Active learning with inductive counter examples

Juliette JACQUOT
(supervisor: Daniel STAN)

Technical Report n°202501-techrep-JACQUOT, January 2025
revision 1

Regular Model Checking is a framework used to verify whether an algorithm meets a given specification,
known as its correctness. This framework reduces the initial problem to a language learning one, by
representing each state with a word using a finite alphabet.

However, this translation to a regular language of inductive invariant set does not come without its
issues. Indeed, not every combination of letters represents a reachable state or an unsafe state, so a tra-
ditional oracle may have to improvise an answer for its membership query. As a result, the language
expected to be learned may not be regular which prevents the learning algorithms from terminating.

In this report, we propose the Lice framework, which introduces an “unknown” membership to a
language, as well as a potential inductive relation between two words with an “unknown” membership
in the form of inductive counter examples.

Le Regular Model Checking est un framework utilisé pour vérifier si un algorithme répond a une spécifi-
cation donnée, appelée terminaison. Ce framework réduit le probleme initial en un probleme d’apprentis-
sage de langage, en représentant chaque état par un mot en utilisant un alphabet fini.

Cependant, cette transition en un langage avec un ensemble invariant inductif n’est pas sans ses pro-
blemes. En effet, toutes les combinaisons de lettres ne représentent pas un état atteignable ou un état non
stir, donc un oracle traditionnel devrait parfois improviser une réponse a sa requéte d’appartenance. Par
conséquent, le langage en cours d’apprentissage ne serait pas forcément un langage régulier, ce qui em-
péche la terminaison des algorithmes d’apprentissage.

Dans ce rapport, nous proposons le framework Licg, qui introduit une réponse “inconnu” a un langage,
ainsi qu'une potentielle relation inductive entre deux mots avec une appartenance “inconnue” sous la
forme de contre exemples inductifs.

Keywords
Active learning, L*, Learner, Oracle, Regular Model Checking, SAT solving

LRE

LABORATOIRE DE RECHERCHE DE LEEPITA

Laboratoire de Recherche de I’'EPITA
14-16, rue Voltaire — FR-94276 Le Kremlin-Bicétre CEDEX — France
Tél. +33153 145922 —Fax. +33153 1459 13

juliette.jacquot@epita. fr —http://wwwlre.epita.fr/

juliette.jacquot@epita.fr
http://www.lre.epita.fr/

Copying this document

Copyright © 2023 LRE.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

1 Introduction 4
2 Preliminaries 6
21 Languages 6
2.2 Automata e e e e e e e 6
2.3 Transducer e e e e e e e e e 7
24 The L*algorithm 7
241 Principle 7

2.4.2 Filling the observationtable 8

243 Buildinganautomaton. o oL oL 8

2.5 Regular Model Checking 9
251 Thegeneralproblem 9

252 Constraintsused e e 9

3 The Licg Framework 10
31 Context e e e e e 10
32 Learningcriteria e 11
3.3 The Licg Learner e e 12
34 TheSAT Solver e e e e e e 13
341 SATClauses v v i i e e e e e e 13

342 UNSAT COTES . v v v v o e 14

35 TheICE Teacher 0 i e e e et e e e e 15
3.5.1 Membershipqueries o 15

352 Validityqueries L 15

3.6 Theotherteachers. e 15

4 Results 18
41 Example: Equi-distance o 18
42 Benchmark e e e e 19

5 Future work 21
5.1 TheSAT Solver i i i e e e e e e e e 21

52 Handling the counterexamples 21

6 Conclusion 22

7 Bibliography 23

Chapter 1

Introduction

After the introduction of active learning by Dana Angluin in 1987 [4], several advances have
been made on the L* algorithm, such as the L# algorithm [23]. However, those algorithms
require a perfect oracle, which is not easy to implement in practice.

Indeed, some applications of active learning can have an easy implementation of membership
queries, but the implementation of their equivalence queries tend to not be straightforward.
That is the case in applications of active learning in protocol modeling, where you can run a
real life system to get the answer to a membership query, but equivalence queries tend to resort
to random sampling.

Likewise, some other applications of active learning can have an easy implementation of
equivalence queries, but not have a clearly defined answer to membership queries in all cases.
That is the case for Regular Model Checking.

In order to make language learning a possibility for practical uses, several attempts to add
an “unknown” membership to a language were made. Those attempts consisted of either mod-
ifying the behavior of passive learning algorithms [13, 15], or adding a SAT solving step to an
active learning algorithm [7, 20].

Some potential applications of language learning with an unknown membership are sepa-
rating two languages [7] and solving Regular Model Checking problems [21]. However, those
applications tend to not take advantage of the context they are used in.

The case studied in this report is the application of active learning to Regular Model Check-
ing, in order to automate its resolution. Regular Model Checking [5] is a framework used to
verify whether a given algorithm meets a specification, which is known as the algorithm’s cor-
rectness.

A Regular Model Checking problem consists of finding a set of states which includes all
reachable states, while excluding any unsafe state. Those states can be represented as words,
which reduces the problem into a language learning one. Therefore, such a problem could be
solved with active learning.

However, not all states are either reachable or unsafe. Indeed, some words can represent a
state which was not included in the initial Regular Model Checking problem, and therefore does
not have a set behavior. This could cause an issue when solving a language learning problem,
since the language expected to be learned may not be a regular language. That could cause the
language learning algorithm to never terminate due to arbitrary choices.

