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Abstract

The representation of human brain MRI images through generative models
has emerged as a pivotal area of research in medical imaging and computational
neuroscience. This study explores interpolation-based approaches for data aug-
mentation in brain MRI analysis, focusing on the generation of anatomically
coherent synthetic images. We propose and evaluate three distinct interpo-
lation configurations. Our methods demonstrate significant improvements in
segmentation tasks. The proposed approaches maintain anatomical plausibil-
ity while introducing beneficial variations, as evidenced by low Mean Squared
Error scores and improved Dice coefficients across tissue classes. These results
suggest that our interpolation strategies offer viable solutions for augmenting
brain MRI datasets while preserving critical anatomical features, potentially
enhancing the robustness of downstream medical imaging applications.
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1 Introduction

The analysis and processing of brain MRI images represent a critical challenge
in modern medical imaging, particularly in the context of limited dataset availabil-
ity. Data augmentation has emerged as a crucial strategy to address this challenge,
enabling the expansion of training datasets while maintaining anatomical validity.
Traditional augmentation techniques, such as geometric transformations or intensity
adjustments, while useful, may not capture the complex anatomical relationships
present in brain MRI data. This limitation has motivated the development of more
sophisticated approaches that can generate synthetic images while preserving biologi-
cal plausibility. Our research focuses on developing novel interpolation-based methods
for brain MRI data augmentation. We propose three distinct approaches to maintain
anatomical coherence while introducing beneficial variations that can enhance model
robustness. By operating in the latent space and incorporating spatial awareness,
our approaches aim to generate synthetic images that preserve the complex struc-
tural relationships present in brain anatomy. The primary contributions of this study
are:

e Development of three interpolation-based augmentation strategies specifically
designed for brain MRI data

e Introduction of a distance-based weighting scheme for multi-image interpolation
that preserves anatomical continuity

e Comprehensive evaluation of augmentation effectiveness through both qualita-
tive and quantitative metrics

e Validation of the proposed methods through detailed segmentation experiments
across multiple tissue classes

Our results demonstrate significant improvements in segmentation performance, par-
ticularly for gray and white matter tissues, suggesting that our approaches offer viable
solutions for enhancing brain MRI analysis pipelines. Having established the impor-
tance of data augmentation in brain MRI analysis, we now review relevant prior work
in the field.

2 State of the art

Recent advances in deep learning and computer vision have led to significant de-
velopments in medical image analysis. Two key areas particularly relevant to our



work are data augmentation techniques and interpolation methods. Data augmenta-
tion has proven crucial for improving model robustness and addressing data scarcity
in medical imaging, while novel interpolation approaches have enabled the generation
of anatomically plausible synthetic images. This section reviews significant contribu-
tions in both areas, providing context for our proposed methodology.

2.1 Data Augmentation

Mariani et al.(2018) propose BAGAN (Balancing Generative Adversarial Net-
work), a methodology to restore balance in imbalanced image classification datasets
by generating high-quality images for minority classes. The key novelty lies in cou-
pling a generative adversarial network (GAN) with an autoencoder initialization strat-
egy in Figure 1.

The autoencoder is first trained on the entire dataset to learn an encoding of the
input images in the latent space. Then it is transferred to initialize the generator and
discriminator of the GAN.

During adversarial training, the generator takes randomly sampled class-conditional
latent vectors and generates images trying to fool the discriminator into classifying
them as real examples of the respective class. A key aspect is the discriminator’s
output, which is a single probability distribution over all classes and the ”fake” label,
avoiding contradictory objectives present in previous methods. The experimental re-
sults demonstrate BAGAN’s superiority over state-of-the-art GANs in generating di-
verse, high-quality minority class images when trained on imbalanced datasets across
multiple metrics.
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(a) Autoencoder training. (b) GAN initialization. (¢) GAN training.

Figure 1: BAGAN (Balancing Generative Adversarial Network) methodology for ad-
dressing class imbalance in image datasets. (a) Autoencoder training on the entire
dataset. (b) GAN initialization using transferred autoencoder knowledge. (c¢) Adver-
sarial training of the GAN for generating minority class samples. [1]



2.2 Interpolation

GoodFellow et al.(2018) propose ACAI, a novel approach to improve interpolation
in autoencoders using adversarial regularization. The key innovation lies in explicitly
encouraging high-quality interpolations by introducing a critic network that attempts
to predict the interpolation coefficient @ used to generate interpolated points. The
autoencoder is then trained to fool this critic, effectively pushing it to generate inter-
polated points that are indistinguishable from real data reconstructions.
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Figure 2: ACAI (Adversarially Constrained Autoencoder Interpolation) approach for
improving interpolation in autoencoders. The method introduces a critic network
that predicts the interpolation coefficient «, encouraging the generation of realistic
interpolated points.|[2]

