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Segmentation is a computer vision process used in medical imaging to support the diagnosis of various
pathologies by healthcare teams. The purpose of my work is to develop a neural network that can per-
form segmentations on MRI images of human brains and provide prediction on the progression of the
tumor through the potential contamination of different voxels. To improve the reliability of the model, we
intend to develop 2 additional algorithms for quantifying uncertainty: Monte-Carlo Dropout and Deep
Ensembles. Monte-Carlo Dropout is based on generating multiple predictions by randomly deactivat-
ing neurons, and Deep Ensembles train several networks with different initializations. These methods
will enable the computation of uncertainty by focusing on both epistemic uncertainty, related to model
knowledge, and aleatoric uncertainty, arising from data noise.

La segmentation est un processus de vision par ordinateur utilisé en imagerie médicale pour aider les
équipes de soins de santé a diagnostiquer diverses pathologies. L’objectif de mon travail est de développer
un réseau de neurones capable d’effectuer des segmentations sur des images IRM de cerveaux humains
et de fournir des prédictions sur la progression de la tumeur a travers la contamination potentielle de
différents voxels. Pour améliorer la fiabilité du modele, nous prévoyons de développer deux algorithmes
supplémentaires pour quantifier 'incertitude : le Monte-Carlo Dropout et les Deep Ensembles. Le Monte-
Carlo Dropout repose sur la génération de multiples prédictions en désactivant aléatoirement des neu-
rones, tandis que les Deep Ensembles entrainent plusieurs réseaux avec des initialisations différentes. Ces
méthodes permettront de quantifier I'incertitude en se concentrant a la fois sur I'incertitude épistémique,
liée a la connaissance du modele, et sur l'incertitude aléatoire, due au bruit des données.
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Chapter 1

Introduction

Initially, medical image segmentation is used to extract organs, detect pathologies, and isolate
anatomical structures from images such as X-rays, CT scans, or MRIs. With significant advance-
ments in artificial intelligence, Deep Learning algorithms are now widely employed for these
tasks, delivering remarkably accurate results. However, neural networks often act as "black
boxes," making it difficult to understand the reasoning behind a given prediction. For small
models, it is still possible to trace the decision path and interpret the results. However, with
deeper architectures containing numerous layers and millions of parameters, interpretability
becomes highly complex. The model receives an input, generates a prediction, but the exact
reasoning behind the decision remains opaque. This challenge applies to both classification
tasks, where the goal is to assign a global class to the image, and segmentation tasks, which
involve pixel-wise classification.

In the medical domain, where decisions can directly impact patient health, it is crucial to bet-
ter understand and interpret model outputs. Providing a precise prediction is not sufficient; it
is equally important to know how confident the model is in its prediction. Ideally, the model
should express high confidence when producing correct results and show uncertainty when
it is less sure, particularly when dealing with noisy, out-of-distribution, or ambiguous data.
However, neural networks often tend to be overly confident, even when their predictions are
incorrect. This overconfidence can be problematic, as it may lead to excessive trust in erro-
neous results. Therefore, uncertainty quantification is essential, as it provides a measure of the
model’s confidence alongside its predictions, enabling better result analysis and more informed
decision-making.

It is also important to distinguish between uncertainty metrics and traditional performance
metrics used to evaluate Deep Learning models. Performance metrics, such as accuracy or F1-
Score, assess whether a prediction is correct or incorrect. On the other hand, uncertainty metrics
focus on the model’s confidence level, regardless of whether the prediction is right or wrong.
However, comparing uncertainty with prediction accuracy remains essential, as one would ex-
pect the model to be confident when making correct predictions and more hesitant when it
makes mistakes. It is also interesting to observe the model’s behavior when exposed to data it
has never seen during training.
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To quantify these uncertainties, distributions of predictions will be generated for the same
input. Two state-of-the-art methods will be used in this project: Monte Carlo Dropout (MCD)
and Deep Ensembles. By generating multiple stochastic predictions, these approaches estimate
the variability in the model’s outputs, thereby providing insights into its confidence levels.

A key objective of this work is also to explore a hybrid method combining Deep Ensembles
and Monte Carlo Dropout to assess whether this combination improves uncertainty quantifica-
tion or if it produces redundant results compared to using the methods separately.

This report will present the results obtained after implementing these three methods on two
different tasks: an image classification task using the MNIST dataset and a brain MRI seg-
mentation task using the iSEG-2017 dataset. For each task, the uncertainties obtained will be
analyzed and compared to observe the differences between the methods and the potential ben-
efit of combining MCD and Deep Ensembles. In the classification task, we will show that there
are no significant differences between the MCD, DE, and Hybrid methods. However, in the seg-
mentation task, the results demonstrate a clear advantage in uncertainty quantification with the
Deep Ensembles and Hybrid methods, which perform significantly better compared to MCD.

