Bounded model checking and passive learning of
LTL formulas

THOMAS XU
(supervisor: ADRIEN POMMELLET)

Technical Report n°output, January 2025
revision

Linear Temporal Logic (LTL) is a formalism widely used for specifying and verifying properties of reac-
tive systems over time. Unlike CTL (Computation Tree Logic), which allows branching structures, LTL
follows a linear-time perspective, making it suitable for reasoning about sequences of system states. A
Kripke structure serves as a foundational model for both CTL and LTL, representing systems as states and
transitions labeled with atomic propositions. Bounded Model Checking (BMC) has emerged as an efficient
technique to verify LTL properties by searching for a counterexample with bounded length, while passive
learning techniques aim to infer LTL formulas from observed system behaviors. In practical, we will have
two samples of Kripke structures P and N, such that we want to find an LTL formula f that it is verified
by elements of P and contradicted by elements of N. Once f is found, BMC will be used to verify the cor-
rectmess of f. Our objective is to extend an existing tool—currently supporting CTL for LTL verification
and compare the performance of finding a formula using both logics. This comparison will help determine
whether LTL or CTL is faster and more effective in specific verification tasks, providing insights into their
practical efficiency.

La logique temporelle linéaire (LTL) est un formalisme répandu pour la spécification et la vérification
de propriétés des systemes réactifs dans le temps. Contrairement a CTL (Computation Tree Logic) qui
autorise les structures branchantes, LTL suit une perspective temporelle linéaire ce qui la rend adaptée au
raisonnement sur les séquences d’états d’un systeme. Une structure de Kripke sert de modele fondamental
pour la CTL et la LTL, représentant les systémes sous forme d’états et de transitions étiquetés avec des
propositions atomiques. Le Model Checking Borné (BMC) a émergé comme une technique efficace pour
vérifier les propriétés LTL en recherchant un contre-exemple de longueur bornée, tandis que les techniques
d’apprentissage passif visent a inférer des formules LTL a partir des comportements observés du systeme.
En pratique, on va avoir deux échantillons de structure de Kripke P et N, le but étant de trouver une
formule LTL f telle que, f est vérifiée par chaque élément de P et rejetée par chaque structure de N. Une
fois f trouvée, le BMC va nous permettre de vérifier que f est une formule valide pour nos systemes.
Notre objectif est d’étendre un outil existant — qui prend actuellement en charge la CTL - pour y inclure
la vérification LTL, et de comparer les performances de recherche d’'une formule en utilisant les deux
logiques. Cette comparaison permettra de déterminer si la LTL ou la CTL est plus rapide et efficace dans
des taches de vérification spécifiques, offrant ainsi des perspectives sur leur efficacité pratique.

Keywords
Automata, Kripke structure, LTL, Bounded model checking,

LRE

LABORATOIRE DE RECHERCHE DE L'EPITA

Laboratoire de Recherche de I’'EPITA
14-16, rue Voltaire — FR-94276 Le Kremlin-Bicétre CEDEX — France
Tél. +33 153 14 59 22 — Fax. +33153 1459 13
thomas.xu@lre.epita.fr —http://www.lre.epita.fr/

thomas.xu@lre.epita.fr
http://www.lre.epita.fr/

Chapter 1

Introduction

Many real-world systems we use every day can be seen as reactive systems that interact with
their environment. For reactive systems, the correctness depends on the executions of the sys-
tem across time not only the inputs and outputs. Temporal logic provides mathematically pre-
cise notations to express those properties while being intuitive because of its proximity with
natural language. Linear Temporal Logic (LTL) is a very good formalism for reasoning about the
temporal behavior of systems. It provides a robust framework for specifying properties such
as safety, liveness, and fairness, making it a cornerstone of formal verification in fields ranging
from software engineering to hardware design. LTL’s expressiveness and intuitive syntax en-
able practitioners to articulate temporal properties that capture the essence of desired system
behaviors, such as "a request is eventually followed by a response.”

