0.30). This is
expected, as the poorly trained model’s results differ significantly from others, leading to a
high standard deviation. Next, we see the brain region’s contour with a mix of pixels marked
by both high and low standard deviations. This result is difficult to interpret because both the
inside and outside areas of the brain region also show non-zero standard deviations. In regions
far from the contours, we expect stable and similar predictions across models. However, we
observe a standard deviation close to 0.3 in these areas, which is counterintuitive and indicates
poor network training.

In contrast, the entropy results are more coherent. The probabilities decrease as we approach
the contours, which aligns with our expectations.

3.4 Segmentation of White and Gray Matter in the Brain Using
a Cascaded Neural Network Method

In the second phase of my work, I focused on segmenting the area containing white matter
and gray matter. To do this, I used a cascade segmentation method, which exploits several neu-
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ral network models in sequence in order to achieve progressive refinement.

The cascade segmentation method uses an initial network to perform a coarse segmentation,
capturing the main structures and providing a basic pattern. Subsequent networks then take
this preliminary segmentation as input and refine it, focusing on more complex or ambiguous
regions to improve overall accuracy.

In the context of my work, I constructed a second neural network that takes as input the T1
and T2 images, as well as the complete brain region encompassing white matter, gray matter,
and cerebrospinal fluid. This time, the ground truths are the areas containing only the white
and gray matter.

From left to right:

1. T1-weighted Image: Shows the T1-weighted MRI scan

2. T2-weighted Image: Shows the T2-weighted MRI scan

3. Brain Region Mask: Represents the complete brain region including white matter, gray
matter, and cerebrospinal fluid.

4. Ground Truth (White and Gray Matter): Represents the segmentation ground truth for
white and gray matter only.

Using this method, we obtain the following average predictions for the Deep Ensembles and
Monte Carlo Dropout methods:

Figure 3.11: Comparison of Segmentation Methods for White and Gray Matter

From left to right:

1. Ground Truth (White and Gray Matter): Represents the ground truth segmentation for
white and gray matter

2. Monte Carlo Dropout Mean Prediction: Displays the average prediction using the Monte
Carlo dropout method

3. Deep Ensembles Mean Prediction: Displays the average prediction using the Deep En-
sembles method

From these two results, we can make the following observations :
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Accuracy and Consistency :

• Both the Monte Carlo Dropout and Deep Ensembles methods produce segmentations that
are largely consistent with the ground truth, successfully identifying the regions of white
and gray matter.

Boundary Precision :

• Monte Carlo Dropout : The mean prediction shows some variability around the bound-
aries of the segmented regions, indicating slightly higher uncertainty in these areas.

• Deep Ensembles : The mean prediction is smoother and exhibits less variability, suggest-
ing higher confidence and more precise boundary definitions. This is likely because each
model in the ensemble captures different aspects of the data, and the averaging process
helps to mitigate individual model errors.

Segmentation Quality :

• Monte Carlo Dropout: Minor discrepancies near the edges of the white and gray matter
regions indicate some sensitivity to boundary areas, but the overall segmentation remains
robust.

• Deep Ensembles: The segmentation is more stable and uniform across the brain region,
with fewer boundary discrepancies, indicating a more reliable performance in distin-
guishing tissue types.

Uncertainty Levels :

• Monte Carlo Dropout: Displays lower overall uncertainty, making it suitable for applica-
tions requiring high confidence in predictions.

• Deep Ensembles: Shows higher overall variability, providing valuable insights into re-
gions of uncertainty, which can guide targeted review and refinement.
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We also observe greater uncertainty quantified by the Deep Ensembles method when com-
paring the uncertainty maps of the two methods :

Figure 3.12: Standard Deviation Map for
Monte Carlo Dropout

Figure 3.13: Standard Deviation Map for
Deep Ensembles

• Left (Monte Carlo Dropout): Minor discrepancies near the edges of the white and gray
matter regions indicate some sensitivity to boundary areas, but the overall segmentation
remains robust. The standard deviation decreases as we move away from the contours,
showing more consistent results in the interior regions.

• Right (Deep Ensembles): The uncertainty map for the Deep Ensembles method displays
higher standard deviation values, reaching up to 0.35. There is a noticeable increase in
uncertainty within the brain region, particularly around the boundaries and more com-
plex areas. However, the standard deviation also decreases as we move away from the
contours, indicating more consistent predictions in the inner regions.

Figure 3.14: Shannon Entropy for Monte
Carlo Dropout

Figure 3.15: Shannon Entropy for Deep En-
sembles

By examining the entropy maps, we observe consistent results. Entropy increases as we ap-
proach the contours, indicating that the membership probabilities are moving closer to 0.5 and
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away from the extremes (0 and 1). This suggests higher uncertainty near the boundaries.