As it is represented in the Figure 2, in ACAI, the interpolation process works as
follows:

1. Two input data points z; and x5 are encoded to obtain their latent representa-
tions 21 = fy(x1) and zo = fy(x2).

2. An interpolated latent code is created using the coefficient a: z, = az; + (1 —
«)zg, where « € [0, 1].

3. The interpolated latent code z, is then decoded to produce an interpolated data
point T, = g4(2a).

The crucial aspect of ACAI is the introduction of a critic network that tries to
predict the value of a used to generate z,. The autoencoder is then trained to fool this
critic, effectively pushing it to generate interpolated points that are indistinguishable
from real data reconstructions.

The training process involves two main components:

1. Reconstruction loss: This ensures that the autoencoder can accurately re-
construct input data.



2. Adversarial loss: This encourages the autoencoder to produce high-quality
interpolations that fool the critic.

The autoencoder is trained to generate interpolated points that the critic perceives
as having o = 0, regardless of the actual o used. This adversarial game pushes the
autoencoder to create interpolations that lie on the data manifold and are indistin-
guishable from real data reconstructions.

The use of « in this context is crucial because it allows for a continuous spectrum
of interpolations between two data points. By varying « from 0 to 1, we can generate
a sequence of interpolated points that smoothly transition from one input to another.
The adversarial training ensures that these interpolated points remain realistic and
semantically meaningful throughout the range of o values. This approach encourages
the autoencoder to learn a latent space where linear interpolations reflect smooth
transitions in the data space, yielding realistic and coherent results.

3 Methodology

These advances in data augmentation and interpolation techniques provide the
theoretical foundation for our work. Building upon these concepts, we now present
our methodology for generating anatomically coherent synthetic brain MRI images
through novel interpolation-based approaches.

3.1 Dataset and Preprocessing

The dataset employed in this study consists of T2-weighted 3D brain MRI images
collected from 20 patients. For our primary interpolation experiments, we used 10
patients for the training phase and 10 different patients for testing. Each volumetric
MRI image was meticulously segmented into 144 axial slices, producing a comprehen-
sive collection of 2D images. To maintain the integrity of the analysis and prevent
potential interpolation artifacts, we implemented a pre-processing step to exclude
completely black images (images containing only zero-value pixels) that contained no
meaningful information. Additionally, to evaluate the segmentation performance of
our approach, we conducted experiments on a subset of the data consisting of 10 pa-
tients from our dataset. This subset was divided into 8 patients for training/validation
and 2 patients for testing. After the pre-processing step to remove black images (728
from the training and validation set and 196 from the testing set), we obtained 424
high-quality, informative 2D slices for training/validation and 92 slices for testing.



3.2 Interpolation method

Our methodology for generating synthetic brain MRI images builds upon estab-
lished principles in generative modeling while introducing novel approaches for main-
taining anatomical consistency. We present a comprehensive framework that progres-
sively extends from basic two-image interpolation to more sophisticated multi-image
techniques, each designed to address specific challenges in medical image synthesis.

3.2.1 Interpolation between two images

Building upon our research into generative models for data augmentation, we
developed an interpolation method for MRI brain images. This approach was heavily
inspired by the work of Goodfellow et al. (2018), which provided valuable insights
into the challenges and opportunities of interpolation in latent spaces.

Our interpolation strategy leverages CNN (Convolutional Neural Network) to cre-
ate a smooth continuum of synthetic samples between existing MRI brain images. The
key to this process is the manipulation of the latent space representations learned by
these models.

The interpolation process can be described as follows:

1. Encoding: Two input MRI brain images x; and x5 are encoded into their re-
spective latent space representations z; and 25 using the model.

2. Interpolation: We generate new latent vectors by interpolating between z; and
29 using the formula:

Zinterpolated = (21 + (1 — CY)ZQ
where « is a mixing coefficient ranging from 0 to 1.

3. Decoding: The interpolated latent vector Zipterpolated 15 then passed through
the decoder to generate a new, synthetic MRI brain image.

The parameter « plays a crucial role in this process. As « varies from 0 to 1, it
controls the balance between the features of the two original images in the generated
sample.