In many real-world scenarios, the properties that describe system behavior are not readily
available. Instead, one may only have access to execution traces examples of system runs that
demonstrate desired or undesired behavior. Passive learning is a set of methods that computes
a theorical model of a system from a given set of data, without any furthur queries. By an-
alyzing these examples, passive learning seeks an LTL formula that captures the essence of
the observed behavior while distinguishing between acceptable and unacceptable executions.
This approach provides critical insights into system functionality and facilitates understanding
without requiring an explicit specification.

Once such a formula is computed, we have to check whether it is correct in our context, and
that can be done with model checking. Standardly in model checking, the studied system will
be modeled as a finite state machine and the states will be traversed to check the properties. If
the system does not verify the property, then a counterexample will be given to us. Its biggest
issue is the fact that it does not scale well with the size of a system since it needs a lot of memory.
Here is where Bounded model checking (BMC)[5] comes handy. BMC explores the state space of
a system within a specified bound k and while it does not completely solve the memory issue
of the standard model checking, it does solve some cases that cannot be solved with standart
model checking. We will see later how to can translate a BMC problem to a propositionnal
satisfiability problem that can leverage modern SAT solvers that are able to handle a lot of
variables without suffuring from the space explosion problem.

Ultimately, our goal is to check whether it is faster to learn a LTL or a CTL formula in a passive
scenario knowing that both are NP-hard[4][2]. We have a C++ library that does it for CTL, the
original objective of this work was to implement the passive learning of LTL formulas in this
library and the bounded model checking to ensure that the computed formula is verified by the
systems that had to verify it and violated by the others.

Chapter 2

Preliminary Definitions

2.1 Kripke structures[1]

2.1.1 Definition

A Kripke structure is a mathematical model commonly used to represent systems in formal
verification, particularly in model checking. It provides a framework to describe the behavior
of a system in terms of states and transitions. Formally, a Kripke structure is defined as:

A Kripke structure K is a tuple M = (Q, I, AP, T, L), where:

* (Q: A finite set of states.

e | C @: A set of initial states.

o AP: A finite set of atomic propositions.

e T C @ x @Q: A transition relation between states, representing the system’s behavior.
o L:Q — 247 A labelling function.

Kripke structures are the backbone of many formal verification techniques, as they allow
systematic exploration of all possible system behaviors. To define the sequencial behavior of a
Kripke structure M, we use paths. A path = in M is a sequence m = (s, ..., s,) of states, given
an order that respects the transition relation T of M. That is, T'(s;, s;+1) forall 0 < i < |7| — 1.

If 59 is an initial state (written I(so)) then we say that the path is initialized.

2.1.2 Example: Traffic Light Model

Consider the modeling of a traffic light system as a Kripke structure. The traffic light can be in
one of three states: green, yellow, or red. We can say that G = 100, Y = 010 and R = 001, where
each bit would correspond to a certain light color to simplify notations. Each state transitions
to the next in a cyclic order, as shown below.

The Kripke structure representing the traffic light system is defined as:

* Q = {G,Y, R}: The states, corresponding to green, yellow, and red lights.
¢ I = {G}: The initial state, where the light starts as green.

"non

e AP = {"green", "yellow", "red"}: The atomic propositions indicating the light’s color.

5 Preliminary Definitions

e T={(G,Y),(Y,R),(R,G)}: The transition relation between states.

The state diagram for this Kripke structure is illustrated below:

Figure 2.1: Kripke structure modelization of traffic lights.

2.1.3 Kripke Structures in Model Checking

In model checking, systems are modeled as Kripke structures to allow formal reasoning about
their behaviors. Properties of interest, such as safety or liveness, are specified using temporal
logics like Linear Temporal Logic (LTL). The model checker systematically explores the states
and transitions in the Kripke structure to verify whether the specified properties hold.

2.2 LTL[1]

For reactive systems, the correctness depends on the executions of the system across time not
only the inputs and outputs. To capture those properties we will use temporal logic that pro-
vides mathematically precise notations to express those properties while being intuitive because
of its proximity with natural language. The underlying nature of time in temporal logics can
be either linear or branching. The term "temporal" refers to the order of events (i.e "Receive a
response after sending a request") and not the precise time of events (i.e "Receive a response 5
seconds after sending a request"). In terms of transition systems, neither the duration of taking
a transition nor state residence times can be specified using the elementary modalities of tem-
poral logics. Instead, these modalities do allow for specifying the order in which state labels
occur during an execution, or to assess that certain state labels occur infinitely often in a (or all)
system execution. One might thus say that the modalities in temporal logic are time-abstract.