5 Introduction

The addition of an unknown answer to the permitted oracle answers can be used to prevent
that issue, but it is possible to optimize the behavior of said unknown answer. Indeed, the
solution to a Regular Model Checking problem needs to be stable through its transition function,
and is therefore an inductive invariant. That information can be used to reduce the number of
possibilities introduced by the unknown memberships.

So, while the addition of an unknown answer is the most general extension of the framework,
it is too general in this context because it does not reflect all the information an oracle can pro-
vide to the learner.

In this report, we add the concept of unknown membership as well as inductive relation-
ships between words of unknown membership to the L* algorithm. This is done by adding
inductive counter examples to equivalence requests, as well as giving more information during
membership requests.

Chapter 2

Preliminaries

2.1 Languages

First, let’s fix a set of symbols ¥ as an alphabet. Any word w € ¥* can be defined as either the
empty word ¢ or a combination of symbols of ¥. The concatenation of two words u € ¥*,v € ¥*
is written either as wv or w - v for more clarity. Likewise, the concatenation of two languages
L; C¥*and Ly C ¥* is defined as such: Ly - Lo = {u-v,u € L1,v € Lo}.

The set of prefixes (resp. suffixes) of a word w € ¥* is defined as such:
prefixes(w) = {u € ¥* |Fv € T*, w = u - v} (resp. suffixes(w) = {v € T* | Ju € T*, w = u - v}).

The length of a word w € ¥* is defined as follows: len(w) = n,n € N,w € ¥"™.

A language L C X* is a subset of words of ¥*. When given two languages L; C ¥*, L, C ¥*,
we denote the (asymmetric) difference as such: L1 \ Ly = {w € L1 |w ¢ La}.

2.2 Automata

A deterministic finite automaton, also known as DFA, is a five-tuple A = (Q, %, 6, go, F') where
Q is a finite set of states, ¥ is the alphabet, : @ x ¥ — @ is the transitions between states,
go € Q is the starting state and F' C () is the set of accepting states.

The transition ¢ can be extended to words with the following inductive definition:

§:QxX* = Q

* g _ Qa w=e
Vg, w € Q x X7, 0(q,w) = { 0(6(g,a),v), w=av,a € X,vexr*
Furthermore, a word w € * is accepted by the automaton A if and only if §(gy,w) € F.
We can therefore give the following definition to the language accepted by the automaton .A:

L(A) = {w € * | §(qo,w) € F}.

Every regular language can be recognized by a finite automaton, so the terms “regular” and
“recognized by a DFA” can be used interchangeably.

7 Preliminaries

n |Mm

_c
A
B

Figure 2.1: An observation table

2.3 Transducer

A finite state transducer, also known as a FST, is a variation of an automaton that takes a word
as an input, and gives another word as an output. A FST can be represented as a five-tuple
T = (Q,X1 x X9,0,I,F) where @ is a finite set of states, ¥; is the input alphabet, ¥, is the
output alphabet, § : Q) x ¥1 = @ x X5 is the transition between states, I C () is the set of initial
states and F' C @ is the set of accepting states.

The transition ¢ can be extended to words with the following inductive definition:

§: QxS 5 Qx2h

(g,¢) w=¢
Vg, w € Q x X7,0(q,w) = (¢ a9 -w') w= a1v,ay € Y, €3, (¢",a2) = (g, a1),
(¢',w") =d(q",v)
Using that definition, a word w; € X7 gives an output we € X3 is and only if 3go,g. €
I X F76(q07w1) = (q{i7w2)'

24 The L* algorithm

2.4.1 Principle

The L* algorithm is used to learn a language as an automaton, by sending two kinds of queries
to a teacher: membership and equivalence queries. The membership queries are used to deter-
mine the membership of a given word: M : ¥* — {4, —}, and the equivalence queries are used
to check whether the current hypothesis automaton represents the right language.

The data learned by the L* algorithm is stored in an observation table (S, £/, T'), where S € ¥*
is a set of “accessor” words, E € ¥* is a set of “distinguisher” words, and
T:(SU(S-X))-E — {+,—} afunction such that:

) ={ T ue]

An observation table can be represented as seen in figure 2.1. Each accessor word and their
successors are used for the rows, and each distinguisher word is used to define the columns.
The results of the map T are then placed in their respective cases.

2.4 The L* algorithm 8

B
e A
e+ -
Al - —
AA | - + B a AB
B+ -
AB | - - start H @
AAA |+ -— A
AAB | — +

Figure 2.2: A closed and distinct observation table and its associated DFA

2.4.2 Filling the observation table

In order to generate an automaton from this table, it needs to meet two criteria: the table must
be closed and consistent. If those criteria are not met by the observation table, the learner sends
membership queries to its teacher before checking the criteria again.

Atable (S, E,T)is closed if Vw € (S-X)\ S, 3s € S, Ve € E, T(w - e) = T(s - ¢), meaning
that each row of a successor of an accessor word must be equal to a row of an accessor word.
For example, the table represented in figure 2.1 is not closed, because the row of A is not equal
to the row of ¢, which is the only accessor word of the table.

A table (S, E, T) is consistent if
Vs1,82 € 5%, (Ve € E,T(s1-€) =T(s2-¢)) = (Va € X,Ve € E,T(s1-a-€) = T(s2-a-e€)), meaning
that if two accessors have the same rows, then the rows of their respective successors must be
equal as well.