Before concluding this introduction, I would like to thank Mr. Nicolas Boutry, my supervisor
for this project over the past two semesters. His support and guidance have been essential in
keeping me focused and making progress throughout the project. His ability to explain complex
ideas clearly and provide helpful feedback has been a constant source of motivation, allowing
me to tackle challenges and advance this work with confidence.



Chapter 2

Context and State of the Art

2.1 Monte Carlo Dropout

The Monte Carlo Dropout (MC Dropout) method is a powerful technique for quantifying un-
certainty in Deep Learning models. Developed in 2016 by Yarin Gal and Zoubin Ghahramani,
researchers at the University of Cambridge, it is based on the use of dropout, initially designed
as a regularization method to prevent overfitting.

The main idea is to activate dropout not only during training but also during the evaluation
phase. By doing so, multiple predictions are made with dropout activated. The resulting set
of predictions forms a probability distribution, which allows differences between predictions to
be studied and thus quantifies model uncertainty.

Yarin Gal et al. showed that complex calculations could be avoided, and the mean and vari-
ance of a network’s predictive distribution could be directly obtained by following this proce-
dure (for a regression task):

¢ Train a network with dropout activated.

¢ Evaluate the same input multiple times using the trained network, applying dropout each
time.

¢ Compute the mean and variance of the resulting outputs.

They demonstrated that variational inference could be approximated by dropout regulariza-
tion, meaning the variational lower bound could resemble the dropout objective in a standard
training scenario with certain assumptions about the prior and approximate posterior. Each
version of the model at the evaluation stage can be seen as a sample from the posterior distri-
bution p(#|D), and each corresponding output can be considered a sample from the predictive
distribution p(y|z, D).

Thus, Gal et al. made the process of sampling from a network’s posterior and predictive
distributions computationally feasible. Given how effective Bayesian optimization is for non-
neural network models, one might expect that MC Dropout, derived from Bayesian principles,
would outperform other non-Bayesian uncertainty quantification approaches. However, sub-
sequent works have shown this is not always the case.
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The method is straightforward to implement since it requires only a single model and a sin-
gle training run. However, it has certain limitations. The quality of uncertainty quantification
depends heavily on the chosen dropout rate. A high dropout rate leads to significant differ-
ences in the prediction distribution but at the cost of quality loss, as the network becomes less
effective in reasoning correctly. Conversely, a low dropout rate preserves prediction accuracy
but significantly reduces variance in the distribution, thereby limiting uncertainty assessment.

In this research work on uncertainty quantification in Deep Learning, the Monte Carlo Dropout
method is explored to generate probability distributions over predictions. Although simple and
effective, the choice of the dropout rate is crucial and must be carefully adjusted to achieve a
good balance between prediction quality and uncertainty measurement.

Figure 2.1: The same input, X, is fed to each, and the resulting outputs form a distribution we
can use to estimate the uncertainty

p(f(x, ©)) - -~ \

2.2 Deep Ensembles

The Deep Ensembles method is a powerful and widely recognized approach for uncertainty
quantification in Deep Learning. Developed in 2017 by Balaji Lakshminarayanan, a professor
at Stanford University, this method is based on training multiple independent neural networks
sharing the same architecture but with different random initializations. This variability in ini-
tializations allows exploration of diverse regions of the parameter space, improving the diver-
sity of the predictions obtained.

The core idea is to form a collection of models, which can be trained either on distinct subsets
of the training dataset or on the full dataset if data is limited. Each model in the ensemble gen-
erates its own predictions, which are then aggregated, often by averaging or majority voting,
to form a global probability distribution. This distribution reflects the variability of results and
thus quantifies the model’s uncertainty on new data.

Deep Ensembles are currently considered one of the most effective methods for uncertainty
quantification, providing accurate and robust results in numerous application contexts, includ-
ing computer vision. Their ability to explore different regions of the parameter space helps
improve the robustness and generalization of the model.
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However, this method also presents certain limitations. It is complex to implement, requiring
the training of multiple independent models, leading to high memory and computational costs.
Moreover, multiple training runs can be challenging to manage on large datasets, limiting its
applicability in resource-constrained environments.

Despite these challenges, Deep Ensembles remain a benchmark tool for uncertainty estima-
tion in Deep Learning models, often used as a standard for comparing other uncertainty quan-
tification techniques.

2.3 Uncertainty Metrics

Once prediction distributions have been constructed, it becomes possible to quantify uncer-
tainty using various metrics. Initially, the mean prediction and standard deviation should be
examined, as they provide a strong initial indication. However, more advanced metrics can be
used for a more precise assessment of model uncertainty, which will be presented in this section.

It is crucial to understand that these metrics are distinct from performance metrics. The goal
here is not to evaluate whether a prediction is correct or incorrect but rather to determine how
confident the model was in its prediction.

Before exploring the uncertainty metrics, it is essential to understand that there are two pri-
mary types of uncertainties: aleatoric uncertainty and epistemic uncertainty.