In the linear view, at each moment in time there is a single successor moment, whereas in
the branching view it has a branching, tree-like structure, where time may split into alternative
courses. In our case, we will consider LTL (Linear Temporal Logic), a temporal logic that is
based on a linear-time perspective.

2.2.1 Definition

LTL is an extension of propositional logic, so it inherits boolean variables, operators (A V =) to
which we add some temporal operators (X,EG,U). If all initialized paths of a Kripke structure
satisfy a property, we say that the property holds for the Kripke structure.

X is the next operator, the formula Xp specifies that the property holds at the next step.

For example, Xp holds on figure a[2.2a] but not on b[2.2b].

The next class of temporal operators that we discuss, allows specifying repeated unbounded
behavior along an infinite path.

2.2 LTLI[1] 6

————>0— 0> ————>0— >0
p p\f/) p ﬂp\f/p

(a) Figure a (b) Figure b

The Globally operator G is generally used for safety properties (verify that something is always
true or false). A formula Gp holds along a path if p holds in all states of the path.

For example the formula Gp is hold for the system a[2.2a] while it is violated by the system
b[2.2b] at its second state.

The Finally operator F is generally used for liveness properties (verify that something hap-
pens at a point of time). The formula Fp holds along a path if p holds somewhere on the path.
Equivalently, it fails to hold if p stays unsatisfied along the whole path.

For instance F—p is hold on figure b[2.2b] but not figure a[2.2a] since it does not contain a state
that holds —p.

The Until operator requires two LTL formulas p and q, pUq holds on a path if there is a point
in the future where q holds and p holds at all moments until that point.
For instance pU—p holds for b and not for a.

We can also combine them to obtain new temporal modalities. For instance FGp ("eventually
forever") describes the property that from a moment i on, p will hold for every successor states,
GFp ("infinitely often") means that at each moment i, there exist j such that ¢ < j at which p is
hold. For instance, in the case of traffic lights[2.1], some properties that it must verify are:

-GF 100: At all point, there will be a future moment where the light turns green.

-—FG 100: There is no point during the execution from when, the light will remain green in-
finitely.

From there, we can construct formulas using those operators as well as boolean connectors to
design more complex specifications for our systems.

2.2.2 Semantics

The formal semantics of temporal formulas is defined with respect to paths of a Kripke struc-
ture. Let 7 be an infinite path of a Kripke structure M and let f be a temporal formula. We
define recursively when f holds on 7, written 7 |= f, as follows:

TEp <= p¢€ L(n(0))

TEAf = Tl f
TEfANg <= mEfand7 g

TEXf = mEf

TEGf < m | fforalli >0

7 Ff < m | fforsomei >0
mlEfUg < mEgforsomei>0and 7, |= fforall0 <j <
Tl fRg < m=gifforallj <i,m; = f

The semantics of the other Boolean operators such as disjunction and implication can be in-
ferred from the above definitions. As mentioned above, we say that a temporal formula f holds

7 Preliminary Definitions

for a Kripke structure M, written M = f, if and only if = |= f for all initialized paths 7 of M.
Finally, we say that two temporal formulas f and g are equivalent, written f = g, if and only
if M |= f <+ M = g for all Kripke structures M. With this notion, the semantics imply that:

ﬁFﬁp = Gp.

Thus, F' and G are dual operators.