The criteria of consistence can be simplified into one of distinctness, which ensures that no
accessor rows are equal: Vs1, 82 € 52,51 # so = Je € E, T(s1-¢€) # T(s2 - e).

2.4.3 Building an automaton

In order to build an automaton representing a closed and distinct observation table (S, E,T'),
we must determine every Myhill-Nerode equivalence class represented in said table.

The Myhill-Nerode equivalence class of a word w € X* is noted [w], and two words w; €
SU(S-X)and ws € SU(S - X) are in the same equivalence class if Ve € E, T (w1 - €) = T'(ws - €).
That relation is noted w; = wy, and corresponds to two words having the same rows in the
observation table.

Due to the table’s distinctness, each accessor word can represent its own Myhill-Nerode
equivalence class. The table’s closedness then ensures that every other word falls into one of
those equivalence classes.

The automaton representing the observation table can therefore defined as such:
(Q=A{[s], se S}, B, d(sl,a)=1[s],s€S,s"=s-a, ¢0=[e], F=A{[s],se€S|T(s)=+})

A representation of such an automaton can be seen in figure 2.2.

9 Preliminaries

2.5 Regular Model Checking

2.5.1 The general problem

When given a Regular Model Checking problem [5], the different states can be represented with
an alphabet ¥, by associating any given state with a word w € ¥*. We can then define the set of
starting states as a set of words Init C ¥* and the set of unsafe states as a set of words Bad C .

The transitions from one state to another are represented by a function called Post, and the
inverse of that function is the function Pre. Therefore, the set of reachable states (resp. unsafe
states) is represented by Post™(Init) = |J Post”(Init) (resp. Pre*(Bad) = |J Pre"(Bad)).

neN neN

The Regular Model Checking problem consists of finding a language L C ¥*, such that
L C Post™(Init), L N Pre*(Bad) = 0 and Post(L) C L. This can be done by using a language
learning algorithm, which can find an automaton representing a regular language meeting all
those criteria.

2.5.2 Constraints used

When solving a Regular Model Checking problem, we must make some assumptions about the
Post function.

¢ For any regular language L C X*, Post(L) is computable as a DFA.
¢ Likewise, for any regular language L C ¥*, Pre(L) is computable as a DFA.

In most applications of Regular Model Checking, these assumptions are often satisfied. In-
deed, the transitions between states are often represented by transducers in those applications,
and are therefore computable.

In order to reduce the scope of the project in this report, let’s add the following constraint to
the Post function of the Regular Model Checking problem:

The Post function must be length-preserving: Vw € ¥* len(w) = len(Post(w)). This con-
straint is not restrictive in terms of the safety of an algorithm, because it can be bypassed by
adding letters for padding.

Under these constraints, we have the following:
e For a fixed n € N, Post"(L) is computable.

e For a fixed n € N, Post™(L N ™) = Post™(L) N X" is computable because there is a finite
amount of words in ¥".

However, Post”(Init) is not computable. Not only is Post™(Init) not necessarily a regular
language, but the result of a Post function might not be regular or even computable for repre-
sentations other than a DFA.

Chapter 3

The Ljcp Framework

3.1 Context

In order to solve a Regular Model Checking problem, we must find a language that is an induc-
tive invariant, and which can prove the safety of the problem’s system. A way to do so is to
find a DFA which recognizes said invariant, however that process is not as straightforward as
it might appear.

For example, an inductive invariant is not necessarily a regular language. The search for
a regular language instead of any language is a restriction caused by the language learning
algorithms used, which work by searching for an automaton and therefore a regular language.

However, this restriction is useful in the resolution of a Regular Model Checking problem.
Indeed, we can only compute the Post of sets we can represent, which is the case of regular
languages. In fact, a potential implementation of Post can take an automaton as an input and
give another automaton as an output. Restricting the learning to a regular language is therefore
helpful in the solving of the problem.

Another issue surrounding the inductive invariant is the fact that it is not unique. Indeed, the
languages Init and Bad often do not contain all the words in ¥*, which causes some words to
have an undefined behavior. Due to these words, several inductive invariants can be a solution
to the Regular Model Checking problem.

These multiple possibilities can make finding an oracle to use in the L* algorithm difficult,
because said oracle would need to choose which invariant to learn arbitrarily. In most cases,
the oracle chooses either the smallest or the biggest invariant possible, which are the languages
Post™(Init) and ¥* \ Pre”(Bad) respectively.

However, the oracle might make a choice of invariant which causes it to not be a regular lan-
guage, which would prevent the L* algorithm from terminating.

The Licg framework is used to remove these arbitrary choices from the oracle, by adding
the option of an unknown membership to a language. The words with such a membership
can therefore change their behavior during the learning process, which prevents the language
learning algorithm from being stuck trying to learn a non regular language.

This framework will use a set of criteria to choose a behavior for the words of unknown
membership before giving a hypothesis automaton. These criteria include the inductive rela-
tionship between a word and its successor, and facilitate the learning of an inductive invariant

11 The Licg Framework

by reducing the amount of potential languages.

3.2 Learning criteria

In order to verify whether a language L can prove the safety of a system (Init, Bad, Post), we
check for the following criteria:

1. Init C L
2. BadNL =10
3. Post(L) C L

According to theorems 1 and 2, if those three criteria are met, the language is a proof of the
safety of the system because Post* (Init) C L, L N Pre*(Bad) = () and Post(L) C L.

Theorem 1. If a language is a subset of an inductive invariant, then the language of all its successors is
a subset of that inductive invariant.

