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Pomsets are a promising formalism for concurrent programs based on partially ordered sets. Among this
class, series-parallel pomsets admit a convenient linear representation and can be recognized by simple
algebraic structures known as pomset recognizers. Active learning consists in inferring a formal model of
a recognizable language by asking membership and equivalence queries to a minimally adequate teacher
(MAT). We improve existing learning algorithms for pomset recognizers by

1. introducing a new counter-example analysis procedure that is in the best case scenario exponentially
more efficient than existing methods

2. adapting the state-of-the-art Lλ algorithm to minimize the impact of exceedingly verbose counter-
examples and remove redundant queries

3. designing a suitable finite test suite that ensures general equivalence between two pomset recogniz-
ers by extending the well-known W -method.

This document contains the theoretical sections of [1], which contains the proofs of all the claims pre-
sented here.
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1 Introduction
Finite state automata are a straightforward model

for terminating sequential systems. Runs are implic-
itly described by a total order relation: an execution is
merely an ordered, linear sequence of events. How-
ever, richer structures may be needed for concurrent
programs. Indeed, two threads may be action in par-
allel, neither of them preceding nor following the
other. In this case, runs may be modelled using a par-
tial order relation: concurrent events cannot be rela-
tively ordered.
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b

Figure 1: The series-parallel pomset
a(b ∥ b)c(ba ∥ bb).

Instead of linear traces, pomsets [2] (partially ordered multisets) represent executions of a par-
allel program. We consider in this article the class of series-parallel pomsets that can be linearly
described using letters as well as the sequential · and parallel ∥ composition operators. Fig-
ure 1 displays the Hasse diagram of the pomset a(b ∥ b)c(ba ∥ bb). Were we to consider the
interleaving semantics on parallel threads, series-parallel pomsets are an exponentially more
succinct description than finite words: given n distinct letters a1, . . . , an in an alphabet Σ, each
one labelling a different thread, a single pomset a1 ∥ . . . ∥ an describes the n! possible linearized
traces of the interwoven threads.

Active learning algorithms consist in inferring a formal model of a black-box system that can be
dynamically queried. Under the Minimally Adequate Teacher (MAT) framework, interactions with
the black-box system are twofold: membership queries that consist in asking whether a given trace
can be generated by the system, and equivalence queries to determine whether a given automaton
accurately represents all executions of the system, yielding a counter-example if the answer is
negative.

One of the earliest active learning algorithms is Angluin’s L∗ [3] for rational languages. It
infers the Myhill-Nerode equivalence classes of the target language by maintaining a set of
representatives of these classes as well as a set of distinguishers that separate them. Van Heerdt et
al. extended L∗ to recognizable pomset languages, and further provided a translation of pomset
recognizers to pomset automata.

However, various improvements have been brought to L∗ over the years. The length m of a
counter-example returned by the MAT being arbitrarily long, it may end up dominating the
learning process; Rivest and Schapire [4] therefore introduced an algorithm that infers a new
equivalence class in O(log(m)) membership queries. Moreover, the use of equivalence queries
makes little practical sense as it implies that the MAT knows the very formal model of the
system we are trying to infer; Chow [5] proved that a finite suite could subsume equivalence of
finite automata, provided a bound on the size of the target model is known beforehand. Finally,
new algorithms such as TTT [6], L# [7], or Lλ [8] have been shown to significantly reduce the
number of queries needed compared to L∗.

The point of the article is adapt and extend these improvements to the active learning of pomset
recognizers. Our new contributions are the following:

• We introduce a new counter-example handling algorithm that extends the sets of rep-
resentatives and distinguishers. Its complexity depends on the depth of the counter-
example’s syntactic tree, rather than its number of nodes.

• We extend Howar et al.’s Lλ algorithm [8] to recognizable pomset languages. Lλ has
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been proven to be competitive with state-of-the-art active learning algorithms for rational
languages and maintains a prefix (resp. suffix) closed set of representatives (resp. distin-
guishers), further reducing the influence of the counter-example’s maximal length.

• We make use of redundancy-free discrimination trees [9], in the sense that only member-
ship queries that contribute to the distinction of states have to be performed.

• In a similar fashion to Chow’s W -method [5], we design a finite test suite that can condi-
tionally replace equivalence queries.

2 Preliminary Definitions

2.1 Series-parallel pomsets

We consider a non-empty finite set Σ of letters (or labels) called the alphabet.

Definition 1 (Poset) A partially ordered set or poset (A,<, ℓ) consists of a finite set A (called the
carrier), a strict partial order < on A, and a labelling map ℓ : A→ Σ.

Two posets (A,<A, ℓA) and (B,<B , ℓB) are said to be isomorphic if there exists a bijection be-
tween A and B preserving ordering and labelling.

Definition 2 (Pomset [10]) A partially ordered multiset or pomset is an equivalence class for the iso-
morphism relation on posets.

For convenience’s sake, we will treat a representative of such a pomset as if it were the entire
class. The empty pomset is denoted ε, and the singleton pomset labelled by a ∈ Σ. We say that
a pomset B is a subpomset of A if B can be embedded in A, that is, if there exists an injection
from B to A preserving labelling and ordering.

Pomsets can be composed sequentially (in a similar fashion to words) or in parallel fashion.
Let A = (A,<A, ℓA) and B = (B,<B , ℓB) be two pomsets such that A and B are disjoint (an
assumption that applies to the rest of this article).

1. Their parallel composition A ∥ B is (A ∪ B,<A ∪ <B , ℓB ∪ ℓB). The two pomsets are juxta-
posed but cannot be compared.

2. Their sequential composition (or concatenation) A ·B is (A∪B,<A∪<B ∪ (A×B), ℓA∪ ℓB).
Every element of B is greater than every element of A.

Parallel composition is associative and commutative; sequential composition is merely associa-
tive. Both operations share ε as neutral element.

Definition 3 (Series-parallel pomsets) The set SP(Σ) of series-parallel pomsets is the smallest set of
pomsets containing {ε} and Σ closed under sequential and parallel composition.

A pomset A is said to be N-free if the pomset
({x1, x2, x3, x4}, {x1 < x2, x3 < x2, x3 < x4}, ℓ) for some
labelling ℓ is not a subpomset of A. Intuitively, the pattern
shown in Figure 2 does not appear in the pomset’s Hasse
diagram. It is well-known that series-parallel pomsets co-
incide with N-free pomsets [11].

a b

c d

Figure 2: A N pattern.

We denote SP+(Σ) = SP(Σ)\{ε}. For the remainder of this paper, we will refer to series-parallel
pomsets as merely pomsets.
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The set of syntactic terms (or simply terms) STΣ over Σ is the set of full binary trees whose inner
nodes are labelled by operators in {·, ∥} and whose leaves are labelled by Σ ∪ {ε}. We associate
each term with its isomorphic linear description obtained by performing a prefix traversal. We
may omit the symbol ·, consider that · has priority over ∥, and assume left associativity for
syntactic purposes. Intuitively, a term is merely a way to describe a pomset: as an example,
a(b ∥ b)c(ba ∥ bb) represents the pomset of Figure 1.

Due to neutrality, associativity and commutativity properties, several terms may describe the
same pomset: as an example, a ∥ b = b ∥ a = a · ε ∥ b. Each pomset w ∈ SP(Σ) may therefore
be associated with a set ST(w) ⊆ STΣ of syntactically different but semantically equivalent
terms whose interpretation in SP(Σ) is w. The depth δ(w) of w is the minimum of the tree depth
function on ST(w). A term in ST(w) is said to be canonical if its depth is minimal and, assuming
w ̸= ε, it has no leaf labelled by ε. Note that canonical terms are not unique: ST(w) may contain
more than one canonical term.

If w ̸∈ Σ ∪ {ε}, given a canonical term of w such that its root is labelled by ◦ ∈ {·, ∥} and its left
(resp. right) subtree is a term representing pomset z1 (resp. z2), z = z1 ◦ z2 is called a canonical
decomposition of z. Obviously, δ(z1) < δ(z) and δ(z2) < δ(z). Figure 3 displays a canonical term
of bc ∥ a of depth 2.