2.3.1 Aleatoric Uncertainty

Derived from the Latin aleator (dice player), aleatoric uncertainty represents natural and ran-
dom noise present in the data.

Source: Inherent noise in the data (e.g., blurry images, poor-quality sensors).

Characteristic: It cannot be reduced by adding more data but can be estimated or learned
from the data.

Subtypes:
* Homoscedastic Uncertainty: Constant across all inputs and captures average uncertainty.
¢ Heteroscedastic Uncertainty: Depends on the inputs and varies based on the noise present
in the observations.
2.3.2 Epistemic Uncertainty

Derived from the Greek episteme (knowledge), epistemic uncertainty is linked to the model
itself, reflecting a lack of knowledge about the data-generating process.

Source: Poorly trained models or previously unseen data.
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Characteristic: It can be reduced with more training data.

Manifestation: Appears when the model encounters data outside its training distribution.

2.3.3 Metrics to Quantify Uncertainty
Variation Ratios — Measures Epistemic Uncertainty

Definition:

VarRatio(z) =1 — % (2.1)
where:
* T is the total number of stochastic forward passes (e.g., through Monte Carlo Dropout).
* f. is the frequency of the most frequent predicted class label.
Why does it measure epistemic uncertainty?
¢ If a model is uncertain, it will produce diverse predictions across multiple passes.

* If a model is confident, it will consistently predict the same label.

A high Variation Ratio indicates high epistemic uncertainty.

Predictive Entropy — Measures Aleatoric Uncertainty

Definition:

T T
Hly|x, Diyain) = *Z <711 Zp(y = c|lz,w;) ) log ( Z p(y = clz,w, ) (2.2)
c t=1 t=1

where:
* p(y = c|z,w,) is the predicted probability for class ¢ during the ¢-th forward pass.
Why does it measure aleatoric uncertainty?
¢ Aleatoric uncertainty arises from inherent data noise.
e If the data is ambiguous or noisy, the predictions will be naturally spread across classes.

A high predictive entropy indicates high aleatoric uncertainty, even for a well-trained model.
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2.3.4 Summary of Uncertainty Types and Metrics
¢ Aleatoric Uncertainty:

— Source: Noise in the data.

— Key Metric: Predictive Entropy.
¢ Epistemic Uncertainty:

— Source: Lack of model knowledge.

— Key Metric: Variation Ratios.

Combining both metrics provides a thorough evaluation of uncertainty in Deep Learning
models, making them particularly valuable for critical applications where reliable and well-
calibrated predictions are essential. Building on this theoretical foundation, the next sections
will present the results obtained from applying the Monte Carlo Dropout (MCD) method and
Deep Ensembles, along with the aforementioned uncertainty metrics.

The experimental results will be structured into two main parts. The first part will focus
on a classification task using the MNIST dataset, which serves as a benchmark for evaluating
uncertainty estimation in a straightforward image classification scenario. The second part will
address a more complex segmentation task using the iSeg dataset, where uncertainty quantifi-
cation plays a crucial role in medical image analysis. By comparing both methods and metrics
across these datasets, we aim to provide a comprehensive assessment of their performance and
suitability for different types of tasks.
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Experimentations

3.1 MNIST Classification

To validate the proposed uncertainty quantification techniques, we conducted experiments
on two datasets: MNIST for classification and iSeg for segmentation tasks. The models utilized
include Monte Carlo Dropout (MCD) and Deep Ensembles, both evaluated using Variation Ra-
tios and Predictive Entropy as uncertainty metrics.

To begin my study on uncertainty quantification, I chose to experiment with these methods
on a simpler task than segmentation: image classification. Segmentation can indeed be inter-
preted as pixel-wise classification. To better understand the behavior of uncertainty quantifica-
tion methods in a controlled setting, I worked with the MNIST dataset, a standard benchmark
in machine learning for classification tasks.

The MNIST dataset consists of grayscale images of handwritten digits (0 to 9) with a resolu-
tion of 28 x 28 pixels. Most digits are clear and easy to identify, but the dataset also includes
slightly noisy or distorted digits, making them more challenging for a model to classify cor-

rectly. This diversity allowed me to study the behavior of uncertainty methods in both simple
and ambiguous cases.

Figure 3.1: Examples of clear and noisy MNIST digits used for classification. The dataset in-
cludes both easily identifiable digits and challenging noisy samples

HE0R
HEEONA
TTL
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3.1.1 Model Architecture: AlexNet

For this classification task, I used a convolutional neural network (CNN) inspired by the
AlexNet architecture, chosen for its simplicity and effectiveness in image classification tasks.