Proof. Let Post : 2% — 2% a transition between words, L C ¥*,Post(L) C L an inductive
invariant, and Init C L.
Let’s show that Post™(Init) C L with an inductive reasoning.

vn € N, let H,, be the following hypothesis: |J Post’(Init) C L.
i=0
PostO(Init) = Init and Init C L, so the hypothesis Hj is true.

Let n € N. Let’s suppose that H, is true.

U Post’(Init) C L

=0
= Post | U Posti(Init)) C Post(L)
i=0
= Post (U Posti(Init)) CL because Post(L) C L
i=0
= Post'™!(Init) C L
T
= U Post’(Init) C L with j =i + 1
=1
il .
= J Post’(Init) C L because Post’(Init) = Init C L
§=0

Therefore, if H, is true, then H,; is also true.

So, Vn € N, |J Post’(Init) C L.
i=0

1=

+oo .
Since Post* (Init) = |J Post’(Init), we proved that Post* (Init) C L. O
i=0

1=

Theorem 2. If a language is excluded from an inductive invariant, then the language of all its predeces-
sors is excluded from that inductive invariant.

3.3 The Licg Learner

12

Learner Membership: w

Teacher

Equivalence: A

»|
»

Observation table Answer: {+, -} Language to learn

Answer:. w

Figure 3.1: A representation of the L* algorithm

Proof. Let Post : ¥* — ¥* a transition between words, L C ¥*,Post(L) C L an inductive in-

variant, and Bad C ¥*, L N Bad = 0.
Let’s define Pre = Post™ .
Let’s show that L N Pre*(Bad) = () with an inductive reasoning.

Vn € N, let H,, be the following hypothesis: L N < Pre*(Bad)> =0.
=0

7=

Pre’(Bad) = Bad and L N Bad = §), so the hypothesis Hj is true.

Let n € N. Let’s suppose that H,, is true, and that Jw € Pre"**(Bad),w € L.

Then, Post(w) € L because Post(L) C Land w € L.
However, Post(w) € Pre™(Bad) because w € Pre™ ! (Bad).

Therefore, Post(w) € LN (U Prei(Bad)> , which is a contradiction with the hypothesis H,,.
=0

1=0
Therefore, if H,, is true, then H,, is also true.

n+1 .
So, L N Pre"*!(Bad) = §),and L N (U Prel(Bad)> = (.

So,Vn e N, LN <O Pre*(Bad)> = 0.

=0

+o0 .
Since Pre*(Bad) = |J Pre’(Bad), we proved that L N Pre*(Bad) = 0.
=0

(3

3.3 The Licr Learner

The Licg learner is based on the L* learner, represented in figure 3.1, and is used to learn a lan-
guage L that includes a set of accepting words L., while excluding a set of words L_. The Licg
learner also takes into account a function ¢ to create an inductive invariant. This framework

therefore adds several components to the learner.

One of those additions is the concept of an "unknown" membership. While the Licg learner

still has an observation table (S, E,T'), T is redefined as follows:

T:(SU(S-%))-E— {+,—,0}

13 The Licg Framework

+, TUEL+
T(w)y=<{ —, wel_
O, we¢ L, UL_

Another addition is a way to keep track of potential relationships between words. To do so,
the learner builds a set U of words with an unknown membership, and uses said set to create a
directed graph that represents the transitions between words ¢ : ¥* — ¥*.

These relationships between words of unknown membership can be given to the learner
through both membership and validity queries, which replace the L* learner’s equivalence
queries. More precisely, the Licg learner gives a list of words with an unknown membership
during membership queries, which can then be used to find a potential relationship. During
validity queries, however, the learner can receive two words as a counter example: those two
words form an inductive counter example [21].

The relation between words is stored as a directed graph: we have aset of words U C T-1(0),
which is used to define the nodes of the directed graph. For a given word u; € U, we can define
the set U,, C U of successors of u;. These successors are defined such that Yus € U,,,us €
Post™ (u1).

The relationships between words of unknown membership, represented by the edges of the
directed graph, are built during membership and validity requests.

For example, the learner gives the set U to its teacher during membership queries alongside
aword w € ¥*, and may receive a word v € U and a boolean b in return. Depending on the
value of that boolean, we either have the relation w € Post™(u) or w € Pre*(u)

Likewise, the answer to a validity query can be two words instead of one. In that case, the
learner considers the last word of the answer as the direct successor of the first.

3.4 The SAT Solver

Another new component to the Licg learning process is needed to properly handle the words
of unknown membership when generating an automaton. Indeed, a SAT solver is added to the
algorithm’s learner. This SAT solver is used to modify the learner’s observation table to make
it compatible with automaton generation.

Once the learner’s observation table is filled, it is given to the SAT solver in order to remove
the unknown memberships, while taking into account any inductive relation between words.
Furthermore, this SAT solver can also choose the set of words it can use as the accessor words
for the observation table, which can allow it to search for smaller observation tables than the
one it is given, and prevents the algorithm from searching an automaton with too many states
for the given problem.