The use of terms is a consequence of our counter-example handling algorithm and test suite
for equivalence queries that manipulate syntactic trees. Nevertheless, most concepts and algo-
rithms on pomsets outlined in this article still remain term-agnostic.

2.2 Pomset recognizers

Definition 4 (Bimonoids [12]) A bimonoid (M,⊙,:, e) is a set M equipped with two internal as-
sociative operations ⊙ and :, : being commutative as well, and a neutral element e common to ⊙ and
:.

These constraints define a variety of bimonoids, that is, a class of algebraic structures satisfying
the same behaviour (as defined by various equations encoding associativity, commutativity,
etc.). Note that there is no distributivity property. The set SP(Σ) endowed with ·, ∥ and the
neutral element ε is a bimonoid.

A set A generates a bimonoid (M,⊙,:, e) if A ⊆M and any element of M \ {e} can be obtained
by inductively applying⊙ and : to A. Moreover, A freely generates M if any element of M \{e}
admits a unique (up to commutativity and associativity) decomposition according to A \ {e},
⊙, and :.

Theorem 1 (Freeness of SP(Σ) [12]) (SP(Σ), ·, ∥, ε) is freely generated by Σ in the variety of bi-
monoids.

In particular, all the ε-free terms of the same pomset are equivalent up to commutativity and
associativity: as an example, the terms a ∥ bc and bc ∥ a describe the same pomset, and no other
ε-free term exists.

We rely on bimonoids to recognize languages of SP-pomsets. As is customary, we define homo-
morphisms of bimonoids as mappings between two bimonoids preserving identity and both
internal operations. Note that, SP(Σ) being freely generated by Σ, any function i : Σ → M for
some bimonoid (M,⊙,:, e) can be (inductively) extended in a unique way to a bimonoid ho-
momorphism i♯ : SP(Σ) → M so that for all a ∈ Σ, i♯(a) = i(a) and i♯(ε) = e. This leads to the
following definition of a pomset recognizer [13].
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Definition 5 (Pomset recognizer) The tuple R = (M,⊙,:, e, i, F ) is said to be a pomset recog-
nizer (PR) on Σ if (M,⊙,:, e) is a finite bimonoid, i : Σ → M , and F ⊆ M . The carrier M is also
called the set of states of R. The language of R, denoted L(R), is the set {w ∈ SP(Σ) | i♯(w) ∈ F}.
Finally, we introduce the predicateR(u) = “i♯(w) ∈ F”.

PRs act as bottom-up deterministic finite tree automata on terms: each letter in Σ has an image
in a set of states M , that we combine by using the images ⊙ and : of the operators · and ∥. Due
to the freeness of SP(Σ) and i♯ being a homomorphism, we can apply PRs to pomsets, as i♯(t)
always return the same result, regardless of the term t ∈ ST(w) chosen.

Definition 6 (Recognizable pomset languages) A set (or language) L ⊆ SP(Σ) is said to be rec-
ognizable if there exists a PRR such that L = L(R).

Example 7 Let L be the language containing singleton c and every pomset (a ∥ bu) where u ∈ L, i.e.
L = {c, a ∥ (bc), a ∥ (b(a ∥ (bc))), . . . }. This language is accepted by the PR R = (M,⊙,:, e, i, F )
where M = {ra, rb, rc, rbc, r0, e}, i(x) = rx for x ∈ {a, b, c}, F = {rc}, and : and ⊙ are such that
rb ⊙ rc = rbc, ra : rbc = rc, e is the neutral element for both operations, and all the other possible
products return r0.

Definition 8 (Equivalence) Two PRs R1 and R2 on a common alphabet Σ are equivalent if L(R1)
= L(R2).

We define the set of evaluation trees ETR(w) of a pomset w in a PR R = (M,⊙,:, e, i, F ) by
relabelling the nodes of w’s terms in ST(w) with states ofR inductively:

• If node ι is labelled with x ∈ Σ ∪ {ε} in ST(w), then we relabel it with i♯R(x) instead.

• If node ι is labelled with ◦ ∈ {·, ∥} and its left (resp. right) subtree represents pomset w1

(resp. w2) and m1 = i♯(w1) (resp. m2 = i♯(w2)), then we relabel it with state i♯R(m1 ◦R m2)
instead for the appropriate ◦R ∈ {⊙,:}.

Figure 4 displays an evaluation tree expliciting the computation performed by pomset recog-
nizerR of Example 7 on pomset bc ∥ a.

∥

·

b c

a

Figure 3: A canonical term of bc ∥ a.

rc

rbc

rb rc

ra

Figure 4: An evaluation tree of bc ∥ a.

2.3 Contexts

Definition 9 (Multi-contexts) For m ∈ N∗, let Ξ = {□1, . . . ,□m} be a set of m distinct letters such
that Ξ∩Σ = ∅. The set of m-contexts Cm(Σ) is the subset of SP(Σ∪Ξ) of pomsets containing exactly
one element labelled by □j for all j ∈ {1, . . . ,m}.

Given c ∈ Cm(Σ) and w1, . . . , wm ∈ SP(Σ), we denote by c[w1, . . . , wm] the pomset where □j

has been replaced by wj . Intuitively, a m-context is a pomset pattern featuring □j placeholder
symbols that can be replaced by pomsets. We write SP(Σ) = C0(Σ).
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We simply call 1-contexts contexts, and always denote their placeholder symbol □. Pomset
contexts are called □-terms in [14, 15, 16, 17], but the symbol ξ is used instead of □. Given
c1, c2 ∈ C1(Σ), c1[c2] ∈ C1(Σ) stands for the context obtained by replacing □ with c2 in c1. c2 is
then said to be a subcontext of c1[c2]. For w ∈ SP(Σ), a split of w is a pair (c, z) ∈ C1(Σ)× SP(Σ)
such that w = c[z]. Note that z is a subpomset of w. Finally, given C ⊆ C1(Σ) and A ⊆
SP(Σ) ∪ C1(Σ), we define the set C[A] = {c[z] | c ∈ C, z ∈ A}.

Given a pomset recognizer R = (M,⊙,:, e, i, F ), note that R(w1) = R(w2) does not imply
that for all c ∈ C1(Σ), R(c[w1]) = R(c[w2]). Indeed, it might be that i♯(w1), i

♯(w2) ∈ F but
i♯(w1) ̸= i♯(w2): w1 and w2 lead to different accepting states, thus potentially yielding a different
result whenever inserted in c then evaluated in R. As a consequence, i♯(c[w1]) may differ from
i♯(c[w2]). However, the following result holds:

Lemma 10 (Freeness of PRs [13, Lem. 29]) For all w1, w2 ∈ SP(Σ), if i♯(w1) = i♯(w2), then for all
c ∈ C1(Σ), i♯(c[w1]) = i♯(c[w2]).

2.4 A Myhill-Nerode theorem

Let L ⊆ SP(Σ) and u, v ∈ SP(Σ). u ∼L v if for all c ∈ C1(Σ), c[u] ∈ L ⇐⇒ c[v] ∈ L.
The relation ∼L is an equivalence relation; we say that it is a congruence relation on SP(Σ) if it is
preserved by · and ∥. [w]∼L

stands for the equivalence class of w in the quotient space SP(Σ)/∼L

of SP(Σ) w.r.t. ∼L. It induces a syntactic homomorphism SP(Σ)→ SP(Σ)/∼L
and there exists a

Myhill-Nerode characterization of recognizable languages of SP(Σ):

Theorem 2 (Characterizing recognizable languages [16]) L is recognizable if and only if ∼L is a
congruence relation of finite index.

Let w1, w2 ∈ SP(Σ). Given a pomset language L, we say that c ∈ C1(Σ) is a distinguishing context
in L for w1 and w2 if c[w1] ∈ L ⇐⇒ c[w2] /∈ L, that is, one of c[w1] and c[w2] is in L while the
other is not. If we assume L is recognized by a pomset recognizer R, this necessarily implies
that m1 = i♯(c[w1]) ̸= m2 = i♯(c[w2]): one state must be in F while the other is not. We then say
that c distinguishes the states m1 and m2. If there is no such c, we say that m1 (resp. w1) and m2

(resp. w2) are indistinguishable.