Chapter 3

Model checking

During the design process of complex software and hardware systems, verification often con-
sumes more resources than construction. Efforts are continuously being made to reduce the
burden of verification while improving its effectiveness and coverage. Formal methods have
emerged as a powerful solution, enabling early integration of verification into the design pro-
cess, enhancing verification techniques, and significantly reducing the time required. Simply
put, formal methods are "the applied mathematics of modeling and analyzing ICT systems."
Their goal is to ensure system correctness through mathematical precision. Over the past two
decades, advances in formal methods have led to the creation of effective verification techniques
that enable the early detection of defects. These techniques are supported by sophisticated soft-
ware tools that automate many verification steps, making the process more efficient and reliable.
Model-based verification is a part of formal methods, it creates accurate models that mathemat-
ically describe all possible behaviors of a system. Interestingly, the process of building these
models often uncovers flaws such as missing details, ambiguities, and inconsistencies in in-
formal specifications. The verification technique we will study is the model checking. Model
checking is a verification technique that explores all possible system states in a brute-force man-
ner so that it can show if a property if verified by a certain system. It is usually used to verify
two types of properties, safety property declares what should happen (or what should never
happen) and liveness property specifies what should eventually happen. A counterexample to
a safety property would be a trace of states where the last state violates the property and for the
liveness property, it would be a path to a loop that does not contain the desired state.

3.1 Standard model checking

3.1.1 Model checking process
To apply model checking to a design, there are three different phases:

* Modeling phase: models the system under consideration using a Kripke structure and
formalize the property to be checked using LTL. The model should describe the desired
behavior in an accurate and unambiguous way, states containing current values of vari-
ables and transitions describe how the system evolves from a state to another.

¢ Running phase: runs the model checker to assess the validity of the property for the sys-
tem.

9 Model checking

* Analysis phase: If the property is violated then generate a counterexample by simulation,
then refine the model and repeat the process. If the model is too big to handle then mul-
tiple methods are available that try to abstract the system while preserving the validity of
the property. Else the models verifies the property and it ends here.

3.1.2 Example

Let us consider the traffic light to which we will add a new state O (with valuation 0001) such
that the models goes there if it is out of order.

Figure 3.1: New traffic light.

Let M be the Kripke structure modeling the behavior described above. The following prop-
erties are properties we want it to satisfy and we can compute the result using model checking.
The standard technique for model checking LTL is to compute the product of the Kripke struc-
ture with an automaton that represents the negation of the property (this automaton captures
exactly the execution sequences that violate the LTL formula). Emptiness of the product au-
tomaton is an evidence of the correctness of the property.

Liveness properties:

e M = GFgreen..
e M = GFyellow.
* M = GFred.

This shows that our system is indeed capable at each point of time, to display any colors of a
traffic light.
Safety properties:

* M = —-Ggreen.
o M = —-Gyellow.
* M = —Gred.

* M f= G-orange.

Our system is not stuck infinitely on any colors but it can go to the undesired state O violating
G-orange.

3.1 Standard model checking 10

3.1.3 Pros and cons

Strengths of Model Checking

Versatile application: Model checking is applicable to various domains, including em-
bedded systems, software engineering, and hardware design.

Partial verification: Properties can be checked individually, allowing developers to focus
on critical requirements without needing a complete specification.

Error robustness: Unlike testing and simulation, model checking does not rely on the
likelihood of error exposure and systematically analyzes the system.

Debugging aid: Diagnostic feedback is provided when a property is invalidated, making
it valuable for debugging purposes.

Ease of use: As a potential "push-button" technology, model checking requires minimal
user interaction and expertise, making it accessible to a broader audience.

Industrial adoption: Increasing interest from industries has led to in-house verification
labs, growing job opportunities, and the availability of commercial tools.

Seamless integration: It can be incorporated into existing development cycles, with a
manageable learning curve and potential for shorter development times.

Mathematical foundation: The method is grounded in robust theoretical principles, in-
cluding graph algorithms, data structures, and logic.

Weaknesses of Model Checking

Limited to control-intensive applications: Model checking is less suited for data-intensive
applications, where data often spans infinite domains.

Decidability constraints: For infinite-state systems or abstract data types requiring unde-
cidable or semi-decidable logics, model checking may not be feasible.

Model dependency: Verification applies to the system model, not the actual product or
prototype. Complementary techniques, like testing, are needed to address fabrication
faults or coding errors.

Incomplete property coverage: Only explicitly stated requirements are verified, leaving
unchecked properties unvalidated.

State-space explosion: Accurately modeling large systems can result in state spaces ex-
ceeding available memory, even with advanced reduction techniques.

Abstraction expertise required: Developing smaller, manageable models and formulat-
ing properties in logical formalism often demand significant expertise.

Potential tool errors: Like any software, model checkers can contain bugs, though ad-
vanced procedures have been formally verified using theorem provers.