3.2.2 Interpolation between n images

To interpolate between n images, we can extend the binary interpolation formula
to a weighted sum of n latent vectors. Here’s the equation for interpolating between
n images:



n
Zinterpolated — Z Qi zg (1)
i=1
Where:
® Zinterpolated 15 the resulting interpolated latent vector
e 2; represents the latent vector of the i-th image
e «; is the weight coefficient for the i-th image
e 1 is the total number of images being interpolated

With the constraint:

n
a; >0 Vz’,Zai =1
i=1
This constraint ensures that the weights sum to 1 and are non-negative, main-
taining the interpolation property.
In this formulation:

e When a particular a; = 1 and all others are 0, the output will be equivalent to
the ¢ — th input image.

e By varying the «; values, we can create a mix of features from all n images in
different proportions.

e The space of possible interpolations becomes an (n — 1) — dimensional simplex,
allowing for more complex and diverse synthetic samples compared to the linear
interpolation between just two images.

3.2.3 Advantages of this Method

Our approach differs from naive pixel-space interpolation, which often results in
unrealistic or blurry outputs. By operating in the latent space, we leverage the se-
mantic understanding captured by our generative models to produce more meaningful
and realistic interpolations.

It’s important to note that this interpolation in latent space is not simply a linear
blending of pixel values. Instead, it aims to traverse the underlying manifold of brain
MRI data, creating realistic intermediate states that maintain the structural integrity
and characteristics of genuine brain images.



We experimented with various values of a to generate a diverse range of synthetic
samples. This allowed us to significantly augment our dataset with new, plausible
MRI brain images that exhibit a smooth transition between existing samples.

This interpolation-based data augmentation technique has shown promising re-
sults in expanding our MRI brain image dataset, potentially improving the robustness
and generalization capabilities of models trained on this augmented data.

3.3 Interpolation configurations

In this study, we explored several interpolation configurations to generate aug-
mented brain MRI images. These configurations aimed to address the challenges of
spatial distance, biological correctness, and latent space manipulation. The following
subsections describe each configuration in detail.

3.3.1 Random Interpolated images

In this configuration, we interpolated between two randomly selected images with-
out considering their spatial proximity. The generated image was obtained by a linear
combination of the two input images, with a randomly generated weight o assigned
to the first image and (1 - «) assigned to the second image. However, this approach
might generate biologically incorrect brain images when the selected images are spa-
tially distant (e.g., when interpolating between a slice from the middle of the brain
volume and one from the extremities).

To address this issue, we have interpolated spatially close slices and slices belong-
ing to the same patient. To do so, we have tested the data augmentation in several
configurations, which are described in the following subsections. These configurations
aim to ensure that the interpolated images are biologically plausible and maintain the
structural integrity of the brain anatomy.

3.3.2 Spatially-aware interpolation configurations

e Even and Odd index image interpolation

To ensure spatial proximity, we interpolated between images with even and odd
indexes separately. For even index interpolation, we generated new images by
interpolating between slices at positions 2 and 4, and compared the result with
the slice at position 3. Similarly, for odd index interpolation, we interpolated
between slices at positions 1 and 3, and compared the result with the slice
at position 2. This approach maintains the spatial continuity of the brain
structure.



e Latent space noise injection

We introduced random noise in the latent space during the interpolation process
to explore an additional data augmentation approach. The noise values were
sampled from a uniform distribution between -0.01 and 0.01. This configuration
was implemented as a complementary experiment to assess the impact of noise
injection on the model’s performance, rather than as an optimization of the
previous interpolation methods.

e Multi-image interpolation with distance-based weighting

We propose an approach for multi-image interpolation in the latent space that
incorporates distance-based weighting to generate more biologically plausible
brain images. Our method interpolates between n source images while giv-
ing higher importance to centrally located images through a carefully designed
weighting scheme.

The interpolated image is obtained through a weighted combination of latent
representations. The weighting coefficients are generated through a three-step
process that ensures higher weights for central images while maintaining con-
trolled randomness:

Initial weights are calculated based on the distance from the central point:

_ ., li—1[n/2]|
Wi=1- 2)

Where:

— W; represents the initial weight for the i-th image
— i is the index of the current image in the sequence (0-based)
— n is the total number of images being interpolated
— |n/2] represents the floor division, giving us the central position
— The denominator (n + 1) ensures weights are properly normalized
This weighting scheme ensures that images closer to the center of the sequence

receive higher initial weights, reflecting their greater relevance to the target
interpolation position.