¢ Convolution with 6 filters, kernel size 5, padding 2, ReLU activation
* Max pooling, kernel size 2
¢ Convolution with 16 filters, kernel size 5, ReLU activation
* Max pooling, kernel size 2
Fully-Connected Layers:
¢ Dropout layer with p = 0.25
¢ Fully connected layer with 120 units and ReLU activation
¢ Dropout layer with p = 0.5
¢ Output layer with 10 units (one per digit class)

This architecture extracts progressively deeper features from the images while reducing the
spatial dimension. Dropout is employed to regularize the learning process and introduce vari-
ability, which is essential for uncertainty estimation.

Figure 3.2: Diagram of the AlexNet architecture used for MNIST classification

3.1.2 Model Training and Usage

I trained a first model using the AlexNet architecture described above. This model served as
the basis for implementing the Monte Carlo Dropout (MCD) uncertainty quantification method.
Additionally, I trained five independently initialized models using the same architecture to im-
plement the Deep Ensembles method. The randomness in initialization helps explore different
regions of the parameter space and better estimate epistemic uncertainty.

Table 3.1: Performance metrics for the Monte Carlo Dropout (MCD) model.
Maetric Value
Accuracy 0.9920
Recall 0.9923
F1 Score  0.9922
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Table 3.2: Performance metrics for the five models of the Deep Ensembles.
Model  Accuracy Recall F1-Score
Model1 ~ 0.9890  0.9890  0.9890
Model2 09902  0.9902  0.9902
Model 3 ~ 0.9909  0.9909  0.9909
Model 4 09745  0.9745  0.9746
Model 5  0.9862  0.9862  0.9862

3.1.3 Experiments and Results

To compare the different uncertainty quantification methods, I performed predictions on the
MNIST test set using the following approaches:

* Monte Carlo Dropout (MCD): A single model with the dropout layer activated during
inference, generating 100 stochastic predictions.

* Deep Ensembles: Five independently trained models, each making a single prediction.

* Hybrid Approach (MCD + Deep Ensembles): A combination of both methods where I
generated 20 stochastic predictions per model, totaling 100 predictions.

This hybrid approach aims to evaluate whether combining Monte Carlo Dropout and Deep
Ensembles provides better uncertainty quantification than using either method individually.

To represent uncertainty, I primarily used the Variation Ratio (Var-Ratio), a metric particularly
suited for analyzing epistemic uncertainty, reflecting the model’s confidence in its predictions.

3.1.4 Results Presentation

To illustrate the model’s behavior in different scenarios, I selected three examples of predic-
tions using the Monte Carlo Dropout method :

Well-Classified Digit without Uncertainty: A digit 3 correctly classified by the model. Across
100 stochastic predictions, the model predicted the correct class every time with a Var-Ratio of
0, indicating total confidence.

Figure 3.3: A digit 3 correctly classified with total confidence using the Monte Carlo Dropout
method. The model predicted the same class across all 100 stochastic passes, resulting in a
Var-Ratio of 0.

var-ratio=0.000,
gt=3, pred=3 Mean probs Maxprob frequencies 100 Samples probs of class 3 100 Samples probs of class 9 100 Samples probs of class 7

80 80 80
60 60 60

0.25 254 20 20 20

01234567829 0123456789 SN NI T D 6N DO ONNYMI YO OA B O
oo’ Yoo’ ooy Yolo oo’ o oode ooy

Noisy Digit with Moderate Uncertainty: A slightly distorted 8, correctly classified by the
model but with significant uncertainty (Var-Ratio of 0.620). The predictions show the model
hesitated between classes 8 and 0, explaining the increased uncertainty.
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Figure 3.4: A noisy digit 8 correctly classified using the Monte Carlo Dropout method. Despite
the correct prediction, the model exhibited moderate uncertainty, with a Var-Ratio of 0.620,
indicating hesitations between classes 8 and 0

var-ratio=0.620,

gt=8, pred=8 Mean probs Maxprob frequencies Samples probs of class 8 Samples probs of class 0 Samples probs of class 3
80 80 80
03
30 60 60 60
0.2
20 40 40 40
o1 10 20 20 20
0.0 0 0 0 0
0123456789 0123456789 ONAMPQOADO ONAMY D 0N DO ONAYM ™G A O
ST oo ST I ST I

Misclassified Digit with High Uncertainty: A digit 7 misclassified as a 9. The uncertainty is
high, reflecting confusion between multiple classes, mainly 7, 9, and 1.

Figure 3.5: A noisy digit 8 correctly classified using the Monte Carlo Dropout method. Despite
the correct prediction, the model exhibited moderate uncertainty, with a Var-Ratio of 0.620,

indicating hesitations between classes 8 and 0
var-ratio=0.660,

gt=7, pred=9 Mean probs Maxprob frequencies Samples probs of class 9 Samples probs of class 1 Samples probs of class 8
80 80 80
03 2
n 60 €0 60
02
2 0 0 0
0.1 10 20 20 20
0.0 0 0 0 0
0123456789 0123456789 SNAYMTDH A DO SNVLI B H OAD O OSNYRTHOA DO
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To further explore uncertainty estimation, I tested a highly distorted digit 6 using all three
methods: MCD, Deep Ensembles, and the Hybrid Approach.