1 Model checking

3.2 Bounded model checking[5]

As we mentioned before, this method does not solve the explosion of the state space but still
manages to solve cases that standard model checking cannot. The original motivation behind
this method was to leverage the success of SAT in solving boolean formulas to model checking.
For the past decades, there has been a tremendous increase of SAT solvers’ power making them
able to work with hundreds of thousands of variables and millions of clauses.

That being said, the general idea is to find a counterexample of size bounded by k, do to so,
we will consider finite prefixes of paths that may be a witness to an existential model checking
problem.

And since LTL formulas are defined over all paths, finding a counterexample is equivalent
to finding a trace that contradicts them. Such trace is called a witness for the property. For
example, let M be our traffic light with the orange state, finding a counterexample to G=Orange
is equivalent to answering whether there is a trace that is a witness for FOrange.

In the original paper[5], the authors use path quantifiers E and A to denote whether the formula
is expected to be correct on all paths or only some paths. For a kripke structure M and a LTL
formula f, M = Ef means that there exists an initialized path that verifies the property and
M = Af means that M verifies f for each initialized path. In our case, since the objective is to
find a counterexample, we will only use E. We will assume that the formula is given in negation
normal form (NNF), in which negations are only allowed just before atomic propositions and
every LTL formula can be put in this form using the duality of LTL operators and De-Morgans’s
laws.

Paths

As we are operating on prefixes of paths, it is crucial to observe that even though the prefix is
finite, it can represents an infinite path if there is a back loop from the a state to the prefix of any
previous states as shown in 3.2b. If we can’t find such back loop 3.2a, then the prefix does not
tell us anything about the infinite behavior of the path after the state s;.

For example, if a prefix does not contain a back loop then it cannot be a witness for Gp, even if
p holds along all states from s, to sj, p might not hold for state s;11 so we cannot conclude that
we have found a witness.

~— >0 >0
s S; Sk
o>
Sq Sk

(a) No loop (b) (k,1)-loop

Figure 3.2: Examples of bounded paths: no loop and (k,1) loop

Definition 1 ((k,1)-loop) For I < k, we call a path 7 a (k,1)-loop if T(n(k),n(l)) and 7 = w - v*,
where u = (w(0),...,7(l=1))and v = (w(l),...,w(k)). We call w a k-loop if there exist k > [> 0 for
which m is a (k,1)-loop.

We introduce the concept of k-loops to define the bounded semantics of model checking,
which refers to the semantics of model checking constrained to bounded traces. This bounded
semantics serves as an approximation of the unbounded semantics, enabling us to define the
bounded model checking problem. In the following section, we present a method to translate a
bounded model checking problem into a satisfiability problem.

3.2 Bounded model checking][5] 12

Bounded semantics

Under the bounded semantics, only a finite prefix of a path is considered. Specifically, the first
k + 1 states (so, ..., si) of a path are used to evaluate the validity of a formula along that path.
For paths that are k-loops, the original LTL semantics are preserved, as the finite prefix of length
k contains all the necessary information about the infinite path.

Definition 2 (Bounded semantics for loops) Let k > 0 and « a k-loop, a LTL formula f is valid
along the path m with bound k (written © =y, f) iff 7 = f.

Now, let us consider the case where 7 is not a k-loop. In the unbounded semantics, the
formula f=Fp is valid along if there exists an index ¢ > 0 such that p holds on the suffix m; of
7. However, in the bounded semantics, the (k + 1)-th state (k) does not have a successor. As
a result, unlike the unbounded case, the bounded semantics cannot be defined recursively over
the suffixes 7; of 7.

To address this, we introduce the notation m |:§g f, where i denotes the current position in the
prefix of 7. This notation means that the suffix m; of = satisfies f, i.e., 7 |:}€ f implies m; |= f.