Random modulation is applied:

R; = W; - rand(0, 1) (3)
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Normalization is performed to ensure the sum of coefficients equals 1:

2) (4)

— d i
a; = Troun (ZTLTR,
j=0 "%

In our specific implementation with n = 4 source images (at indices i — 2, i — 1,
i+1, and i+2), this weighting scheme naturally assigns higher importance to the
central images (i—1 and i+ 1) compared to the outer images (i—2 and :+2). The
interpolated image is then compared with the ground truth image at position .
The normalization step ensures that while the weights maintain their relative
proportions (favoring central images), their sum equals 1, effectively converting
them into percentage contributions. For example, if R; = {0.3,0.5,0.8,0.4},
the normalization would yield a; = {0.15,0.25,0.40,0.20}, meaning the central
images contribute 65% of the final interpolation while maintaining mathematical
validity.

Results

Our evaluation strategy aligns directly with our proposed methodological ap-

proaches, examining each interpolation configuration through both generated image
quality and segmentation performance. This dual analysis approach allows us to
assess both technical effectiveness and clinical utility of our methods.

Medical image analysis requires thorough validation through both quantitative

metrics and qualitative assessment. We begin by analyzing our three interpolation
configurations using visual inspection and Mean Squared Error (MSE) measurements,
followed by an evaluation of their impact on downstream segmentation tasks. This
comprehensive framework enables us to assess the practical value of our augmentation
strategies in medical image processing applications.

4.1 Interpolation Results

We evaluate three interpolation configurations designed for anatomical consis-

tency: sequential slice interpolation, latent space noise injection, and distance-weighted
multi-image interpolation. Our analysis employs Mean Squared Error (MSE) not to

measure exact reproduction, but rather as an indicator of anatomical plausibility,

where lower values suggest successful preservation of biological structures while al-

lowing beneficial variations.



4.1.1 Even and Odd index image interpolation

The even-indexed interpolation approach demonstrates the effectiveness of work-
ing with spatially adjacent slices.

Image 32, alpha = 0.79 Image 34, alpha = 0.21

Interpolated Image
(ConvAutoencoder)

Difference Image
MSE: 0.0015

Figure 3: Even-indexed interpolation results demonstrating the effectiveness of our
approach. Top row: source images (Image 32, a; = 0.79 and Image 34, ay = 0.21)
used as input for interpolation. Bottom row: (left) the resulting interpolated image
generated by our method, (middle) the target reference image (Image 33) for compar-
ison, and (right) the difference map highlighting structural differences with an MSE
of 0.0015. The minimal differences in the difference map, particularly in critical brain
regions, demonstrate the method’s ability to preserve anatomical structures while
generating plausible intermediate states.

As shown in Figure 3, the interpolation between Images 32 and 34 produces a syn-
thetic image that successfully captures the anatomical features of brain structures.
The interpolation weights (o = 0.79 and 0.21) were automatically determined to op-
timize the blend between the source images. The difference map reveals that most
variations are confined to the brain’s peripheral regions and ventricles, while maintain-
ing high fidelity in brain tissue areas. The achieved MSE of 0.0015 indicates strong
structural preservation in the generated image. This configuration particularly excels
at maintaining the continuity of brain structures across consecutive slices, which is
crucial for preserving biological plausibility in the generated images. The results sug-

10



gest that this approach effectively captures the gradual anatomical transitions that
occur between adjacent MRI slices.

4.1.2 Latent space noise injection

The introduction of controlled noise in the latent space increases the diversity of
the images generated. By injecting random noise values between -0.01 and 0.01, we
aimed to introduce subtle variations while preserving anatomical correctness.

Image 32, alpha = 0.26 Image 34, alpha = 0.74

Difference Image
SE: 0.0015

Figure 4: Interpolation results incorporating latent space noise. Top row: source
images (Image 32, a = 0.26 and Image 34, « = 0.74). Bottom row: interpolated
result, target image (Image 33), and difference map with MSE = 0.0015. The noise
injection introduces subtle variations while maintaining anatomical integrity.

As demonstrated in Figure 4, this approach successfully generates realistic brain
MRI images with an MSE of 0.0015. The difference map exhibits a pattern that
confirms the preservation of key anatomical structures, with variations primarily in
non-critical regions. This configuration’s ability to maintain image quality while
incorporating noise suggests its potential utility in generating diverse yet anatomically
correct synthetic images. The controlled noise injection could prove valuable for
improving model robustness in downstream applications.
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4.1.3 Multi-image interpolation with distance-based weighting

The multi-image interpolation approach introduces a method for generating syn-
thetic brain MRI images by leveraging information from multiple adjacent slices. This
configuration utilizes four source images with carefully calculated weights based on
their spatial distance from the target slice.