3.4.1 SAT clauses
The SAT solver is encoded as such:
* z,: the word w € ¥* is accepted by the language L

* by,: the word w € ¥* is amongst the set of accessor words of the observation table

® €5,.a,5,: the words s; - @ and s, are in the same Myhill-Nerode equivalence class

3.4 The SAT Solver 14

We then define the following clauses to create a new closed and distinct observation table
(S, E, T"):

be (1)
VseSVac{acX|s-a€S} byy— by (7s-a)
Yu, € U,Vuy € Uul Ty — Ty (’UULUQ)
vsl; S92 S 52,Va S Z,Ve c E752 # S1-a esl,a,SQ — (xslae e 37528) (\Ilsl,a,Sme)
Vs, s1,89 € 53,Va € 3,81 < 89 €s,a,51 7 €s,a,s9 (A3751;S2;a>
Vs€SVaeS by~ V esas (Ps.a)
s'eS
Vs1,89 € 52,V(I €eX €s1,a,55 7 b52 (051782,11)

Using those clauses, we can define the new observation table (S’, E,T”) as follows:
o 5" ={se S|bs}

S-(Sux) — {+,-}
W > Ty

o T

Each clause is used either to shape the new observation table, or to ensure that it is closed
and distinct.

The 7 clauses are used to select the new set of accessor words S’ C S, which must contain at
least the word . In order to have a correct format for the observation table, a word can be an
accessor word only if it is either the empty word, or if its predecessor is also an accessor word.

The v clauses are used to ensure that the new function 7" sets the correct memberships to
words that are successors or predecessors of others using the transition function. Therefore, the
v clauses help reduce the number of potential automata by adding more verifications to ensure
that the language associated with an automaton is an inductive invariant.

The ¥ clauses are used to define what a Myhill-Nerode equivalence class is in the observation
table. Indeed, in the L* algorithm, two words are considered to be in the same Myhill-Nerode
equivalence class if their rows are equal in the observation table.

The A clauses are used to ensure that the new observation table is distinct. Meanwhile, the ®
clauses are used to ensure that the new observation table is closed.

Finally, the o clauses are used to make sure that the new observation table is not malformed,
by limiting the Myhill-Nerode equivalence classes to the set of accessor words.

The new observation table created with those SAT clauses can then be used to generate a
hypothesis automaton as follows:

(Q={[s]|s€S,bs}, X, d(s],a)=1[s],s" €S,esa,s, q=1[], F=A{[s]]|seS zs})

3.4.2 UNSAT Cores

Sometimes, the learner can have a filled observation table with no possible solution. In that
case, the SAT solver can track some of its clauses and check whether removing one of these
clauses would be enough to find a solution. Those clauses are used to form what is called an
UNSAT core.

In the case of the observation table, the SAT solver tracks all the ® clauses and uses them to
create its UNSAT core. The learner will then consider each clause present in the UNSAT core,
and will add all the words w - a, w,a € ¥* x ¥ such that the clause ®,, , is one of those clauses
to the set of accessor words of the observation table.

15 The Licg Framework

3.5 The ICE Teacher

The teacher has access to automata representing the languages Init and Bad, as well as the
transducer Post. It can use those languages and the transducer to compute everything it needs
to answer the learner’s membership and equivalence queries.

The automata Init and Bad are given to the teacher directly, and can therefore be used im-
mediately. However, the languages Post™(Init) and Pre*(Bad) which can be used to answer
membership queries need to be computed, despite them potentially being infinite and therefore
not computable.

Therefore, when given a word w € X*, we check whether w € Post*(Init) (resp. w €
Pre*(Bad)) by computing the languages Pre*(w) (resp. Post™(w)), and checking if at least one
of the words in the language is also in Init (resp. Bad).

Unlike Post™(Init) and Pre*(Bad), both Post™ (w) and Pre*(w) are finite sets for a given word
w because the Post function is length preserving, and the number of possible combinations of
letters with a given alphabet is finite for any given length of word.

3.5.1 Membership queries

While membership queries previously only checked whether a word is in the language to learn,
the ICE teacher instead looks at the relationships between words to get more specific results.
This allows the teacher to specify if the word must be in the language or cannot be in the lan-
guage, as well as its connection with any word of unknown membership that is given to it.

In the context the ICE teacher is used in, we are trying to find an inductive invariant which is
stable through the Post function. Therefore, if a word of unknown membership is the successor
of another, their membership must be linked.

In the context of a membership query, as seen in algorithm 1, the teacher receives both the
word of the membership query and a set of words with an unknown membership. This set of
words is then used to establish a relation between the current word and the ones the teacher
was given.

3.5.2 Validity queries

In the context of a validity query, the teacher is given an automaton representing a hypothesis
for a valid language. The teacher will then verify that the set Init is included in the language,
the set Bad is excluded from the language, and that the language is an inductive invariant.

If one of these conditions is not met, the teacher sends either a single counter example, or a
couple of words as an inductive counter example. This process is showcased in algorithm 2

Algorithm 2 works by directly manipulating the automatons and transducer it is given. There-
fore, this implementation of the ICE teacher can check the validity of all the language, instead
of checking the validity for all words up to a set length.