Figure 3.6: A distorted digit 6 analyzed using three uncertainty quantification methods: Monte
Carlo Dropout, Deep Ensembles, and a Hybrid Approach. Each method demonstrates varying
levels of epistemic uncertainty, with the Hybrid Approach showing the highest Var-Ratio due
to increased stochastic sampling

var-ratio=0.210,
gt=6, pred=6 Mean probs Maxprob frequencies Samples probs of class 6 Samples probs of class 0 Samples probs of class 2
0

»
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Var-ratio=0.400,
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Varratio=0.620,
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.
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° rreiseTes SFIIIISLSPS STIPIILEFS STIPIILESS

All three methods misclassified the 6 as a 0, but the key observation here lies in the variation
of epistemic uncertainty across the methods:

* Monte Carlo Dropout (MCD): Var-Ratio of 0.210
¢ Deep Ensembles (DE): Var-Ratio of 0.400
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e Hybrid Approach: Var-Ratio of 0.620

The uncertainty is higher with Deep Ensembles compared to Monte Carlo Dropout. This can
be explained by the fact that Deep Ensembles leverage multiple independently trained models
with varying initializations, leading to a broader spread in predictions and thus capturing more
epistemic uncertainty.

Finally, the Hybrid Approach yields the highest uncertainty level. This results from combin-
ing both model diversity and the stochastic nature of dropout during inference. With 20 stochas-
tic predictions per model, the overall distribution becomes more spread, leading to higher un-
certainty.

Having explored how these methods perform on a classification task, I will now apply the
same metrics and techniques to a more complex image segmentation task. This will help assess
how Monte Carlo Dropout, Deep Ensembles, and the Hybrid Approach capture uncertainty
when segmenting medical images, where predictions need to be made for each pixel.

3.2 Iseg Segmentation

3.2.1 iSEG-2017: Refining MRI Segmentation Algorithms for Comprehen-
sive Analysis of Neonatal Brain Development

During this semester, my research has primarily centered on the iSEG-2017 dataset. The aim
of this project is to enhance segmentation algorithms for MRI scans of newborn brains, facilitat-
ing a comprehensive analysis of early brain development.

Overview of Iseg

The iSEG-2017 dataset, released as part of the iSEG Grand Challenge at MICCAI 2017, is
specifically designed for the segmentation of infant brain tissues, providing a significant tool
for medical imaging researchers. This dataset is especially valuable because it targets a devel-
opmental stage where brain tissue undergoes rapid and profound changes. The high-resolution
T1 and T2 weighted MRI scans included in iSEG offer a detailed view of the infant brain, facili-
tating a better understanding of its complex structures during critical growth periods.

Data Composition

The iSEG-2017 dataset includes MRI scans of 10 infants aged between 6 and 24 months, a pe-
riod during which developmental changes in the brain are highly dynamic. Each scan includes
expertly annotated ground-truth labels delineating three crucial brain tissue types :

- White Matter (WM): Vital for the transmission of signals through the brain’s neural net-
works. Segmentation of white matter enables us to study its development and integrity, which
are essential for cognitive development and motricity.

- Gray Matter (GM): Important for the processing and interpretation of information flowing
into the brain, understanding the development of gray matter provides a better understanding
of the neurological basis of sensory processing, memory and decision-making.
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- Cerebrospinal Fluid (CSF): Acts as a cushion and shock absorber for the brain, circulating
nutrients and eliminating waste. CSF segmentation is crucial for assessing normal brain physi-
ology and pathology in infant neurodevelopment.

The inclusion of these annotated tissue types enables accurate segmentation and the study of
morphological changes during early brain development. The multimodal nature of the dataset,
including both T1- and T2-weighted images, provides diverse contrasts, enhancing the ability
to effectively differentiate between these tissue types.

Figure 3.7: Example of a 2D Slice for Patient 1

Here’s an example of an average slice (slice number sz//2) for patient 1, showing three dif-
ferent views: T1-weighted, T2-weighted and VT (ventricular tissue) images. These slices offer
a complete perspective of the infant brain, highlighting the different tissue contrasts and struc-
tures essential for segmentation and analysis.

- T1-weighted image : This image highlights the differences between white matter and gray
matter, offering a clear view of the brain’s overall structure.

- T2-weighted image : This image provides detailed contrast for cerebrospinal fluid and gray
matter, complementing the information from the T1-weighted image.

- Ground Truth Segmentation (GT Image): This image represents the ventricular system,
which is essential for identifying and analyzing brain abnormalities. It serves as the ground
truth for evaluating the accuracy of segmentation algorithms.