Image 31 Image 34
alpha = 0.100 alpha = 0.410

Difference Image
MSE: 0.0012

07
06
05
0.4
03
02
01

Figure 5: Multi-image interpolation results demonstrating our distance-based weight-
ing approach. Top row: Four source images (Images 31, 32, 34, and 35) with their
computed weights (« = 0.100, 0.310, 0.410, and 0.170) showing how the weighting
scheme favors central images. Bottom row: (left) the target reference image (Image
33), (middle) the synthesized interpolated image, and (right) the difference map with
MSE = 0.0012. The low MSE and minimal structural differences in the difference map
demonstrate the effectiveness of our multi-image approach in preserving anatomical
integrity while incorporating features from multiple slices.

As illustrated in Figure 5, the interpolation between images 31, 32, 34, and 35
produces high-quality results with an MSE of 0.0012. The weighting scheme (o =
0.100, 0.310, 0.410, and 0.170) reflects our distance-based strategy, allocating higher
importance to slices closer to the target position. The difference map reveals highly
consistent preservation of anatomical structures, with minimal deviations across all
brain regions. This approach demonstrates particular strength in maintaining the
subtle anatomical transitions that occur across multiple consecutive slices.

12



4.1.4 Quantitative Analysis

Each of these configurations demonstrates the capability to generate high-quality
synthetic brain MRI images while maintaining anatomical plausibility. The MSE
scores presented in Table 1 provide quantitative validation of each method’s effec-
tiveness in preserving structural integrity. It’s important to note that our primary
objective was not to exactly reproduce the target images, but rather to generate bi-
ologically plausible variations that could enrich our dataset. In this context, the low
MSE scores are particularly encouraging as they indicate that our generated images
maintain anatomical correctness while introducing subtle variations. These controlled
differences are actually beneficial for data augmentation purposes, as they help intro-
duce meaningful diversity into the dataset without compromising anatomical valid-
ity. These results suggest that our interpolation strategies offer viable approaches for
augmenting brain MRI datasets while maintaining the critical anatomical features
necessary for medical imaging applications, with the added benefit of introducing
controlled variability that can enhance model robustness in downstream tasks.

Metric Even/Odd index interpolation | Latent space noise injection | Multi-image interpolation
Mean Squared Error 0.0002 + 0.0043 0.0002 + 0.0045 0.0005 £ 0.0055

Table 1: MSE scores achieved by different interpolation configurations, showing mean
and standard deviation. Lower values indicate better structural preservation, while
the presence of standard deviation confirms the generation of diverse yet anatomically
plausible variations.

4.2 Segmentation experiments

To evaluate the effectiveness of our interpolation strategies for data augmenta-
tion, we conducted extensive segmentation experiments focusing on brain tissue clas-
sification. We first established a baseline by training a segmentation model on the
original dataset, which served as our control for performance comparison. The model
was designed to segment four distinct classes: background (Class 0), cerebrospinal
fluid (Class 1), gray matter (Class 2), and white matter (Class 3). Subsequently,
we augmented the training data using each of our interpolation configurations and
systematically evaluated their impact on segmentation performance across all tissue
classes.

4.2.1 Experimental Setup

The experimental framework was designed to rigorously assess the impact of dif-
ferent augmentation strategies on segmentation quality. As shown in Table 2, each
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interpolation configuration generated a different number of synthetic images, lead-
ing to varying dataset compositions. The even and odd index interpolation methods
each produced 360 new images, maintaining spatial consistency within their respec-
tive sequences. When combining both even and odd augmentations, this doubled to
720 images, providing a more comprehensive coverage of anatomical variations. The
multi-image interpolation approach, leveraging information from four adjacent slices,
generated 695 synthetic samples, offering a balance between dataset size and anatom-
ical coherence. These generated images were strategically combined with the original
dataset to create augmented training sets of varying sizes. To ensure proper eval-
uation, we maintained consistent train-validation splits throughout all experiments,
with approximately 80% of data allocated for training and 20% for validation. This
splitting strategy was carefully designed to preserve the distribution of anatomical
features across both sets.

Configuration Generated dataset size Augmented dataset size Train size Validation size
Even/Odd index interpolation 360 784 627 157
Even + Odd augmented dataset 720 1144 915 229
Latent space noise injection 360 784 627 157
Multi-image interpolation 695 1119 895 223

Table 2: Dataset sizes for different interpolation configurations

For rigorous evaluation, we implemented a comprehensive training protocol:

e Each configuration was tested with weight values ranging from 0.05 to 0.95 (step
size 0.05).

e Models were trained three times per configuration to ensure statistical reliability.

e Results were aggregated across runs to obtain robust performance metrics.