Definition 11 (Reachable and minimal pomset recognizers) A pomset recognizerR = (M,⊙,:, 1, i, F )
is said to be reachable if, for all m ∈ M , there exists w ∈ SP(Σ) such that i♯(w) = m; w is said to be
an access sequence of m.

Moreover, it is minimal if it is reachable and for all w1, w2 ∈ SP(Σ) such that i♯(w1) ̸= i♯(w2), there
exists c ∈ C1(Σ) such thatR(c[w1]) ̸= R(c[w2]).

Intuitively, R is minimal if any pair of states in M can always be distinguished by some con-
text. If L is recognizable, ∼L induces an obvious minimal recognizer RL = (SP(Σ)/∼L

, ·, ∥
, [ε]∼L

, iL, FL) such that ∀a ∈ Σ, iL(a) = [a]∼L
and FL = {[w]∼L

∈ SP(Σ)/∼L | w ∈ L}.

3 Implementation Details

3.1 Pomsets as AST

Abstract syntax trees (AST) are data-structures that store a synthaxic expression directly in
revser polish notation (RPN). They are able to store a category of n elements in 2n − 1 nodes
[18]. We can use said structure to represent Pomsets. In such implementation, internal nodes
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represent operations in {•, ||} and leaves represent the elements of the pomset (see figure 5).
The RPN notation of the pomset can thus be retrieved with a post-order traversal.

•

∥

a b

•

∥

a b

∥

a b

Figure 5: Abstract syntax tree modelling the pomset p = (a||b) • (a||b) • (a||b).

Computing concatenation (resp. parallel product) on AST representing pomsets is trivial. In-
deed, for two AST g1 and g2 it suffices to create a new AST g3 with its root being a node with
e = • (resp. ||) and its children being g1 and g2 (see algorithm 1). Therefore computing both
operations in constant time regardless of the size of the operands.
In a similar manner, substitution g1 oξ g2 can be done by replacing the leaf.ves holding the letter
ξ in g1 by g2, resolving in O(n) in the worst case.

Algorithm 1 PomsetComposition(p1, p2, ◦)
1: if p1 is empty and p2 is empty then
2: return a new empty Pomset
3: if p1 is empty then
4: return p2
5: if p2 is empty then
6: return p1
7: res← a new BinaryTree with ◦ as the value
8: res.left← p1.tree
9: res.right← p2.tree

10: res← stack_right(res, ◦)
11: return res

In order to always have two equivalent pomsets be the exact same we can canonize their AST
by recursively stacking all sequences of operations to the right using right bintree rotation (see
line 10 of algorithm 1). This allows us to compare two pomsets by literally comparing their AST.

The AST form of a Pomset can be constructed from its infix notation by using the Shunting-Yard
algorithm [19].

3.2 Pomset Recognizers

Pomset Recognizers can be represented as bottom-up deterministic finite tree automata using
two Cayley tables to store the behavior of the transition functions ⊙ and :. Algorithms for all
decidable problems on such machines have been described in [20].
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3.3 Membership query

In order to compute the membership query of a Pomset p represented as an AST to a Pomset
Recognizer R, we need to parse the bintree using the internal functions of R’s bimonoid. This
results to a single element of the bimonoid, as described in algorithm 2. For a pomset of size n,
this algorithm performs always exactly 2n− 2 recursive calls.

Then, we can compute the membership query of a pomset by checking if the element computed
by algorithm 2 is in the set of final element of the Pomset recogniser, as described in algorithm 3.

Algorithm 2 process_ast(p)

if p == null then
returnR.unit

if p is a leaf then
returnR.i(p.data)

else
l = process_ast(p.left_child)
r = process_ast(p.right_child)
if data is • then

returnR.⊙ (l, r)
else

returnR. : (l, r)

Algorithm 3 recognise(p)

ifR.F is empty then
return false

res = process_ast(p)
for state inR.F do

if res = state then
return true

return false

4 Active Learning

4.1 The active learning framework

Consider a recognizable pomset language L on an alphabet Σ. LetM be a minimal PR called
the model such that L(M) = L. Active learning is a cooperative game between a learner and
a minimally adequate teacher (MAT). It consists for the learner in computing a minimal pomset
recognizer for L by asking two types of queries on L to the MAT:

Membership queries. Given w ∈ SP(Σ), does w ∈ L, i.e. what isM(w)?

Equivalence queries Given a pomset recognizer H (called the hypothesis) on Σ, does L(H) =
L = L(M)? If it does not, return a counter-example w ∈ SP(Σ) such thatH(w) ̸=M(w).



11 CONTENTS

The ability to infer the modelM stems from Theorem 2. Active learning algorithms compute
an under-approximation ∼H of ∼L = ∼M such that w1 ̸∼H w2 =⇒ w1 ̸∼L w2. To do so, they
maintain a finite set S of pomsets and a finite set C of contexts. Each pair of elements of S is
distinguished by at least one element of C, thus bearing witness to the existence of at least |S|
equivalence classes of ∼L, the set S being their representatives.

Obviously, w1 ∼H w2 =⇒ w1 ∼L w2 may not hold if the hypothesis is too coarse, thus, H
may have to be refined several times. Nevertheless, each refinement increases the number of
equivalences classes of ∼L distinguished by ∼H, until the classes of ∼H are exactly the classes
of ∼L, at which point ∼H = ∼M = ∼L and L(H) = L(M) = L.

4.2 Common structures and invariants

Data structures.

We maintain a finite set S of pomsets called the set of representatives or access sequences, meant
to store the representatives of ∼L’s equivalence classes. By design, S will be closed by the
subpomset operation and contain the empty pomset ε. We also introduce the frontier set S+ =
(Σ ∪ {u ◦ v | ◦ ∈ {·, ∥}, u, v ∈ S}) \ S that contains combinations of elements of S and single
letters: its purpose is to infer the internal operations ·M and ∥M of the model.

A pack of components B = {B1, . . . , Bm} partitions S ∪ S+ in such a manner each component
contains at least one s ∈ S. For s ∈ S ∪ S+, Bs stands for the only component of B s belongs to.
Given B ∈ B, αB(B) = S ∩B is called the set of access sequences of B. For s ∈ S ∪ S+, we define
αB(s) = αB(Bs). B under-approximates the classes of ∼M.

Finally, we maintain a discrimination tree D: it is a full binary tree, its inner nodes being labelled
by contexts in C1(Σ), and its leaves, either unlabelled or labelled by a component of B in such
a fashion D’s set of labelled leaves is in bijection with B. In particular, D’s root is labelled by □.
The labels of D’s inner nodes form a set of contexts C. Given B ∈ B, CB is defined as the set of
contexts that appear along the branch that runs from the root of D to the leaf labelled by B. In
particular, note that for all B ∈ B, □ ∈ CB . D’s use is to posit which class of B a pomset belongs
to.

Operations and invariants.

For any pomset w ∈ SP(Σ), we define the sifting operation of w throughD: starting at the root of
D, at every node labelled by a context c of D we branch to the right (resp. left) child if c[w] ∈ L
(resp. c[w] ̸∈ L). We iterate this procedure until a leaf is reached: the matching component
B ∈ B is the result of the sifting operation. We define D(w) = B. Note that D(w) may be
undefined if w is sifted into an unlabelled leaf. Thus, D can be viewed as a partial function
SP(Σ) → B. Sifting requires a number of membership queries bounded by the height of D.
Intuitively, the discrimination tree is used to classify pomsets: pomsets that behave similarly
w.r.t. the finite set of distinguishing contexts CB are lumped into the same component B ∈ B.

Property 1 By design, the learning algorithm maintains the following invariants:

1. For any s ∈ S ∪ S+, D(s) = Bs.

2. For any B ∈ B, s1, s2 ∈ B, c ∈ CB ,M(c[s1]) =M(c[s2]).

3. Let B1, B2 ∈ B such that B1 ̸= B2; then for any s1 ∈ B1, s2 ∈ B2, there exists c ∈ CB1 ∩ CB2

such thatM(c[s1]) ̸=M(c[s2]); c labels B1 and B2’s deepest common ancestor in D.
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4. Let ∼B be the equivalence relation on S ∪ S+ inferred from the partition B. Then it is an under-
approximation of ∼L on S ∪ S+: ∀s1, s2 ∈ S ∪ S+, s1 ̸∼B s2 =⇒ s1 ̸∼L s2. As a consequence,
|B| ≤ |SP(Σ)/∼L|.