Based on this dataset, the aim of my research work this semester was to propose a quantifi-
cation of the uncertainties on the different segmentations of T1 and T2 slices by applying both
the Deep Ensembles method and the Monte Carlo dropout in order to compare the results. To
achieve this, I have used a famous convolutional neural network widely found in the field of
medical imaging segmentation, the U-net.
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3.2.2 U-net
Overview of U-Net

The U-Net is a convolutional neural network architecture designed for image segmentation
tasks, particularly effective in biomedical imaging. It consists of a symmetrical architecture
where the input image undergoes a series of transformations to extract features and later recon-
structs the segmented output with high accuracy.

U-Net Architecture

The U-Net architecture is composed of three key elements: the encoder path, the decoder
path, and the skip connections.

The encoder path extracts essential features while progressively reducing the spatial resolu-
tion of the image. It consists of a series of convolutional blocks, each including two 3x3 con-
volutions followed by ReLU activations, with a max-pooling operation (2x2) halving spatial
dimensions. Simultaneously, the number of feature channels doubles to capture more complex
patterns.

The decoder path reconstructs the segmented image back to its original resolution. Each stage
begins with a transposed convolution (up-sampling) that doubles the spatial resolution. This
is followed by concatenation with the corresponding features from the encoder path via skip
connections. Two 3x3 convolutions with ReLU activations refine the predictions further.

Skip connections play a crucial role in preserving high-resolution information lost during
pooling. They transfer high-level features from the encoder directly to the decoder, improving
segmentation boundary accuracy and enabling finer detail recovery.

Applications in Medical Imaging

The U-Net has widespread applications in medical imaging due to its precise segmentation
capabilities, particularly in differentiating complex anatomical structures. Some typical use
cases include:

¢ Brain tissue segmentation: Identifying gray matter, white matter, and ventricles in MRI
scans.

* Tumor detection: Localizing and segmenting tumors in medical scans such as MRI and
CT images.

* Organ analysis: Segmenting internal organs for anatomical studies and radiotherapy
planning.

* Microscopic cell analysis: Segmenting cells in microscopy for cellular biology applica-
tions.

Using U-Net in the Context of My Work
In my work, I employed a U-Net configured with the following parameters:

¢ Number of layers: 23.
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* Number of parameters: Several million (depending on input and output dimensions).
* Dropout: 0.5 in deeper layers to regularize training.

This model was applied to the segmentation of 2D slices from the iSeg dataset, enabling pre-
cise delineation of structures of interest in medical images. This segmentation step lays the
foundation for the next phase, focused on evaluating the results and analyzing the model’s
performance.

3.3 [Experimental Results on Iseg

The focus now shifts to the segmentation task using the iSeg dataset. The goal is to compare
the uncertainty quantification methods of Deep Ensembles and Monte Carlo Dropout on 2D
slices from the dataset. For this, binary segmentations were performed to distinguish white
matter and gray matter from other structures present in the MRI images.

The model was trained to segment these regions using T1 and T2 MRI images, with ground
truth generated through automatic thresholding of the reference image. This segmentation
analysis aims to further investigate the performance of the uncertainty metrics and methods
previously explored in the classification task, now in a more complex pixel-wise classification
scenario.

Figure 3.8: Example of T1 and T2 MRI images used as inputs along with the corresponding
ground truth segmentation. These images serve as the input data for the segmentation task,
with the ground truth providing a reference for model evaluation.

3.3.1 Uncertainty Quantification with Monte Carlo Dropout
To evaluate the model’s uncertainty, a U-Net was trained with the following configuration:
* Number of layers: 23
e Number of parameters: Several million
* Dropout: 0.5 in the deeper layers

Using this model, both aleatoric and epistemic uncertainties were estimated via the Monte
Carlo Dropout method. This approach generates a distribution of predictions for a single input
by keeping the Dropout layer active even during inference.

Specifically, for a given image, 100 stochastic predictions were generated with the Dropout
layer enabled.
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Table 3.3: Summary of the model’s performance after training.
Metric Value
Loss 0.095
Accuracy  0.9886
Dice Score  0.9249
Precision  0.9121
Recall 0.9390

Figure 3.9: Mean prediction obtained after 100 stochastic forward passes using the Monte Carlo
Dropout method. The image represents the average predicted segmentation map, providing
insight into the model’s confidence across multiple inferences.

3.3.2 Uncertainty Maps Calculation

Based on the distribution of generated predictions, two key uncertainty metrics were com-
puted:
Variation Ratio (Var-Ratio):

* Measures epistemic uncertainty based on the frequency of the majority class among the
predictions.

* Higher variation ratio values indicate greater uncertainty.

Figure 3.10: Variation Ratio map obtained after 100 stochastic forward passes using the Monte
Carlo Dropout method. The image highlights regions of high uncertainty, with the accompany-
ing histogram representing the distribution of uncertainty values across the segmented image
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Predictive Entropy:

* Measures aleatoric uncertainty by analyzing the overall dispersion of predictive probabil-
ities.
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¢ High entropy values indicate significant uncertainty due to data noise or ambiguity.