4.2.2 Segmentation Performance Analysis

Quantitative results

Our comprehensive analysis of segmentation performance revealed varying impacts
across different augmentation strategies and tissue classes. While some configurations
demonstrated notable improvements, others showed mixed results depending on the
weight configurations and tissue types involved. For clarity in visualization, we se-
lected representative weights (o« = 0.2, 0.15, 0.9, 0.5, 0.45, 0.55) that best illustrate
the range of performance across configurations. The most significant improvements
were observed in gray matter (Class 2) and white matter (Class 3) segmentation,
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though with different patterns of enhancement across configurations as you can see
in (Figure 6 and 7)

e Gray Matter (Class 2) Performance: The box plots for Class 2 segmenta-
tion (Figure 6) compare our different configurations against the baseline model
(shown in red). The even-indexed configuration shows moderate improvements
for some weight values, though not consistently across all configurations. In
the even-odd approach, performance is comparable to the baseline, with some
weights showing slight improvements and others showing similar performance.
The noise-injected configuration demonstrates the most varied performance,
with some weights achieving better results than the baseline but with increased
variance. The multi-image approach shows the most stable performance across
different weights, maintaining performance levels close to or slightly above the
baseline with consistent variance.

lasse2-Goweseotvew . compaisondes Dice Scores poura chass
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(a) Dice scores comparison for even- (b) Dice scores comparison for combined
indexed interpolation augmentation even and odd interpolation augmentation

(c) Dice scores comparison for noise- (d) Dice scores comparison for multi-
injected interpolation augmentation image interpolation augmentation

Figure 6: Comparative analysis of gray matter (Class 2) segmentation performance
across different augmentation strategies. Each plot compares the baseline model
against various weight configurations.
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e White Matter (Class 3) Performance: For Class 3 (Figure 7), we ob-
served improvements compared to the baseline model across several configu-
rations. The even-indexed and even-odd configurations showed improvements
over the baseline for some weight values. The noise-injected approach achieved
notable improvements, despite showing slightly higher variance in performance.
The multi-image approach demonstrated stable performance with moderate im-
provements over the baseline for certain weight configurations.

jassed GuupesegfVEN . Comparaisondes Dica Scores pouraclasse

(a) Dice scores comparison for even- (b) Dice scores comparison for combined
indexed interpolation augmentation even and odd interpolation augmentation

(c) Dice scores comparison for noise- (d) Dice scores comparison for multi-
injected interpolation augmentation image interpolation augmentation

Figure 7: Comparative analysis of white matter (Class 3) segmentation performance
across different augmentation strategies. Each plot compares the baseline model
against various weight configurations.

e Cross-Class Analysis: Examining the performance across all tissue classes
(Table 3), we observe that while gray and white matter showed improvements,
background and cerebrospinal fluid experienced minor performance decreases
(< 0.06%). The noise-injected configuration achieved the highest improvements
for both gray matter (+0.25% + 0.61%) and white matter (+0.41% + 0.71%).
The multi-image approach showed the most balanced performance across all
classes, with lower standard deviations indicating more stable improvements.
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Method Class

0: Background | 1: Cerebrospinal Fluid | 2: Gray Matter | 3: White Matter
segEVEN —0.03 = 0.09% —0.03 £ 0.25% 0.10 = 0.52% 0.24 + 0.22%
segEVENandODD | —0.04 + 0.10% —0.06 £ 0.16% 0.07 + 1.05% 0.28 + 0.79%
segEVENnoise —0.03 £ 0.07% —0.02 £ 0.26% 0.25 + 0.61% 0.41 + 0.71%
segMULTI —0.03 £ 0.03% —0.04 £ 0.15% 0.18 = 0.36% 0.24 + 0.28%

Table 3: Segmentation performance improvements (%) over baseline model (trained
without data augmentation) across different data augmentation configurations. Val-
ues represent relative changes in Dice coefficient scores, with positive values indicating
improvement. Standard deviations (+) reflect consistency across multiple test runs.

Qualitative results

While the quantitative metrics provide important numerical validation of our meth-
ods, the visual assessment of segmentation results offers crucial insights into the
anatomical coherence and clinical relevance of our approach. The following qualita-
tive analysis examines specific cases that illustrate both the strengths and limitations
of each augmentation strategy. To comprehensively evaluate the effectiveness of our
augmentation strategies, we performed a detailed qualitative analysis comparing the
baseline model’s performance with each augmentation configuration.