For w ∈ SP(Σ), if D(w) is defined, we write Bw = D(w). Thanks to Invariant 1, this notation
doesn’t invalidate the previous notation Bs for s ∈ S ∪ S+.

4.3 Building the hypothesis

Properties of the partition.

B is said to be consistent if for any B1, B2 ∈ B, u1, v1 ∈ αB(B1), u2, v2 ∈ αB(B2), and ◦ ∈ {·, ∥},
u1 ◦u2 and v1 ◦ v2 belong to the same component of B. Intuitively, no matter the representatives
of B1 and B2 we consider, their composition will belong to the same component. Moreover,
B is ◦-associative for ◦ ∈ {·, ∥} if for any s1, s2, s3 ∈ S and sl ∈ αB(s1 ◦ s2), sr ∈ αB(s2 ◦ s3),
Bsl◦s3 = Bs1◦sr . Finally, B is said to be sharp if for any B ∈ B, |S ∩B| = 1.

Thus, we can extend the operators · and ∥ to components of B, and the resulting laws will be
internal and associative. Finally, for any B ∈ B, since □ ∈ CB and for any u ∈ B, □[u] = u,M is
constant on B: this shared value is writtenM(B).

Defining the hypothesis.

If B is consistent, ·-associative, and ∥-associative, then we design the hypothesis H = (H, ·H, ∥H
, eH, iH, FH) as follows:

• H = B. H’s states are the postulated equivalence classes of ∼L.

• Given u, v ∈ S, since B is consistent, we can define Bu ·HBv = Bu·v (resp. Bu ∥H Bv = Bu∥v).
We use S+ and B to buildH’s internal operations.

• eH = Bε. The neutral element is the class of the empty pomset.

• Given a ∈ Σ, iH(a) = Ba. We rely on Σ ⊆ S ∪ S+ to build a pomset homomorphism.

• FH = {B ∈ B | M(B) = 1}. A component is accepting if its members are accepted byM.
FH corresponds to the leaves of D belonging to its right subtree.

For w ∈ SP(Σ), we define the component Bw = i♯H(w) w evaluates to in H and its set of access
sequences αH(w) = αB(Bw). As proven later in Lemma 15, this notation is compatible with the
earlier definition of Bw for w ∈ S ∪ S+. By design of H, freeness of pomset recognizers, and
consistency of B, the hypothesis handles pomsets and their access sequences similarly:

Property 2 (Substitution by access sequences) ∀c ∈ C1(Σ), ∀w ∈ SP(Σ), ∀p ∈ αH(w),H(c[w]) =
H(c[p]) and i♯H(c[w]) = i♯H(c[p]).

Compatibility of the hypothesis.

Given a set X ⊆ SP(Σ) of pomsets, hypothesis H is X-compatible if for any w ∈ X , H(w) =
M(w). H is said to be compatible with B if it is compatible with

⋃
B∈B
{c[s] | s ∈ B, c ∈ CB}.

Active learning algorithms such as TTT [6], L# [7], or van Heerdt et al.’s adaptation of L∗ [13] to
pomset recognizers may not always immediately result in a compatible hypothesis. However,
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incompatibilities provide a ’free’ counter-example c[s] such that H(c[s]) ̸=M(c[s]) without re-
quiring an extra membership or equivalence query. We should therefore guarantee that H is
compatible with B before submitting an equivalence query.

4.4 Handling counter-examples

The Rivest-Schapire counter-example handling method on finite words consists in studying all
the possible splits w = u ·a · v, a ∈ Σ, of a counter-example w ∈ Σ+, then trying to find one such
that the hypothesis and the model agree on the input p′ · v where p′ ∈ αH(u · a) but disagree on
p · a · v where p ∈ αH(u), thus proving that the successor of state Bp in the hypothesis has been
incorrectly identified as Bp′ , suffix v being witness to this error.

Intuitively, replacing a prefix u of w by its access sequence p is akin to feeding u to the hypothe-
sis, then letting either the model or the hypothesis handle the rest of the computation, iterating
on all possible splits until the algorithm witnesses the model and hypothesis no longer being in
agreement. This change of behaviour, called a breaking point, yields a distinguishing suffix and
a further refinement of the partition B and its matching hypothesis.

Extending breaking points to pomsets is non-trivial due to the branching nature of terms. As-
sume that B is a consistent, associative partition from which a hypothesis H is inferred. We
define breaking points w.r.t. canonical decomposition:

Definition 12 (Agreement) Given c ∈ C1(Σ) and z ∈ SP(Σ), we define the agreement predicate
A(c, z) = “∀p ∈ αH(z),H(c[p]) =M(c[p])”.

Definition 13 (Breaking point) Given a counter-example w ∈ SP(Σ)+ such that H(w) ̸= M(w),
and a split (c, z) of w such that A(c, z) = 1, a (left) breaking point is either:

• the pair (c, z) if z ∈ Σ;

• a quadruplet (c, ◦, z1, z2) where ◦ ∈ {·, ∥}, z1, z2 ∈ SP+(Σ), z = z1 ◦ z2 is a canonical decompo-
sition of z, and A(c[□ ◦ z2], z1) = 0.

We seek a split (c, z) of w such that there exists p ∈ S+ ∩ Bz , for any p′ ∈ αH(z), M(c[p′]) ̸=
M(c[p]) as it guarantees that p belongs to another class of ∼L than the current elements of S,
resulting in a refinement of Bz . Unlike the Rivest-Schapire decomposition, we may however
not directly be able to infer a distinguishing context from every breaking point. Indeed, given
a breaking point (c, ◦, z1, z2), while c distinguishes p1 ◦ z2 for some p1 ∈ αH(z1) from any p′ ∈
αH(z), p1 ◦ z2 may not belong to S+. Nevertheless, Algorithm 8 can alter an original counter-
example w until a breaking point can be used to infer a new class and a refinement. We call such
a breaking point effective.

5 Adapting the Lλ Algorithm

We detail here the various components of the Lλ active learning algorithm, some of them being
somewhat data agnostic, others being peculiar to pomset languages.

5.1 Expanding components

Algorithm 4 inserts a new pomset w belonging to the frontier S+ or equal to ε into the set S
of access sequences then updates S+ by exploring w’s successors (i.e. the pomsets that we can
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build by combining w with another element of S) and using D to sift them into the existing
partition B.

Algorithm 4 Expand(w) where w ∈ S+ or w = ε if B = ∅
1: S ← S ∪ {w}
2: for p ∈ {w} ∪ {p′ ◦ w,w ◦ p′ | ◦ ∈ {·, ∥}, p′ ∈ S} ∪ Σ do
3: if p does not belong to any class of B then
4: B ← D(p)
5: if B is defined then
6: B ← B ∪ {p}
7: else
8: Bp ← {p}
9: B ← B ∪ {Bp}

10: UpdateTreeLeaf(D, p, Bp)
11: Expand(p)

By design, building a PR requires sorting the letters of Σ into B, hence Line 2, despite elements
of Σ not being successors of w. However, we only insert them once, during the very first call.
Expanding a pomset may result in a new class being created if the leaf p was sifted into is
unlabelled. Indeed, D initially consists of a root labelled by the identity context □ and two
children that have yet to be labelled by components of B due to S ∪ S+ being empty. Either
leaf may even end up not being labelled at all if the PR is trivial (i.e. has language SP(Σ) or ∅).
Thus, if a pomset p is sifted into an unlabelled leaf, Lines 7 to 11 result in a new class Bp being
created and D being updated by labelling said leaf with Bp.

5.2 Refining components

Algorithm 5 refines a component B into two new components B0 and B1, assuming a context c
distinguishes two access sequences of B. S, B and D are updated accordingly. Lines 5 and 6
guarantee that the new components have at least one access sequence in S. Line 4 consists in
replacing leaf B of the discrimination tree D with an inner node labelled by c whose left (resp.
right) child is a new leaf labelled by B0 (resp. B1).