3.6 The other teachers

While the Licg algorithm is the base goal of this project, we can study some slight variations of
it by using the Licg learner and its SAT clauses, and creating a new teacher that uses validity

3.6 The other teachers

16

Algorithm 1 Answer a validity query

function MEMBERSHIPANSWER(word, unknowns)
current_post < {word}
current_pre < {word}
all_post < {}
all_pre «+ {}
Init_L + GETLANGUAGE(Init)
Bad_L + GETLANGUAGE(Bad)
while current_post # {} and current_pre # {} do
if Init_L N current_pre # () then
return (+, None, None)
else if Bad_L N current_post # () then
return (—, None, None)
else
for u € unknowns do
if u € current_post then
return (None, u, —)
else if u € current_pre then
return (None, u, +)
end if
end for
end if
all_post < all_post U current_post
all_pre < all_pre U current_pre
current_post «— GETPOST(current_post) \ all_post
current_pre «<— GETPRE(current_pre) \ all_pre
end while
return (None, None, None)
end function

Algorithm 2 Answer a validity query

function VALIDITYANSWER(L)
if Init ¢ L then
word <~ GETWORDIN(Init \ L)
return (word, None)
else if Bad N L # () then
word <~ GETWORDIN(Bad N L)
return (word, None)
else if Post(L) ¢ L then
post_word <~ GETWORDIN(Post(L) ¢ L)
pre_words < GETPRE(post_word)
pre_word - GETWORDIN(pre_words)
return (pre_word, post_word)
end if
return (None, None)
end function

17 The Licg Framework

queries but can’t give an unknown membership to a word.
This teacher uses the same algorithms as the ICE teacher, and adapts the unknown member-
ships or inductive counter examples to remove the concept of an unknown membership.

If a word is given an unknown membership, the teacher answers with a default membership
set arbitrarily ahead of time. Likewise, if the answer to a validity query is an inductive counter
example, the teacher checks the memberships of both words and chooses the one that causes a
contradiction with the hypothesis automaton.

Using this new teacher, we can create two new algorithms:

® Linie: uses the Licg learner, and sets the default membership of words to +. This algorithm
tries to learn an invariant L that is similar to Post™(Init), but can stop before the language
Post™ (Init) is found if the hypothesis automaton is a valid invariant.

® Lpaq: uses the Licg learner, and sets the default membership of words to —. This algo-
rithm tries to learn an invariant L that is similar to Pre®(Bad), but can stop before the
language ¥* \ Pre*(Bad) is found if the hypothesis automaton is a valid invariant.

Chapter 4

Results

4.1 Example: Equi-distance

In order to test our frameworks, let’s take an example of a Regular Model Checking problem:
the “Equi-distance” problem.

In the equi-distance problem, we have a series of tokens of an arbitrary length, as seen in
figure 4.1. Each token in the series is either red, blue or empty. The red tokens are represented
by the letter A, the blue tokens by the letter 13, and the empty tokens by the letter x.

The red tokens can move to the right, and the blue tokens can move to the left. The blue and
red tokens can switch places if they are next to each other, but they are considered blocked if
only one empty token is found between the two. Only one pair of red and blue tokens can move
at a time, and a pair of tokens can only move if there are no colored tokens between the two.

In the context of the equi-distance problem, the system has the following components:
e Init = Az(zx)*B
* Bad = Bz*A

The set of reachable states is Post* (Init) = {2 Az(xz)* Bx™,n € N}, and the set of unsafe states
is Pre*(Bad) = {z"Ba*Az™ + 2™ A(zx)*Bz",n € N}.

However, this causes the languages Post®(Init) and X* \ Pre®(Bad) to not be regular lan-
guages, meaning that the usual language learning algorithms used in Regular Model Checking
cannot terminate. Still, there is at least one invariant which fulfills all the required criteria: for
example, the language 2* Az(xzx)* Bz* is a potential solution to this Regular Model Checking
problem.

This problem therefore tests whether our framework can find another invariant that can be
used to solve a Regular Model Checking problem.

_ONONON _

Figure 4.1: Example of a Regular Model Checking problem state

19 Results

’ Name H #label H Sinit ‘ /Tinit H Sbad ‘ Tbad H Spost ‘ Tpost ‘
Bakery [10] 3 3 3 3 9 5 19
Burns [2] 12 3 3 3 36 10 125
Szymanski [22] 11 9 9 13 40 118 412
German [12] 581 3 3 4 2112 17 9.5k
Dijkstra [2] 42 1 1 3 126 13 827
Dijkstra, ring [11] 12 3 3 3 36 13 199
Dining Crypto. [6] 14 10 30 12 70 17 70
Coffee Can [19] 6 8 18 5 8 13 34
Herman, linear [14] 2 2 4 1 1 4 10
Herman, ring [14] 2 2 4 1 1 9 22
Israeli-Jalfon [16] 2 3 6 1 1 24 62
Lehmann-Rabin [18] 6 4 4 3 13 14 96
LR Dining Philo. [19] 4 4 4 3 4 3 10
Mux Array [11] 6 3 3 3 18 4 31
Res. Allocator [9] 3 3 3 4 9 7 25
Kanban [3, 17] 3 15 48 37 68 98 250
Water Jugs [1] 11 5 6 5 12 23 132
Equi dist. 3 4 4 3 3 9 18

Figure 4.2: Benchmark description. #iape stands for the size of the alphabet; Sx and T'x stand
for the number of states and transitions in the given automata or transduce.r

4.2 Benchmark

In order to test our frameworks, we run each of them ten times on the benchmark[8] described
in figure 4.2. The results given in figure 4.3 are the average of each run of the benchmark.

Based on the results seen in figure 4.3, we can see that the Licg algorithm works as intended
because a solution to the equi-distance problem was found. However, that algorithm is far from
efficient, especially for problems with too many transition states.

Meanwhile, the Lini; and Ly.q algorithms are having fewer timeouts. They also tend to be
faster than the Licg algorithm, and do not use as many validity queries. However, we can still
notice the impact of the number of states and transitions on the performance of both of these
algorithms.