Moreover, the appearance of yellow points corresponds to uncertain areas not visible in the
ground truth. This result is particularly interesting as it challenges the ground truth and sug-
gests that there may be potential errors in it. The network might be correcting these errors based
on the T1 and T2 information. The entropy results show that while the predictions are stable
and certain in most regions, the areas near the boundaries and some isolated points are flagged
as uncertain. This highlights the capability of the entropy metric to identify and provide in-
sights into regions where the model’s predictions may be less reliable.

Overall, the entropy metric not only confirms the expected increase in uncertainty near the
segmentation boundaries but also reveals additional areas of potential uncertainty. This allows
for a more nuanced analysis and potentially aids in refining the ground truth by identifying
areas where the model’s predictions differ from it.

3.5 Exclusive Segmentation of White Matter in the Brain

In the last part of my work, I further complexified my segmentations to tackle more challeng-
ing structures. Still using the principle of cascade segmentation, I tried this time to segment
only the white matter region. I provided the model with T1, T2, the brain region, and the white
matter/gray matter region as inputs. This allowed me to obtain new results on more complex
structures, thereby enabling a more interesting study of uncertainty metrics.

Figure 3.16: Standard Deviation for Monte
Carlo Dropout

Figure 3.17: Standard Deviation for Deep
Ensembles

The results obtained from the standard deviation maps remain satisfactory and consistent.
An observed increase in standard deviation within the segmentation area, which aligns with
the ground truth data, confirms that the segmentation is precise and the networks have learned
effectively. Notably, the standard deviation map produced by the Deep Ensembles method
shows a greater deviation in this area compared to that obtained by the Monte Carlo dropout
method. This can be explained by the fact that Deep Ensembles train multiple models inde-
pendently, each learning differently, which tends to diversify predictions more significantly.
In contrast, Monte Carlo dropout, by only modifying a portion of the neurons, has a slightly
less pronounced impact on the results. Increasing the dropout rate could diversify the set of



3.5 Exclusive Segmentation of White Matter in the Brain 20

predictions even further, but too high an increase could impair the model’s performance and
compromise the segmentation quality, as there would not be enough active neurons for effective
processing.

Figure 3.18: Shannon Entropy for Monte
Carlo Dropout

Figure 3.19: Shannon Entropy for Deep En-
sembles

As for the entropy figures obtained with the Deep Ensembles and Monte Carlo dropout meth-
ods, they show similarities in certain respects. Entropy always increases as one moves away
from the contours. However, this increase is now observed across the entire segmentation area,
not just around the contours. This phenomenon is evident in both the results from the Deep
Ensembles and the Monte Carlo dropout, with even higher entropy in the case of Deep Ensem-
bles.



Chapter 4

Discussion and Conclusion

4.1 Discussion

4.1.1 Related Work

During this semester, my research focused on implementing two methods for quantifying un-
certainties in basic segmentation tasks using the I-Seg dataset. I also performed precise uncer-
tainty measures on my predictions using fundamental yet essential metrics: standard deviation
and Shannon entropy.

4.1.2 Future Work

To deepen my work on uncertainty estimation, I intend to identify sources of uncertainty
over the next semester. There are two main types of uncertainty: random uncertainty, which
is related to the data, and epistemic uncertainty, which is related to the model. Successfully
identifying the source of uncertainties will lead to much more accurate estimates and more
realistic, convincing results. In addition, I intend to work with the MRBrains dataset to perform
further segmentations on even more complex structures.
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4.2 Conclusion

In conclusion, this report presents an approach to quantify uncertainty in deep learning al-
gorithms, utilizing two techniques that currently represent the state of the art in this field. By
constructing a probability distribution of each pixel’s belonging, the results demonstrate the
feasibility of quantifying the uncertainty of predictions based on basic yet essential metrics: the
standard deviation relative to the mean and Shannon entropy.

These two metrics capture different types of uncertainty. The standard deviation examines
the disagreement among predictions, thus providing a measure of how slight parameter mod-
ifications influence the outcomes. A high standard deviation indicates a certain fragility in the
prediction, representing a form of uncertainty. On the other hand, Shannon entropy assesses the
models’ confidence in their predictions, regardless of whether the results are correct. An area
with high entropy is thus a zone where the models’ predicted pixel membership probabilities
are close to 0.5, indicating significant ambiguity.

To further this study, it would be pertinent to quantify the sources of uncertainties, particu-
larly by identifying the degree of epistemic uncertainty, which is related to the model’s knowl-
edge itself. Improving this understanding could help reduce uncertainty and enhance model
performance. The next step in my work will involve applying these methods to another dataset
for segmenting tumors in more complex structures, still using a U-Net architecture.

Additionally, my future work will include a detailed study of the implementation of Monte
Carlo dropout and Deep Ensembles techniques. The intelligent placement of dropout layers in
the U-Net is crucial to achieve a well-balanced and evenly distributed outcome while maintain-
ing good results.
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