Figure 3.11: Predictive Entropy map obtained after 100 stochastic forward passes using the
Monte Carlo Dropout method. The image highlights regions of high uncertainty, with the
accompanying histogram representing the distribution of uncertainty values across the seg-
mented image.
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3.3.3 Uncertainty Quantification with Deep Ensembles

Next, the Deep Ensembles method was applied to compare how it quantifies uncertainty in
the segmentation task. This approach involves training multiple independent models with the
same architecture but different random initializations, allowing for a broader exploration of
uncertainty.

Table 3.4: Performance metrics for the five models trained for segmentation.
Model  Dice Score IoU  Precision Recall
Model 1 0.9254 0.8944  0.9243  0.9275
Model 2 0.9233 0.8911  0.9035  0.9459
Model 3 0.9221 0.8886  0.9241 0.9212
Model 4 0.9176 0.8813  0.8967  0.9422
Model 5 0.9019 0.8545  0.8601 0.9529

3.3.4 Uncertainty Maps Calculation

As with the previously described Monte Carlo Dropout method, uncertainty maps for Vari-
ation Ratio and Predictive Entropy were estimated from the aggregated predictions of the five
models.
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Figure 3.12: Variation Ratio map obtained after 100 stochastic forward passes using the Monte
Carlo Dropout method. The map highlights regions of high uncertainty, while the accompany-
ing histogram displays the distribution of variation ratio values across the segmented image.
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Figure 3.13: Predictive Entropy map obtained after 100 stochastic forward passes using the
Monte Carlo Dropout method. The map emphasizes regions of high uncertainty, with the his-
togram showing the spread of predictive entropy values across the segmented image.
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The Deep Ensembles method captures a broader range of prediction variability, both for epis-
temic and aleatoric uncertainty. This behavior is expected since multiple independently trained
models with different initializations result in significant variations between predictions.

In contrast, the Monte Carlo Dropout (MCD) method relies on a single model where the only
source of variability comes from stochastic dropout activation. This structural modification
alone is often insufficient to introduce substantial differences between predictions.

However, it is essential to note that increasing the dropout rate excessively can artificially in-
crease variability among predictions. A very high dropout rate disrupts the model’s structure,
reducing its ability to predict correctly and leading to degraded results.

Therefore, balancing the dropout rate is crucial to maximize prediction quality while captur-
ing meaningful uncertainty.
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3.3.5 Behavior of the Three Methods on a Noisy Image

After evaluating how the three uncertainty quantification methods behave on standard in-
puts, the next step involves assessing their performance on a noisy input. To introduce vari-
ability and increase the complexity of the task, Gaussian noise was added to the T1 and T2 MRI
images. The same prediction protocols were applied to investigate how uncertainty is quanti-
fied in this altered context.

Figure 3.14: Noisy T1 and T2 MRI images used as inputs for segmentation. Gaussian noise
was applied to evaluate the behavior of uncertainty quantification methods under challenging
conditions.

Given the increased noise in the inputs, the resulting segmentations were visibly distorted,
as shown in the mean prediction below using the Monte Carlo Dropout method:

Figure 3.15: Mean segmentation prediction using Monte Carlo Dropout on noisy MRI data. The
segmentation output is visibly degraded due to the added noise.

Similarly, the individual predictions obtained using the five models of the Deep Ensembles
method reveal significant variation:

Figure 3.16: Segmentations obtained from the five independently trained models of the Deep
Ensembles method on the noisy MRI images.
o, A5

To further analyze the uncertainty, the Variation Ratio (Var-Ratio) maps were computed for
the three methods: Monte Carlo Dropout, Deep Ensembles, and the Hybrid Approach. The
results are shown below:
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Figure 3.17: Variation Ratio maps for the three methods (MCD, DE, and Hybrid) on the noisy
input. The maps highlight regions of increased epistemic uncertainty due to noise.
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From these results, it can be observed that the Monte Carlo Dropout method fails to capture
a significant increase in uncertainty despite the noisy input, as the uncertainty values remain
relatively low across the image. On the other hand, the Deep Ensembles method demonstrates
a clear increase in epistemic uncertainty, which is consistent with the noisy nature of the input.

A similar increase in uncertainty is also visible with the Hybrid method, combining both ap-
proaches.

To refine this analysis further, uncertainty maps were calculated exclusively on the regions
where the model’s prediction differed from the ground truth. The results are shown below :
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Histogram of Variation Ratio in Difference Areas

Figure 3.18: Variation Ratio map for Monte Carlo Dropout
(MCD,) focused on error regions.
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Figure 3.19: Variation Ratio map for Deep Ensembles (DE)
focused on error regions.
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Figure 3.20: Variation Ratio map for Hybrid approach fo-
cused on error regions.

Figure 3.21: Comparison of Variation Ratio maps on error regions for the three methods: MCD,
DE, and Hybrid.