Indeed, almost every problem that caused a timeout for the Licg algorithm still causes one
for either the Ly or the Ly,q algorithms, sometimes on both. Most of the time, the algorithm
which times out is the one where its associated language has the highest number of transitions.

4.2 Benchmark 20

RMC problem Licr

Name T ‘ Sinv ‘ Minv ‘ ‘/inv

Bakery 0.3 44 112 7.3

Burns 1.1 3.0 143 47.2

Szymanski t.o. - - -

German t.o. - - -

Dijkstra t.o. - - -

Dijkstra, ring t.o. - - -

Dining Crypto. t.o. - - -

Coffee Can <0.1| 3.0 38 7.2

Herman, linear <011 20 5 2

Herman, ring <0.1] 20 5 1

Israeli-Jalfon <0.1| 20 11 5

Lehmann-Rabin 1129 | 6.6 377 | 2966.3

LR Dining Philo. || < 0.1 | 2.0 30 3.8

Mux Array 0.5 3.0 | 16l 3

Res. Allocator 0.1 4.0 71 3

Kanban t.o. - - -

Water Jugs t.o. - - -

Equi dist. 55 4.0 58 787
RMC problem Linit Liaa
Name T ‘ Sinv ‘ Minv ‘ ‘/inv T ‘ Sinv ‘ Minv ‘ ‘/inv
Bakery 0.8 6.0 157 5 <0.1| 4.0 31 2
Burns 5.9 5.0 143 3 0.2 3.0 87 2
Szymanski t.o. - - - 182.8 | 15.6 | 3949.0 | 42
German t.o. - - - t.o. - - -
Dijkstra 1.3 2.0 85 1 t.o. - - -
Dijkstra, ring 5159 | 18.0 | 3071 | 33 232 | 9.0 1409 10
Dining Crypto. t.o. - - - t.o. - - -
Coffee Can <0.1]| 4.0 31 2 0.2 5.0 38 2
Herman, linear <01 20 5 1 <011 20 5 1
Herman, ring <011 20 5 1 <011 20 5 1
Israeli-Jalfon <0.1| 4.0 19 5 <0.1 | 20 5 1
Lehmann-Rabin 3.3 5.0 | 193.0 2 0.2 4.0 67 2
LR Dining Philo. 0.5 6.0 108 2 0.1 3.0 43 2
Mux Array 0.6 6.0 99 6 0.1 4.0 67 2
Res. Allocator 0.2 5.0 71 3 14 7.0 232 10.9
Kanban 141.7 | 33.0 | 2251 | 41 t.o. - - -
Water Jugs t.o. - - - 393.8 | 29.1 | 5198.3 | 17
Equi dist. 4.1 10.0 | 294 26 6.9 9.0 | 523.3 68

Figure 4.3: Benchmark results for the Licg, Linit and Lpaq algorithms. The times are in seconds;
Sx and T'x stand for the number of states and transitions in the learned invariant. "t.0." stands
for timeout, and is used when a run lasted longer than 10 minutes.

Chapter 5

Future work

While the current implementations of the Licg, Linit and Lypaq algorithms are working as in-
tended, some improvements can still be made.

5.1 The SAT solver

The SAT clauses can be rebuilt either after each validity query, or only when we get an UNSAT
core.

When the SAT solver is rebuilt only when we get an UNSAT core, like in the Licg algorithm,
the number of validity queries tends to skyrocket. Indeed, when a counter example is given,
the learner can add one clause to its SAT solver, which causes successive validity queries to be
very similar until every possible automaton is tested. With the current implementation of the
framework, this causes many redundant counter examples.

In the Liyit and Lyag algorithms, the SAT clauses are instead rebuilt after each validity query.
This prevents the redundant counter examples, but can lengthen the learning process by adding
too many variables when a solution could be found without them. Indeed, since several prefixes
can be added whenever we find an UNSAT core, we might add some rows that do not bring
more information and only add more variables to the SAT solver.

Since both membership and validity queries can be costly in the current implementation of
the teacher, especially when the transitions between words are complex, we need to find a
balance between the two implementations of the SAT solver.

5.2 Handling the counter examples

Another improvement that can be made to the learning frameworks has to do with the handling
of the counter examples. Indeed, the addition of unknown memberships makes some improve-
ments of the L* algorithm more difficult to apply in our observation table. For example, when
a word is given as a counter example to a validity query, all the suffixes of that word are added
to the observation table, which is far from optimal.

Chapter 6

Conclusion

In order to solve a Regular Model Checking problem, this report presents the Licg framework,
an active learning algorithm based on the L* algorithm. By adding the concept of an unknown
membership to a language, and inductive relation between words of unknown membership
and a SAT solver, this framework is capable of solving simple Regular Model Checking prob-
lems.

This report also introduces two variations of the Licg framework, Lini; and Ly.g, which try
to approximate the languages Post™(Init) and X* \ Pre* (Bad) respectively. In these frameworks,
the concept of an unknown membership to a language is removed, but the concept of validity
queries remains. Based on which framework is used, a solution to the Regular Model Checking
problem can be found faster, and might even consist of smaller automatons than with the Licg
algorithm.