Algorithm 5 Refine(B, c) where B ∈ B, c ∈ C1(Σ), and ∃z1, z2 ∈ B,M(c[z1]) ̸=M(c[z2])

1: B0 ← {w ∈ B | M(c[w]) = 0}
2: B1 ← {w ∈ B | M(c[w]) = 1}
3: B ← (B \ {B}) ∪ {B0, B1}
4: RefineTree(D, B, c, B0, B1)
5: if S ∩B0 = ∅ then Expand(p0) for some p0 ∈ B0

6: if S ∩B1 = ∅ then Expand(p1) for some p1 ∈ B1

Algorithm 6 refines partition Bwhenever it encounters a consistency issue, e.g. class B contains
two representatives p1 and p2 such that p1 ◦ p and p2 ◦ p in S ∪ S+ do not belong to the same
class. This inconsistency yields a context c[□ ◦ p] that distinguishes p1 and p2, where c ∈ C is the
label of the deepest common ancestor in D of p1 ◦ p and p2 ◦ p. This algorithm returns Boolean
⊤ if and only if B was already consistent in the first place. It could also be that p ◦ p1 and p ◦ p2
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do not belong to the same class, resulting in a distinguishing context c[p ◦□]: we omit this case
here for brevity’s sake.

Algorithm 6 MakeConsistent()

1: already_consistent← ⊤
2: while ∃◦ ∈ {·, ∥}, ∃B ∈ B, ∃p1, p2 ∈ αB(B), ∃p ∈ S, D(p1 ◦ p) ̸= D(p2 ◦ p) do
3: Let c ∈ C be such thatM(c[p1 ◦ p]) ̸=M(c[p2 ◦ p]).
4: Refine(B, c[□ ◦ p])
5: already_consistent← ⊥
6: return already_consistent

Algorithm 7 refines partition B whenever it encounters an associativity issue: if (s1 ◦ s2) ◦ s3
and sl ◦ s3 do not behave similarly, as witnessed by the deepest common ancestor c ∈ C in D
of s1 ◦ sr and sl ◦ s3, since s1 ◦ s2 ∈ S+ and sl ∈ S both belong to a same class B, the context
c[□◦s3] refines B. A similar test is performed to detect right associativity issues. This algorithm
returns Boolean ⊤ if and only if B was already associative in the first place.

Algorithm 7 MakeAssoc()

1: already_assoc← ⊤
2: while ∃◦ ∈ {·, ∥}, ∃s1, s2, s3 ∈ S, ∃sl ∈ αB(s1 ◦ s2), ∃sr ∈ αB(s2 ◦ s3), D(s1 ◦ sr) ̸= D(sl ◦ s3)

do
3: Let c ∈ C be such thatM(c[s1 ◦ sr]) ̸=M(c[sl ◦ s3]).
4: Let p ∈ αB(s1 ◦ s2 ◦ s3).
5: query←M(c[p])
6: ifM(c[sl ◦ s3]) ̸= query then
7: Refine(Bs1◦s2 , c[□ ◦ s3])
8: else
9: Refine(Bs2◦s3 , c[s1 ◦□])

10: already_assoc← ⊥
11: return already_assoc

5.3 Using counter-examples to identify new components

Algorithm 8 is an important contribution as it differs from existing counter-example handling
algorithms on finite words and pomsets. Its arguments are a context c and a pomset z such that
w = c[z] is a counter-example. It returns a context c′ and a pomset p belonging to the frontier
such that c′ distinguishes p from all the existing access sequences of Bp.

• Line 1 handles the base case: if z is a letter, we can trivially infer a distinguishing context
and a new representative. Property 18 guarantees that, by the time the algorithm reaches
a leaf, it is indeed a breaking point.

• Lines 3 to 4 consist in inductively finding a breaking point along the leftmost branch of
a canonical term t of w. By Property 18, such a breaking point always exists. Figure 6
displays how the algorithm explores t ∈ ST(c[z]): if ι is the insertion point of z in t, let µ
and ν be the children of ι. The exponent of each node stands for the local value of predicate
A(cx, zx) for x ∈ {ι, µ, ν}, where (cx, zx) stands for the split of w induced by node x. Here,
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Algorithm 8 FindEBP(c, z) where c ∈ C1(Σ), z ∈ SP+(Σ),H(c[z]) ̸=M(c[z]) and A(c, z) = 1

1: if z ∈ Σ then return (c, z)
2: else if z = z1 ◦ z2 is a canonical decomposition of z then
3: if A(c[□ ◦ z2], z1) then
4: return FindEBP(c[□ ◦ z2], z1)
5: else
6: Let p1 ∈ αH(z1) be such thatH(c[p1 ◦ z2]) ̸=M(c[p1 ◦ z2]).
7: if A(c[p1 ◦□], z2) then
8: return FindEBP(c[p1 ◦□], z2)
9: else

10: Let p2 ∈ αH(z2) be such thatH(c[p1 ◦ p2]) ̸=M(c[p1 ◦ p2]).
11: return (c, p1 ◦ p2)

(c, ◦, z1, z2) is a breaking point. If it is not the case, the algorithm inductively explores the
(purple) leftmost sub-branch rooted in µ instead.

• Lines 6 to 7 determine whether a refinement can be inferred from this breaking point.
Our intuition is that witnessing a conflict when the left branch is replaced by an access
sequence p1 is not enough; we need to check if feeding both branches to the hypothesis
still result in a conflict.

– If it does (Lines 10 to 11), then c distinguishes p1 ◦ p2 for some p1 ∈ αH(z1), p2 ∈
αH(z2) from any access sequence in αH(p1 ◦ p2). Then the algorithm returns c and
p1 ◦ p2.

– Otherwise, the algorithm no longer explores the leftmost branch rooted in ι. Line 8
instead replaces z1 with an access sequence p1 and restarts the exploration process
from ν, as shown by Figure 7. The pre-condition is respected, as c[p1 ◦ z2] is still a
counter-example due to A(cµw, zµw) = 0 by definition of breaking points.

By Theorem 5, Algorithm 8 ends and does return a context c′ that distinguishes a representa-
tive p of a new component from the access sequences of its previous component. Due to each
inductive call descending deeper into the term, we can intuit that Algorithm 8 performs at most
O(δ(z)) inductive calls.

root

ι1 : ◦

µ0

. . .
ν

. . .

. . .

z1 z2

z

Figure 6: A breaking point along a branch of
a counter-example c[z].

root

ι1 : ◦

. . . ν1 : ◦
. . .

. . .

p1

z2

z

Figure 7: Replacing the left branch by its ac-
cess sequence and switching to its sibling.
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5.4 Inducing a refinement

Algorithm 9 characterizes Lλ: it relies on Algorithm 8 to find a representative of a new com-
ponent p and a matching distinguishing context c, but does not use c to immediately refine Bp.
Indeed, c is of arbitrary size, being inferred from an arbitrarily long counter-example; an overly
large context in C would weight down future membership queries.

Instead, it merely expands p (Line 5) and relies only on Algorithms 6 and 7 to refine B and H
(Lines 6 and 7), therefore keeping C closed by Property 17. Fixing a consistency defect may
result in an associativity defect appearing and vice versa, hence the loop.

Should a lack of associativity or consistency defects prevents a new component for p from being
refined, Algorithm 9 also adds c[p] and c[p′] to a counter-example pool E it maintains (Line 4) for
any representative p′ ∈ αH(p) in order to guarantee that p and p′ are eventually distinguished.
By Theorem 6, this loop eventually depletes E and ends.

Algorithm 9 HandleCE(w) where w ∈ SP+(Σ) is such thatH(w) ̸=M(w)

1: E ← {w}
2: while ∃u ∈ E ,M(u) ̸= H(u) do
3: (c, p)← FindEBP(□, u)
4: E ← E ∪ {c[p]} ∪ {c[p′] | p′ ∈ αH(p)}
5: Expand(p)
6: repeat
7: until MakeConsistent() ∧ MakeAssoc()
8: H ← BuildHypothesis(S,B)

5.5 The main loop

Algorithm 10 first initializes the pack of components B and the hypothesisH by expanding the
empty pomset ε. There are no consistency and associativity defects to fix that early due to the
first iteration of B having at most two classes.