Definition 3 (Bounded semantics for loops) Let k& > 0 and = is not a k-loop, a LTL formula f is
valid along the path m with bound k (written 7 =, f) iff 7 =) f where
Tk p = p € Lx(i),
T = p ¢ L(n()),
TR fAg = T fand T =) g,
T Vg = T formis g,
m =, Gf is always false
T L Ff <= 3j, i <j < ksuch that = =, f,
TELXf = i<kandn =i f,
s fUg < 34, i <j < ksuch that 7)ziganan, i<n<yj wELf,
TELfRg < 3j,i<j<ksuchthatm =), fand¥n, i <n < j, 7 =} g.
Note that if 7 is not a k-loop, then G f is not valid along 7 in the bounded semantics with bound

k, since f might not hold along 7. These constraints imply that, in the bounded semantics,
the duality between G and F (i.e., -F f = G—f) no longer holds.

Next, we describe how the existential model checking problem (M ;, Ef) can be reduced to
a bounded existential model checking problem (M =, Ef). The foundation for this reduction
is provided by the following two lemmas.

Lemma 1 Let f be an LTL formula and a path. Then:

Ty f = 1 f
Lemma 2 Let f be an LTL formula and M a Kripke structure. If M |= Ef, then there exists k > 0 such
that:
M = Ef

Based on Lemmas 1 and 2, we can now state the main theorem of this section. Informally,
Theorem 1 establishes that if we select a sufficiently large bound, the bounded and unbounded
semantics become equivalent.

13 Model checking

Theorem 1 Let f be an LTL formula and M a Kripke structure. Then:

M E=Ef <= 3k > 0suchthat M = Ef.

3.2.1 Reducing bounded model checking to SAT

After defining the semantics for bounded model checking, we will show how to reduce BMC to
a problem of propositional satisfiability which allows us to use efficient SAT solvers to perform
model checking.

Given a Kripke structure M, an LTL formula f, and a bound k, we construct a propositional
formula [M, f]i. Let so, s1, ..., s, be a finite sequence of states on a path 7. Each s; represents
a state at time step i, consisting of an assignment of truth values to the set of state variables.

The formula [M, f];. encodes constraints on sg, s1, .. ., s such that [M, f] is satisfiable iff 7
serves as a witness for f. It has three components:

¢ The propositional formula [M]; that constrains s, ..., sy to be a valid initialized path.

¢ The loop condition which is a propositional formula that is evaluated to true if 7 contains
a loop.

* The propositional formula that constrains = to satisfy f.

Definition 4 (Unfolding of the transition relation) For a Kripke structure M and k > 0,

k—1
HM]]k = I(So) A /\ T(Si, Si+1).
=0

Let us consider the example in 3.1 where each state s of the system M is represented by four
bits variables (s[0], s[1], s[2] and s[3]) where the first bit corresponds to traffic light displaying
green and the other bits respectively yellow, red and orange. Let us consider the case where k
= 2, these are the results of unrolling the transition relation:

The initial state is represented by:

I(s) := s[0] A =s[1] A =8[2] A —s[3].We will write this s[1] to make it more readable.
The transition relation is represented by:
T(s,s') = (s[0] A s/[1]) V (s[1] A '[2]) V (s[2] A '[0]) V (s[0] A '[3]) V (s[3] A s'[0])
And ultimately:
[M]2 := I(so) AT (s0,51) NT(s1,52).
The shape of the path 7 will have an influence on the translation of a LTL formula, so we

define a propositional formula ; L, to be true iff there is a transition from state sy, to s;.

Definition 5 (Loop condition) The loop condition ; Ly, is true iff there exists a back loop from the state
k
sy to a previous state or itself: Ly, := \/ |Lj.
1=0

3.2 Bounded model checking][5] 14

Depending on whether a path is a k-loop, we have two distinct translations of a temporal
formula f. First, we consider the case where the path 7 is a k-loop. For such a path =, we
provide a recursive translation of the LTL formula f. This translation processes the formula by
recursively evaluating its subterms and states within 7. The intermediate formula ,;[.]i depends
on three parameters: 1 for the start position of the loop, k for the bound, and i for the current
position in 7.

Definition 6 (Successor in a Loop) Let ki such that l,i < k, we define the successor succ(i) of i in
a (k,1)-loop as succ(i) == i+ 1ifi < k and succ(i) —lzfz =k

Definition 7 (Translation of a LTL formula for a loop) Let f, g be two LTL formulas, k,l,i > 0
withi,l < k.
[Pl = p(si)
1=l = —p(si)
L A gl = LD A Lol

FV gl =0 LFD5 Va lgli
X PTG = LT
G = L A TG
JFSL = DL v [EfT®?