The baseline model demonstrated strong overall performance, achieving Dice
scores of 1.00, 0.97, 0.91, and 0.93 for background, cerebrospinal fluid, gray mat-
ter, and white matter classes, as you can see in Figure 8. This robust foundation
provided an excellent reference point for assessing the impact of our various augmen-
tation strategies.

ice Scores:
True Segmentation Predicted Segmentation (Base Model)

Original Image

Figure 8: Baseline segmentation comparison. Left: Original T2-weighted brain MRI
slice. Middle: Ground truth segmentation showing four distinct tissue classes (Class
0: Background, Class 1: CSF, Class 2: Gray Matter, Class 3: White Matter). Right:
Predicted segmentation by the base model, achieving Dice scores of 1.00, 0.97, 0.91,
and 0.93 for respective tissue classes.
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ic
Predicted Segmentation (segEVEN) Predicted Segmentation (segEVENandODD)

Figure 9: Even-indexed interpolation Figure 10: Combined even-odd inter-
results (segEVEN). polation results (segEVENandODD).

ic
Predicted Segmentation (segEVENnoise) Predicted Segmentation (segMULTI)

Figure 11: Noise-injected interpola- Figure 12: Multi-image interpolation
tion results (segEVENnoise). results (segMULTT).

Figure 13: Comparative analysis of segmentation results across different augmenta-
tion strategies. (a) Augmented segmentation predictions showing tissue class differ-
entiation (Class 0: Background, Class 1: CSF, Class 2: Gray Matter, Class 3: White
Matter). (b) Performance metrics: Dice scores for each configuration displayed in
top left corners show quantitative improvements over baseline model (baseline scores:
1.00, 0.97, 0.91, 0.93 for respective tissue classes).

Each augmentation configuration exhibited distinct characteristics in improving
upon the baseline performance (Figure 8). The even-indexed configuration (Figure 9)
demonstrated enhanced segmentation of gray-white matter boundaries, with differ-
ence maps (Figure 15) revealing a reduction in false positive predictions within gray
matter regions. This improvement aligned with our quantitative findings of +0.10%
and +0.24% increases in gray and white matter segmentation accuracy, respectively.

The combined even-odd configuration showed particular strength in boundary con-
sistency (Figure 10) , especially notable in the cerebrospinal fluid regions where noise
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reduction was evident. This configuration achieved modest but meaningful improve-
ments of +0.07% in gray matter and +0.28% in white matter segmentation, with the
difference maps (Figure 16) highlighting more precise tissue interface definitions.

Perhaps most notably, the noise-injected configuration (Figure 11) exhibited the
most substantial improvements over the baseline model, with difference maps (Figure
17) revealing superior handling of partial volume effects. This configuration’s success
in achieving +0.25% and +0.41% improvements in gray and white matter segmenta-
tion, respectively, suggests that controlled noise injection enhances the model’s ability
to handle tissue boundary ambiguities.

The multi-image configuration (Figure 12) demonstrated the most balanced per-
formance improvement across all tissue classes. Its difference maps (Figure 18) showed
consistent enhancement patterns with notably lower variance compared to other con-
figurations, achieving improvements of +0.18% in gray matter and +0.24% in white
matter segmentation. This stability across tissue classes suggests that incorporat-
ing information from multiple adjacent slices provides a more robust foundation for
segmentation.

These qualitative observations, particularly visible in the difference maps (Figure
15 to 18), complement our quantitative findings and provide insight into how each
augmentation strategy influences the segmentation process. The visual analysis re-
veals that while the baseline model provides strong foundational performance, each
augmentation strategy offers unique advantages in handling specific aspects of the
segmentation task, from boundary definition to tissue class differentiation.

Particularly noteworthy is the consistent pattern of improvement in gray and white
matter segmentation across all configurations, despite the baseline model’s already
strong performance in background and cerebrospinal fluid classes. This pattern sug-
gests that our augmentation strategies specifically enhance the model’s capability to
handle more challenging tissue classifications while maintaining high performance in
simpler class distinctions.