It then submits H to the teacher. If the equivalence query returns a counter-example w, it then
proceeds to apply Algorithm 9 to identify new components and refine H accordingly. Other-
wise, a modelH equivalent toM has been learnt and the algorithm returnsH.

Lines 6 and 7 guarantee thatH is compatible before submitting an equivalence query. Note that
this compatibility test is free (although the counter-example handling is obviously not) due to
the membership query M(c[s]) having already been performed during either the sifting of s
through D or the refinement of Bs.
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Algorithm 10 Learn()

1: S,B,D ← ∅, ∅, Tree(□)
2: Expand(ε)
3: H ← BuildHypothesis(S,B)
4: while ∃w ∈ SP(Σ),H(w) ̸=M(w) do
5: HandleCE(w)
6: while ∃B ∈ B, ∃s ∈ B, ∃c ∈ CB ,H(c[s]) ̸=M(c[s]) do
7: HandleCE(c[s])

8: returnH

5.6 Using counter-examples to identify new components

We assume in this section that B is a consistent, associative partition from which a hypothesisH
is inferred. We first prove that a breaking point can always be found on the leftmost branch of
every term of a counter-example, that is, the branch Algorithm 8 focuses on. This branch choice
is arbitrary: indeed, the proof of Property 18 can be applied to any branch. This breaking point
may not be effective, i.e. resulting in a new component being discovered.

Property 3 Given a counter-example w ∈ SP+(Σ) such that H(w) ̸=M(w), given a split (c, z) of w
such that A(c, z) = 1, there exists a breaking point (c′, z′) or (c′, ◦, z1, z2) such that c is a subcontext of
c′ and either w = c′[z′] or w = c′[z1 ◦ z2].

The following theorem is one of our main results: it states that from a counter-example, by look-
ing for breaking points, we can find a representative p of a new component that is distinguished
by a context c′ from any other representative p′ of its current component.

Theorem 3 (Correction and termination of Algorithm 8) Given c ∈ C1(Σ) and z ∈ SP+(Σ) such
thatH(c[z]) ̸=M(c[z]) andA(c, z) = 1, FindEBP(c, z) terminates and returns a pair (c′, p) ∈ C1(Σ)×
S+ such that ∀p′ ∈ αH(p),M(c′[p]) ̸=M(c′[p′]).

Property 4 Given a counter-example w ∈ SP(Σ) such that H(w) ̸=M(w), a call to FindEBP(□, w)
returns a pair (c′, p) ∈ C1(Σ)× S+ such that for any p′ ∈ S, p ̸∼L p′.

6 Termination, Correctness, and Complexity

6.1 Properties of the hypothesis

Lλ [8] on finite automata maintains a prefix-closed set of access sequences and a suffix-closed
set of distinguishing suffixes. We show that similar results hold on pomsets as well.

Lemma 14 (Closedness of access sequences) S is subpomset-closed.

Similarly, S ∪ S+ is subpomset-closed. We show below that an associative, consistent, and
compatible (B, S,D) induces a minimal hypothesisH.

Lemma 15 (Reachability of the hypothesis) An associative, consistent (B, S,D) induces a hypoth-
esisH such that: 1. i♯H(s) = Bs for all s ∈ S ∪ S+, 2.H is reachable.

Lemma 16 (Partial compatibility) An associative, consistent (B, S,D) induces a (S∪S+)-compatible
hypothesisH.
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Lemma 17 (Closedness of distinguishing contexts) C is such that, for any c ∈ C, either c = □ or
there exist c′ ∈ C, s ∈ S \ {ε}, and ◦ ∈ {·, ∥} such that c = c′[□ ◦ s] or c = c′[s ◦□].

Theorem 4 (Minimality) Given a hypothesis H induced from an associative, consistent (B, S,D), if
H is compatible, then it is minimal.

6.2 Using counter-examples to identify new components

We assume in this section that B is a consistent, associative partition from which a hypothesisH
is inferred. We first prove that a breaking point can always be found on the leftmost branch of
every term of a counter-example, that is, the branch Algorithm 8 focuses on. This branch choice
is arbitrary: indeed, the proof of lemma 18 can be applied to any branch. This breaking point
may not be effective, i.e. resulting in a new component being discovered.

Lemma 18 Given a counter-example w ∈ SP+(Σ) such that H(w) ̸=M(w), given a split (c, z) of w
such that A(c, z) = 1, there exists a breaking point (c′, z′) or (c′, ◦, z1, z2) such that c is a subcontext of
c′ and either w = c′[z′] or w = c′[z1 ◦ z2].

The following theorem is one of our main results: it states that from a counter-example, by look-
ing for breaking points, we can find a representative p of a new component that is distinguished
by a context c′ from any other representative p′ of its current component.

Theorem 5 (Correction and termination of Algorithm 8) Given c ∈ C1(Σ) and z ∈ SP+(Σ) such
thatH(c[z]) ̸=M(c[z]) andA(c, z) = 1, FindEBP(c, z) terminates and returns a pair (c′, p) ∈ C1(Σ)×
S+ such that ∀p′ ∈ αH(p),M(c′[p]) ̸=M(c′[p′]).

Corollary 19 Given a counter-example w ∈ SP(Σ) such thatH(w) ̸=M(w), a call to FindEBP(□, w)
returns a pair (c′, p) ∈ C1(Σ)× S+ such that for any p′ ∈ S, p ̸∼L p′.

6.3 Termination and correction of the refinement process

Lemma 20 Algorithms 6 and 7 1. terminate and 2. induce a refinement if they return ⊥.

Theorem 6 Algorithm 9 1. terminates and 2. induces a refinement of B.

A component of B may at some point feature more than one access sequence if Algorithm 9
inserts a new representative that cannot be immediately separated from its original class by an
inconsistency or an associativity defect. Nevertheless, it remains a temporary issue:

Lemma 21 Algorithm 9 terminates with B being sharp.

Theorem 7 (Correctness of Lλ) Algorithm 10 1. terminates and 2. returns a PRH such thatL(H) = L.

6.4 Complexity analysis

Let |M | = n be the size of the target minimal pomset recognizer M, k = |Σ| the size of the
alphabet, m and d the maximal size and depth of counter-examples returned by the MAT. We
conduct a comparative theoretical analysis of query and symbol complexities, comparing our
algorithm to the L∗ adaptation of [13].

Query complexity

Building the pack of components. Due to each element of S being eventually distinguished
from all the others, |S| ≤ n and |S+| ≤ n2 + k. In a similar fashion, new elements are only ever
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added to C when they result in a new class being added to B, thus |C| ≤ n.

We build the pack of components by sifting every element of S and S+ through D. The worst-
case scenario arises when D is a linear tree of depth n − 1: sifting a pomset may then require
up to n − 1 membership requests. Computing B then results in O(n3 + k · n) membership
queries. In the best case scenario, D is a complete binary tree of depth ⌈log2(n)⌉: we then
perform O(log2(n) · n2 + k · log2(n)) membership queries.

Both cases are similar to L∗, whose set of distinguishing contexts is of size ⌈log2(n)⌉ in a best
case scenario, and n in the worst case scenario. A predictable result, due to the same lemma
holding for finite automata.

Handling counter-examples. As a secondary result of the proof of Theorem 5, given a counter-
example w, FindEBP(□, w) performs at most d recursive calls. If we assume B is sharp, each call
asks only two membership queries (Lines 3 and 7). In that case, FindEBP(□, w) only requires
O(d) membership queries.

Let us compare FindEBP to the function HCE outlined in [13] that instead relies on a prefix traver-
sal of a term of a counter-example instead of exploring a single branch on the fly. HCE performs
at mostO(m) membership queries. Thus, the closer to a perfect binary tree the term of w consid-
ered, the more FindEBP outperforms HCE: the former will perform at most O(log2(m)) queries
and the latter, O(m). However, if instead canonical terms are linear trees, then d = Θ(m) and
both algorithms perform O(m) queries.

In the context of the Lλ algorithm, while executing Algorithm 9, B may not be sharp and a
component may feature up to n access sequences. Computing the agreement predicates on
Lines 6 and 10 therefore requires O(n) membership queries. Thus, FindEBP(□, w) finds a new
component in O(n · d) membership queries in the worst case scenario.