U9l = [oli v QLG A [FUgl ™)

In this definition, a new propositional variable is introduced for each intermediate formula
1[1]%, where h is a subterm of the LTL formula f and i ranges from 0 to k. The number of vari-
ables is O(| f| x k) and the size of the propositional formula ,;[f]{ is also O(|f| x k).

In cases where the path 7 is not a k-loop, the translation can be handled as a special case of
the k-loop translation. For Kripke structures with total transition relations, every finite path 7
can be extended into an infinite path. Given that the properties beyond state s;, are unknown, a
conservative approximation is made, assuming all properties after s are false.

Definition 8 (Translation of a LTL formula without a loop) Inductive case: Vi < k :

[Pl == p(si)
i[=pli = —w(si)
L A gl =0 LT3 A Ll
Lf Vgl =0 LD va Lol
XA = T
UGFT =0 [Tk A IGAT
IFST =0 LD Vi [EAT
LUl = Lol v GLATE A [Ugli™)

Base case:
[f1FH = false

15 Model checking

We can combine all three components to encode the BMC problem in propositional logic as
follows.

Definition 9 (General translation) Let f be a LTL formula, M a Kripke structure and k > 0

k

[M, fle = [MTk A (e A L)V \ GLk A LFDR))

=0

In the disjunction, the left side is the case where there is no loop back and uses the translation without
loop. The right side represents all starting points | of a loop and the translation for a (k,1)-loop is conjoined
with the associated ; L, loop condition. The size of this formula is O(| f| x k x |M|) where | M | is the size
of the syntactic description of the inital state i and the transition relation T.

Theorem 2 [M, f]y is satisfiable iff M =y, f.

Example 1 Let us consider the example in 3.1, we do not want it to reach the state O which can be
represented by the formula G—p where p = s[3]. Using BMC, we attempt to find a counterexample for
this property which is equivalent to search for a witness of Fp. If such witness exists, then the traffic
lights can reach this state so the property is violated by our system. However, if we cannot find a suitable
witness then the property holds up for the given bound k.

Let us consider the case where k = 2, we already computed the unrolling of the transition rela-
tion3.2.1:
[M]s :=1(s0) AT(s0,51) AT(s1,82).

The loop condition is:
2

Ly := \/ T(s2, 1)

=0

The translation for paths without loops is:
[Fpl3 == p(s0) V [Fpl
[Fpl3 == p(s1) v [Fpl3
[Fp]3 = p(s2) V [Fpl3
[Fpl5 =0
[

Fpl3 :=p(s0) V p(s1) V p(s2)

The translation with loops can be done the same way. We can now put it together to get the
propositional formula

2

[M, Fpla = [M]o A (=L A [FP)) v \/ (1L2 A [FP]S))

Since a single trace to a bad state is enough for falsifying a safety property, we can omit the
loop condition in the formula above which gives us:

[M, Fp]a = I(so) AT (so,81) ANT(s1,82) Ap(so) Ap(s1) A p(s2)

[M, Fp], is satisfied by the path 1000, 0001, 1000 which is then a path that violates the safety
property.

Chapter 4

Passive learning

In many real-world scenarios, the properties that describe system behavior are not readily avail-
able. Instead, one may only have access to execution traces examples of system runs that
demonstrate desired or undesired behavior. Passive learning is a set of methods that computes a
theorical model of a system from a given set of data, without any furthur queries. By analyzing
these examples, passive learning seeks an LTL formula that captures the essence of the observed
behavior while distinguishing between acceptable and unacceptable executions. This approach
provides critical insights into system functionality and facilitates understanding without requir-
ing an explicit specification. In practice, we have 2 samples of Kripke structures P and N and
we seek a LTL formula f such that every element of P verify f and every element of N violate
f. The paper [6] introduces two methods to do that. One of those is based on SAT and tries to
reduce the problem of learning a LTL formula to a satisfiability problem to benefit from efficient
SAT solvers. It has 3 essential features, first, it learns LTL formulas of minimal size which is
easier to read and understand. Second, once we have learned a formula, we can query for more
distinct formulas that are consistent with the sample, which can give explanations on what is
happening in reality. Lastly, the algorithm does not rely on an a priori given set of templates, so
it is not restricted to a fixed class of templates.