Examining the error regions reveals that the Monte Carlo Dropout method fails to signifi-
cantly raise the uncertainty in areas where the model made incorrect predictions. However, the
Deep Ensembles method effectively captures increased epistemic uncertainty in these regions,
which is also reflected in the distribution histograms of uncertainty values.

These findings highlight that the Monte Carlo Dropout method struggles to accurately quan-
tify uncertainty for segmentation tasks, as it fails to capture a sufficiently broad distribution
using a single model with stochastic dropout. In contrast, Deep Ensembles provide a more
reliable estimation of uncertainty by leveraging multiple independently trained models with
diverse initializations.

Finally, the Hybrid approach, which combines both the Monte Carlo Dropout and Deep En-
sembles methods, produces results that are nearly indistinguishable from those obtained using
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the Deep Ensembles method alone. This lack of significant difference is expected, as the Hybrid
method involves performing stochastic dropout on each model within the ensemble. However,
as previously observed, Monte Carlo Dropout alone often fails to introduce sufficient variabil-
ity between predictions, as the stochastic nature of the dropout layers does not significantly
alter the model’s decision boundaries in most cases. Consequently, when applied in the Hybrid
approach, the additional stochastic sampling does not create enough diversity among the pre-
dictions beyond what is already captured by the independently initialized models in the Deep
Ensembles. Therefore, while the Hybrid method does combine both techniques, it does not
appear to provide a substantial improvement in uncertainty quantification compared to Deep
Ensembles alone. To confirm this observation, further experimentation on more challenging
datasets with higher variability and noise levels would be necessary to determine whether the
Hybrid approach could demonstrate clearer benefits in scenarios where greater model diversity
might be required.



Chapter 4

Discussion and Conclusion

4.1 Discussion

41.1 Related Work

During the previous semester, my work focused on binary segmentation of multiple brain tis-
sues using the iSEG dataset, with uncertainty quantification mainly based on the observation of
the mean and standard deviation of the predictions for each pixel. This semester, I further devel-
oped this approach by implementing two more specific metrics : the Variation Ratio (Var-Ratio)
to quantify epistemic uncertainty and Predictive Entropy to quantify aleatoric uncertainty, al-
lowing for a more precise evaluation of model confidence.

Additionally, I expanded the application of these methods by first testing them on simpler
classification tasks before returning to segmentation. A significant advancement this semester
was the implementation of a hybrid method combining Monte Carlo Dropout (MCD) and Deep
Ensembles (DE). This new approach was tested on both classification and segmentation tasks
to assess its effectiveness and relevance compared to the individual methods.

4.1.2 Future Work

The main avenue for future exploration would be to continue comparing the hybrid method
with standard MCD and DE techniques for uncertainty quantification. At this stage, it remains
unclear whether the hybrid approach provides a significative advantage or if it is redundant
compared to using Deep Ensembles alone. Further investigation would help clarify the specific
benefits of combining both methods.

Another interesting direction would be to test these techniques on more complex and diverse
datasets. For classification tasks, using a dataset like ImageNet could provide more significant
results. For segmentation tasks, the BraTS dataset, which focuses on brain tumor detection,
could serve as an excellent benchmark to evaluate the robustness of the proposed methods.
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4.2 Conclusion

This report has explored multiple methods for uncertainty quantification applied to both clas-
sification and segmentation tasks in Deep Learning. By implementing two prominent state-
of-the-art techniques, Monte Carlo Dropout and Deep Ensembles, it has been demonstrated
that prediction uncertainty can be effectively measured and analyzed. These methods operate
by generating multiple stochastic predictions on the same input data, leading to the construc-
tion of probability distributions. From these distributions, key metrics such as Variation Ratio
(Var-Ratio) for epistemic uncertainty and predictive entropy for aleatoric uncertainty can be ex-
tracted, offering deeper insights into model confidence and reliability.

Additionally, a hybrid approach combining MCD and DE was developed and evaluated in
this work, aiming to investigate whether the fusion of these techniques could enhance uncer-
tainty quantification. Preliminary results showed promise, suggesting that the hybrid approach
could indeed capture a broader range of uncertainties. However, further research is required to
validate these findings and determine if the hybrid method consistently outperforms the stan-
dalone approaches.

This study opens several avenues for future work. One potential direction would be to extend
the evaluation of the hybrid method to more complex datasets and medical imaging scenarios,
such as the BraTS dataset for brain tumor segmentation or ImageNet for large-scale classifica-
tion tasks. Furthermore, a comparative analysis with other advanced uncertainty quantification
techniques could provide a clearer understanding of the strengths and limitations of the meth-
ods explored here. Exploring the influence of model architectures and hyperparameter tuning
could also offer additional insights.

In conclusion, this report provides a foundation for further research in uncertainty quantifi-
cation in Deep Learning, particularly within the context of medical imaging. The methods and
insights presented here aim to contribute towards developing more reliable and interpretable
models for critical applications where uncertainty estimation plays a important role in decision-
making.
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