Rivest-Schapire’s method [4] for finite words identifies a breaking point in a counter-example
w by performing a binary search over the totally ordered set of prefixes of w, achieving loga-
rithmic complexity w.r.t. the length of w. However, it is worth noting that, for series-parallel
pomsets, the set of subpomsets of a counter-example w forms a partial order that prevents us
from searching for a breaking point dichotomically.

Total number of queries. In both cases, the number of equivalence queries is bounded by n:
in the worst case scenario, each counter-example results in only one component being added to
B. Finally, our algorithm performs at most O(n3 + k · n+ d · n2) membership queries, whereas
[13]’s adaptation of L∗ performs at most O(n3 + k · n + m · n). Were we to replace HCE with
FindEBP, L∗ would require O(n3 + k · n+ d · n) membership queries at most instead.

Theoretically, Lλ’s delayed refinements may burden the counter-example handling process and
lead to higher query complexity than L∗; it has however been shown by Howar et al. [8] that
Lλ is competitive with state-of-the-art active learning algorithms for rational languages and
therefore outperforms L∗ due to delayed refinements being rare. It remains to be seen if such
an observation holds for recognizable pomset languages.

Symbol complexity

Estimating the symbol complexity of an active learning algorithm is of great practical use.
Merely bounding the number of queries overlooks the fact that the actual execution time of
membership queries depends on the size of the input.
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A study of representatives and contexts. Let us estimate the size of S’s greatest access se-
quence: in the worst case scenario, the i + 1-th representative si+1 ∈ S+ added to S is the
composition of two copies of the current largest element si of S \ {ε} for 1 ≤ i < n. Thus,
|si+1| = 2 · |si| + 1 and trivially, |sn| = O(2n). For any s ∈ S ∪ S+, |s| = O(2n). An identical
lemma holds for [13]’s adaptation of L∗.

The same is not true of C. Let us estimate the size of C’s greatest context: in the worst case
scenario, the i + 1-th context ci+1 added to C is of the form ci[□ ◦ s] where s ∈ S and ci is the
current largest element of C for 1 < i < n, hence |ci+1| ≤ |ci|+ 1+ |s|. Trivially, |cn| = O(n · 2n).
Thus, for any c ∈ C, |c| = O(n · 2n). In L∗’case, distinguishing contexts are directly extracted
from the counter-examples and for any c ∈ C, |c| = O(m).

Total symbol complexity. In order to build its observation table, L∗ thus requiresO((2n+m) ·
n3+ k ·m ·n) symbols, while Lλ takesO(2n ·n4+ k · 2n ·n2) symbols to build B. Moreover, each
membership query performed by FindEBP and HCE alike takes up toO(m+d ·2n) symbols, the
worst case scenario being a right linear tree such that d branches have to be replaced by their
access sequences. FindEBP performs O(d · n2) membership queries, whereas HCE performs
O(m ·n). Thus, the total symbol complexity of L∗ isO((2n+m) ·n3+k ·m ·n+m ·n ·(m+d ·2n)),
and the symbol complexity of Lλ is O(2n · n4 + k · 2n · n2 + d · n2 · (m+ d · 2n)).

It is therefore worth pointing out that Lλ’s symbol complexity here does not depend on m
with the unavoidable exception of the counter-example handling procedure. Due to m being
arbitrary large, should m = Ω(n ·2n), then the extra symbols carried by the needlessly large dis-
tinguishing contexts directly inferred from counter-examples will burden every further mem-
bership query performed by L∗ to extend its observation table.

7 Example Run

Let’s design the Pomset recognizer R = (M,⊙,:, e, i, F ) with M = {qa, qb, q1, q⊥, q1}, e = 1,
F = {q1, 1}, ⊙ and : as defined by figure 8. We then have L(R) = (a||b)∗.

⊙ qa qb q1 q⊥ 1
qa q⊥ q⊥ q⊥ q⊥ qa
qb q⊥ q⊥ q⊥ q⊥ qb
q1 q⊥ q⊥ q1 q⊥ q1
q⊥ q⊥ q⊥ q⊥ q⊥ q⊥
1 qa qb q1 q⊥ 1

: qa qb q1 q⊥ 1
qa q⊥ q1 q⊥ q⊥ qa
qb q1 q⊥ q⊥ q⊥ qb
q1 q⊥ q⊥ q⊥ q⊥ q1
q⊥ q⊥ q⊥ q⊥ q⊥ q⊥
1 qa qb q1 q⊥ 1

Figure 8: Cayley tables of ⊙ and :.

Let’s now consider a teacher T holding R capable of answering membership and equivalence
queries on the latter. We will use Lλ to build a Pomset recognizer H equivalent to R by query-
ingR:

Step 1 The algorithm starts with S = {}, B = {} andD = Tree(□) and begins by expanding ϵ,
which leads to the recursive expansion of a. We then have S = {ϵ, a}, B = {Bϵ = {ϵ, a||b}, Ba =
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{a, b, aa, ab, a||a, ...}} and D as defined by figure 9. B is consistent, •-associative, ||-associative
and thus induces an hypothesis H1.

□

Bϵ Ba

Figure 9: Discrimination tree at Step 1.

Step 2 H1 is submitted to the teacher, which hands (a||b)(a||b)(a||b) as a counter-example.
FindEBP is then called with c = □ and z = (a||b)(a||b)(a||b). A recursive call with c =
□(a||b)(a||b) and z = (a||b) is then performed, which leads to another recursive call with c =
(a||□)(a||b)(a||b) and z = b. As z is evaluated by H1 as a and (a||a)(a||b)(a||b) is not a counter-
example while (a||b)(a||b)(a||b) is, we found an effective breaking point at z = b and expand
b.

Step 3 After adding b to S, a consistency problem arises as a ∈ Ba, b ∈ Ba, ab ∈ Ba while
a||b ∈ Bϵ and a||ab ∈ Ba. This leads to the refinement of B = Ba with c1 = □||b which splits
Ba into Ba = {a} and B1 = {b, ab, aa, a||a, ...}. This leads to the expansion of a||b. We then have
the discrimination tree defined by figure 10.

□

Bϵ c1

Ba B1

Figure 10: Discrimination tree at Step 3.

Step 4 We have a ||-associativity defect with s1 = a, s2 = a, s3 = b, sl = b, sr = ϵ. This is reme-
died by refining B1 with c2 = a||□ which splits B1 into Bb = {b} and B1 = {ab, aa, bb, a||a, ...}.
This leads to the expansion of a||a and gives the discrimination tree given by figure 11.

□

Bϵ c2

Ba c1

B1Bb

Figure 11: Discrimination tree at Step 4.
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Step 5 A consistency default arises as ϵ ∈ Bϵ, a||b ∈ Bϵ but e • a ∈ Ba while (a||b) • a ∈ B1.
This is fixed by refining Bϵ with c3 = a||(□||b) which splits Bϵ into Bϵ = {ϵ} and Ba||b =
{a||b, (a||b)(a||b), ...}. We then have the discrimination tree defined by figure 12.

□

c3 c2

Ba c1

B1Bb

BϵBa||b

Figure 12: Discrimination tree at Step 5.

Step 6 We have S = {ϵ, a, b, a||b, a||a} and B = {Bϵ = {ϵ}, Ba||b = {a||b, (a||b)(a||b), ...}, Ba =
{a}, Bb = {b}, B1 = {aa, bb, ab, a||a, ...}}. Such pack of components if consistent, •-associate and
||-associative and thus induces an hypothesis H2. Upon comparison of H2 with the teacher, the
equivalence query succeeds and the algorithm terminates.

8 Generating Test Suites for Equivalence Queries

The use of equivalence queries in active learning algorithms is paradoxical: we are striving to
infer a formal model from a black box yet our method requires that we compare the hypotheses
we submit to the very model we are trying to learn. Practically speaking, we can only rely on
membership queries.

We remedy this issue by designing a suitable finite test suite ensuring general equivalence be-
tween two pomsets recognizers. Naturally, this is not possible in the general case. However,
we assume that the size of the model is bounded w.r.t. to the hypothesis we submit. This test
suite extends to recognizable languages of series-parallel pomsets the W -method [5] originally
applied to finite state machines accepting words.