Implementing this was the main purpose using the SAT based learning algorithm ([6] for
more details) and then verify that the learned formula was correct using BMC but since we are
falling behind schedule by a lot, we will skip that part here.

Chapter 5

Implementation

5.1 Work done

We implemented everything mentioned earlier in LearnCTL using C++20, a library of Adrien
Pommelet, a researcher at LRDE. This library implements the passive learning of a Computation
Tree Logic (CTL) formula that separates a set of positive and negative Kripke structures, i.e. is
verified by the former but not the latter. As we have mentionned it, since we fell behind the
schedule, we decided to focus on implementing bounded model checking in priority. For now,
we will try to implement a simple version where we only consider no-looping semantic and will
use for bound k, the recurrence diameter for reachability which is the longest loop-free path in
M starting from an initial state (more optimizations can be found in [6]).

5.2 Result

We don’t have any result to show so far.

Chapter 6

Conclusion

In conclusion, passive learning is as a powerful tool for to study systems behavior from execu-
tion traces when explicit specifications are unavailable. By identifying minimal LTL formulas
that distinguish between acceptable and unacceptable behaviors, this approach provides clarity
and enhances system understanding.

However, while passive learning has a lot of potential, its effectiveness relies on the correct-
ness and reliability of the learned formulas. This is why we have worked on BMC which will
check if the learned formula is correct.

That being said, our current implementation is in progress, a lot work is still needed but it
could bring great results.

Copying this document

Copyright © 2025 LRE.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-

Cover Texts, and no Back-Cover Texts.
A copy of the license is provided in the file COPYING.DOC.

Chapter 7
Bibliography

[1] Baier, C. and Katoen, J.-P. (2008). Principles of model checking. MIT Press. (pages 4, 5, 6, and 20)
[2] Bordais, B., Neider, D., and Roy, R. (2023). Learning temporal properties is np-hard. (page 3)
[3] etal, A. B. (2003). Bounded model checking. Adv. Comput., 58:117-148.

[4] Fijalkow, N. and Lagarde, G. (2021). The complexity of learning linear temporal formulas
from examples. (page 3)

[5] Hsu, T.-H., Bonakdarpour, B., Finkbeiner, B., and Sdnchez, C. (2023). Bounded model check-
ing for asynchronous hyperproperties. (pages 3,11, 12, 14, and 20)

[6] Neider, D. and Gavran, I. (2018). Learning linear temporal properties. (pages 16 and 17)

[7] Pommellet, A., Stan, D., and Scatton, S. (2024). Sat-based learning of computation tree logic.

Contents

1 Introduction 3
2 Preliminary Definitions 4
2.1 Kripkestructures[1] L 4
211 Definition L 4

2.1.2 Example: Traffic Light Model, 4

2.1.3 Kripke Structures in Model Checking 5

22 LTL[I]. . o oo 5
221 Definition e 5

222 Semantics 6

3 Model checking 8
3.1 Standard modelchecking o oo 8
3.1.1 Model checking process, 8

312 Example e 9

313 Prosandcons 10

3.2 Bounded model checking[5] L o 11
3.21 Reducing bounded model checking to SAT 13

4 Passive learning 16
5 Implementation 17
51 Workdone e 17
52 Result. e 17

6 Conclusion 18

7 Bibliography 19

	1 Introduction
	2 Preliminary Definitions
	2.1 Kripke structuresprinciple
	2.1.1 Definition
	2.1.2 Example: Traffic Light Model
	2.1.3 Kripke Structures in Model Checking

	2.2 LTLprinciple
	2.2.1 Definition
	2.2.2 Semantics

	3 Model checking
	3.1 Standard model checking
	3.1.1 Model checking process
	3.1.2 Example
	3.1.3 Pros and cons

	3.2 Bounded model checkingbounded
	3.2.1 Reducing bounded model checking to SAT

	4 Passive learning
	5 Implementation
	5.1 Work done
	5.2 Result

	6 Conclusion
	7 Bibliography