5 Conclusion

This study presents a comprehensive investigation of interpolation-based data aug-
mentation strategies for brain MRI analysis. Our research demonstrates that carefully
designed interpolation methods can effectively generate anatomically plausible syn-
thetic images while improving downstream task performance. The three proposed
configurations—even-odd index interpolation, latent space noise injection, and multi-
image interpolation with distance-based weighting—each offer unique advantages in
preserving anatomical structures while introducing beneficial variations. The quan-
titative results show significant improvements in segmentation performance, partic-
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ularly for challenging tissue classes. These improvements, while modest in absolute
terms, are meaningful given the already strong baseline performance and the critical
nature of medical image analysis. The low MSE scores (< 0.0005%) across all config-
urations confirm the ability of our methods to maintain anatomical plausibility while
introducing controlled variations. Qualitative analysis reveals that our augmentation
strategies successfully preserve critical anatomical features while enhancing boundary
definition and tissue class differentiation. The multi-image interpolation approach,
in particular, demonstrates remarkable stability across all tissue classes, suggesting
that incorporating information from multiple adjacent slices provides a more robust
foundation for synthetic image generation.

6 Future Work

This work suggests several important directions for future research in brain MRI
data augmentation and analysis. First, we propose a deeper investigation into the
statistical properties of pixel distributions across different tissue classes. This analysis
would help explain the varying performance improvements observed across different
tissue types and could lead to more targeted augmentation strategies.

Furthermore, we recognize the importance of validating our methods across diverse
datasets. While our current results are promising, testing these augmentation tech-
niques on different MRI protocols, field strengths, and pathological conditions would
establish their broader applicability. This cross-validation could include datasets from
different institutions, scanner manufacturers, and patient populations, helping to as-
sess the robustness and generalizability of our approach.

Further technical developments could focus on integrating anatomical prior knowl-
edge into the interpolation weights calculation, which may improve biological fidelity
of the generated images. The relationship between interpolation parameters and spe-
cific clinical applications also warrants investigation, particularly in the context of
different pathological conditions. Our noise injection experiments could be expanded
to examine a broader range of noise levels and distributions, potentially revealing
optimal noise parameters for different tissue types and imaging conditions. Addition-
ally, extending our methods to true 3D volumetric interpolation could better capture
the spatial continuity of anatomical structures.

These future investigations would advance not only the technical capabilities of
medical image augmentation but also their practical application in clinical settings
like medical image compression. Such developments could ultimately lead to more
robust diagnostic tools and improved patient care through enhanced medical image
analysis.
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7 Appendix

Predicted Segmentation

Class 0 Difference

Dice: 1.00
Class 2 Difference

Dice: 0.91

Class 3

Class 1

Class 0

Ground Truth

Class 3

Class 1

Class 0

Dice: 0.97
Class 3 Difference

Dice: 0.93

Figure 14: Baseline model segmentation performance analysis. Top row: Comparison
between predicted segmentation (left) and ground truth (right) with class labels (0:
Background, 1: CSF, 2: Gray Matter, 3: White Matter). Bottom rows: Class-
wise difference maps showing True Positives (TP), False Positives (FP), and False
Negatives (FN) for each tissue class, with corresponding Dice scores.
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Predicted Segmentation Ground Truth
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Class 0 Difference Class 1 Difference
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Class 2 Difference
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Dice: 0.95

Figure 15: Even-indexed interpolation augmentation results showing segmentation
predictions and class-wise difference maps. Top row: Comparison between predicted
segmentation (left) and ground truth (right) with class labels (0: Background, 1:
CSF, 2: Gray Matter, 3: White Matter). Enhanced boundary delineation is evident
in gray-white matter interfaces, with reduced false positives in gray matter regions.
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Predicted Segmentation
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Figure 16: Combined even-odd interpolation augmentation results demonstrating im-
proved boundary consistency and reduced noise in CSF regions. Top row: Comparison
between predicted segmentation (left) and ground truth (right) with class labels (0:
Background, 1: CSF, 2: Gray Matter, 3: White Matter)
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Predicted Segmentation
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Figure 17: Noise-injected interpolation augmentation results highlighting superior
handling of partial volume effects and improved tissue boundary detection. Top row:
Comparison between predicted segmentation (left) and ground truth (right) with class
labels (0: Background, 1: CSF, 2: Gray Matter, 3: White Matter)
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Predicted Segmentation Ground Truth
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Figure 18: Multi-image interpolation augmentation results showing balanced per-
formance improvements across all tissue classes. The difference maps demonstrate
consistent enhancement patterns with notably lower variance compared to other con-
figurations.. Top row: Comparison between predicted segmentation (left) and ground
truth (right) with class labels (0: Background, 1: CSF, 2: Gray Matter, 3: White
Matter)
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