Definition 22 (Equivalence on a test suite) Let Z ⊆ SP(Σ). Two pomset recognizers R1 and R2

are said to be Z-equivalent, writtenH ≡Z M, if for any z ∈ Z,H(z) =M(z).

We will in this section consider a hypothesis H = (H, ·H, ∥H, eH, i♯H, FH) and a model M =

(M, ·M, ∥M, eM, i♯M, FM) sharing the same alphabet such that H andM are minimal, |H| = n,
and we know a bound k such that 0 ≤ |M | − |H| ≤ k.

8.1 Computing a state cover

The active learning algorithm computes a set of pomsets (the representatives) that reach every
state of the hypothesis built, and a set of contexts that distinguish these states. We provide a
generic definition of these notions:

Definition 23 (State cover) A set P ⊆ SP(Σ) is a state cover of a reachable pomset recognizer R =
(R,⊙,:, e, i, F ) if ε ∈ P and every r ∈ R admits an access sequence p ∈ P .
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Definition 24 (Characterisation set) A set of contexts W ⊆ C1(Σ) is a characterization set of a
pomset recognizerR = (R,⊙,:, e, i, F ) if □ ∈W and for any r1, r2 ∈ R, if r1 and r2 are distinguish-
able, then ∃c ∈W ,R(c[r1]) ̸= R(c[r2]).

The definitions of minimality and characterisation sets result in the following property:

Lemma 25 Given a minimal pomset recognizer R = (R,⊙,:, e, i, F ), a characterization set W of P ,
and two states r1, r2 ∈ R, if for any c ∈W,R(c[r1]) = R(c[r2]), then r1 = r2.

The first step of the W -method consists in designing a state cover of the unknown model M
that extends a known state cover of the hypothesis H by relying on the bound k we postulated
and our knowledge that states distinguished inH are still distinguished inM.

Definition 26 (Extending a state cover.) Let P be a state cover of H. We introduce the set LP
i =

{c[p] | m ∈ N, c ∈ Cm(Σ), δ(c) ≤ i, p ∈ Pm}.

Intuitively, LP
i consists of all pomsets obtained by inserting access sequences of P in a multi-

context of height equal to or smaller than i.

Theorem 8 Let P be a state cover ofH and W a characterisation set ofH such thatH ≡W [P ]M. Then
LP
k is a state cover ofM.

q

q1

. . .

q2

. . .

c

z1 z2

Figure 13: Finding states covered by P in an
evaluation tree τ ′ of w′.

q

q1

. . .

q2

. . .

c

p1 p2

Figure 14: Inserting P ’s access sequences in τ ′

to create a new access sequence p.

8.2 Exhaustivity of the test suite

Our goal is to design a complete test suite Z, i.e. such that Z-equivalence must imply full equiva-
lence ofH andM, assuming naturally that the hypotheses we have made earlier in this section
hold. To do so, we will use a proof inspired by Moerman’s [21] that relies on bisimulation. We
first define this notion in a similar fashion to finite automata:

Definition 27 (Bisimulation relation) A bisimulation relation ∼ between two pomset recognizers
R1 = (R1,⊙1,:1, e1, i1, F1) andR2 = (R2,⊙2,:2, e2, i2, F2) is a binary relation R1×R2 such that:

1. r1 ∼ r2 implies that r1 ∈ F1 ⇐⇒ r2 ∈ F2.

2. r1 ∼ r2 and r′1 ∼ r′2 implies that r1 ◦1 r2 ∼ r′1 ◦2 r′2 for ◦ ∈ {⊙,:}.

Lemma 28 Given a bisimulation relation ∼ betweenR1 andR2, ifR1 andR2 share the same alphabet
Σ, the same neutral element e, and for any x ∈ Σ ∪ {e}, i♯R1

(x) ∼ i♯R2
(x), then R1 and R2 are

equivalent.

Our goal is to use P and W to design a test suite Z such that Z-equivalence induces a bisimula-
tion relation.
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Theorem 9 Let P be a state cover of H, W be a characterisation set of H, L = LP
k , L′ = LP

k+1, and
Z = W [L′]. We introduce the binary relation ∼ on H ×M :

∼ = {(i♯H(l), i♯M(l)) | l ∈ L}

IfH andM are Z-equivalent, then ∼ is a bisimulation relation.

9 Generating Pomset Recognizers

In order to test our algorithms, we would need to have access to a wide variety of different
Pomset Recognizers. To have a method capable of generating "random" Pomset Recognizers of
n states would allow us to employ fuzzing strategies to empirically measure the performances
of our version of Lλ. The difficulty in generating Pomset Recognisers comes from the associa-
tivity and commutativity properties of the operations ⊙ and :. We thus cannot simply fill the
operation’s Cayley Tables randomly as we need them to respect these invariants.

SAT based methods seem to be the most promising solution. For ◦ = •, it would imply to start
by enforcing q1 ◦ q2 = q3 with (q1, q2, q3) ∈ M3 and then reduce the associativity’s system of
equation accordingly. Once the said system is reduced, the operation is repeated until all pairs
of states and operations have been assigned a result. Generating the results for ◦ = || can be
done using the same strategy, only must commutativity be respected as well as associativity.

The second issue with generating Pomset Recognizer arises when we need to choose whether
a state is final or initial (i.e. labelled by i) or neither. As we cannot be sure that all states can
always be reached, using a purely random method of attributing the final and initial properties
to the state can lead to non-reduced (and therefore non-minimal) Pomset Recognizers. This
also increases the chances of obtaining a machine that recognizes nothing or everything. The
reduced form of any Pomset Recognizer can be found in polynomial time [20], we can thus en-
force reduction during our generation, at the cost of trimming some states.

Generating minimal Pomset Recognizers without backtracking seems impossible, and doing
so would imply to test an exponential number of possibilities over the number n of desired
states. While the aforementioned method does not produce minimal nor reduced machines,
minimizing the result allows us to obtain a non-empty minimal Pomset Recognizer most of the
time. Repeating this operation numerous times would then permit to generate a benchmark of
Pomset Recognizes.

10 Conclusion and Further Developments

In this paper, we have shown that a state-of-the-art active learning algorithm, Lλ [8], could
be applied to pomset recognizers. It remains to be seen how its compact data structures (dis-
crimination tree, closed sets of representatives and distinguishers) impact query complexity in
practice compared to the original adaptation of L∗ to pomsets [13]. To this end, we are currently
working on an implementation that tackles the following issues:

Representing series-parallel pomsets. We must settle on a canonical representation of pomsets
as binary trees that guarantees minimal depth and prevents duplicate queries.
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Optimizing counter-example handling. FindEBP benefits from the use of canonical terms of
minimal depth (ideally, logarithmic w.r.t. the counter-example’s size). However, its com-
plexity remains linear if the canonical term is a linear tree. We may therefore try to develop
another counter-example handling procedure optimized for linear trees, and dynamically
choose a counter-example strategy based on the input term’s shape.

Generating a benchmark. We must create a test sample of minimal, reachable pomset recog-
nizers. In that regard, SAT-based approaches look promising.

Testing various scenarios. In order to assess the efficiency of the various techniques discussed
in this article, we need to isolate the impact of 1. the discrimination tree D, 2. the new
counter-example handling procedure FindEBP, and 3. Lλ’s lazy refinement.

We plan on adapting various improvements to the W -method, such as the H-method [? ], to
pomset recognizers. We also want to determine whether FindEBP can enhance active learning
algorithms for tree languages [? ], which inspired [13]’s algorithm in the first place. We also
want to explore the passive learning problem for pomset samples: given two non-empty sets
Z+ ⊆ SP(Σ) and Z− ⊆ SP(Σ) such that Z+ ∩ Z− = ∅, find a PR that accepts all the elements of
Z+ and rejects all the elements of Z−.

Finally, while both van Heerdt’s algorithm [13] and ours learn series-parallel pomsets, some use
cases such as producer-consumer systems require modelling pomsets that feature N patterns.
These scenarios can be effectively formalized using interval pomsets [22] and higher-dimensional
automata (HDA) [23]. The extension of Myhill-Nerode’s theorem to languages of HDA [? ]
opens up the possibility of an active learning algorithm for HDA.
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