Chapter 7
Bibliography

[1] (2024). Water pouring puzzle. Page Version ID: 1242579170. (page 19)

[2] Abdulla, P, Delzanno, G., Henda, N., and Rezine, A. (2007). Regular Model Checking
Without Transducers (On Efficient Verification of Parameterized Systems). pages 721-736.
(page 19)

[3] Abdulla, P. A., Haziza, E.,, and Holik, L. (2013). All for the Price of Few. In Giacobazzi, R.,
Berdine, J., and Mastroeni, 1., editors, Verification, Model Checking, and Abstract Interpretation,
pages 476495, Berlin, Heidelberg. Springer. (page 19)

[4] Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87-106. (page 4)

[5] Bouajjani, A., Jonsson, B., Nilsson, M., and Touili, T. (2000). Regular Model Checking. In
Emerson, E. A. and Sistla, A. P, editors, Computer Aided Verification, pages 403-418, Berlin,
Heidelberg. Springer. (pages 4 and 9)

[6] Chaum, D. (1988). The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1(1):65-75. (page 19)

[7] Chen, Y.-F, Farzan, A., Clarke, E. M., Tsay, Y.-K., and Wang, B.-Y. (2009). Learning Mini-
mal Separating DFA’s for Compositional Verification. In Kowalewski, S. and Philippou, A.,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 31-45, Berlin,
Heidelberg. Springer. (page 4)

[8] Chen, Y.-F,, Hong, C.-D., Lin, A. W., and Rummer, P. (2017). Learning to prove safety over
parameterised concurrent systems. In 2017 Formal Methods in Computer Aided Design (FM-
CAD), pages 76-83, Vienna. IEEE. (page 19)

[9] Donaldson, A. F. (2007). Automatic techniques for detecting and exploiting symmetry in model
checking. PhD, University of Glasgow. (page 19)

[10] Fokkink, W. (2013). Distributed algorithms: an intuitive approach. The MIT Press, Cambridge,
Massachusetts. (page 19)

[11] Fribourg, L. and Olsén, H. (1997). Reachability sets of parameterized rings as regular lan-
guages. Electronic Notes in Theoretical Computer Science, 9:40. (page 19)

BIBLIOGRAPHY 24

[12] German, S. M. and Sistla, A. P. (1992). Reasoning about systems with many processes. J.
ACM, 39(3):675-735. (page 19)

[13] Grinchtein, O., Leucker, M., and Piterman, N. (2006). Inferring Network Invariants Auto-
matically. pages 483—497. (page 4)

[14] Herman, T. (1990). Probabilistic self-stabilization. Information Processing Letters, 35(2):63—
67. (page 19)

[15] Heule, M. J. H. and Verwer, S. (2010). Exact DFA Identification Using SAT Solvers. In
Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M.,
Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi,
M. Y., Weikum, G., Sempere, J. M., and Garcia, P, editors, Grammatical Inference: Theoretical
Results and Applications, volume 6339, pages 66-79. Springer Berlin Heidelberg, Berlin, Hei-
delberg. Series Title: Lecture Notes in Computer Science. (page 4)

[16] Israeli, A. and Jalfon, M. (1990). Token management schemes and random walks yield self-
stabilizing mutual exclusion. In Proceedings of the ninth annual ACM symposium on Principles
of distributed computing, pages 119-131, Quebec City Quebec Canada. ACM. (page 19)

[17] Kaiser, A., Kroening, D., and Wahl, T. (2010). Dynamic Cutoff Detection in Parameter-
ized Concurrent Programs. In Touili, T., Cook, B., and Jackson, P., editors, Computer Aided
Verification, pages 645-659, Berlin, Heidelberg. Springer. (page 19)

[18] Lehmann, D. and Rabin, M. O. (1981). On the advantages of free choice: a symmetric
and fully distributed solution to the dining philosophers problem. In Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL "81, pages
133-138, New York, NY, USA. Association for Computing Machinery. (page 19)

[19] Lin, A. W. and Ruemmer, P. (2016). Liveness of Randomised Parameterised Systems under
Arbitrary Schedulers (Technical Report). arXiv:1606.01451 [cs]. (page 19)

[20] Moeller, M., Wiener, T., Solko-Breslin, A., Koch, C., Foster, N., and Silva, A. (2023). Au-
tomata Learning with an Incomplete Teacher. (page 4)

[21] Neider, D. (2014). Applications of automata learning in verification and synthesis. (pages 4
and 13)

[22] Szymanski, B. K. (1988). A simple solution to Lamport’s concurrent programming problem
with linear wait. In Proceedings of the 2nd international conference on Supercomputing, ICS ’88,
pages 621-626, New York, NY, USA. Association for Computing Machinery. (page 19)

[23] Vaandrager, F., Garhewal, B., Rot, J., and Wifimann, T. (2022). A New Approach for Active
Automata Learning Based on Apartness. arXiv:2107.05419 [cs]. (page 4)

	1 Introduction
	2 Preliminaries
	2.1 Languages
	2.2 Automata
	2.3 Transducer
	2.4 The L* algorithm
	2.4.1 Principle
	2.4.2 Filling the observation table
	2.4.3 Building an automaton

	2.5 Regular Model Checking
	2.5.1 The general problem
	2.5.2 Constraints used

	3 The LICE Framework
	3.1 Context
	3.2 Learning criteria
	3.3 The LICE Learner
	3.4 The SAT Solver
	3.4.1 SAT clauses
	3.4.2 UNSAT Cores

	3.5 The ICE Teacher
	3.5.1 Membership queries
	3.5.2 Validity queries

	3.6 The other teachers

	4 Results
	4.1 Example: Equi-distance
	4.2 Benchmark

	5 Future work
	5.1 The SAT solver
	5.2 Handling the counter examples

	6 Conclusion
	7 Bibliography

