
Visual Programming
VISHNU Specifications

Jean-Sébastien Mouret

May 30, 2002

[Episode One]

An open-minded eye-candy visual programming environment.

In need of a simple but efficient environment to combine Olena’s image processing algorithms,
we present a new visual programming framework based on graph grammar capable of repre-
senting and executing data-flow diagrams in an interactive manner.

After a survey of visual languages evolution over the past ten years, we describe the com-
plete specification of our framework, comparing its features to other related works, and giving
concrete case studies of common problems.

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 44 08 01 01 – Fax. +33 1 44 08 01 99
lrde@epita.fr – http://www.lrde.epita.fr



2



Contents

1 State of the art 5
1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Reason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Virtual Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Reaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 GraphEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 LabView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Visual Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 ARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Prograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 MET++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 VIPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.6 Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.7 3D-PP & PrologSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.8 Visual Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.9 GenGED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Welcome to VISHNU 17
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Inputs & Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 Meta-Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.8 Recursiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 How do these things work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Types & Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Standard Framework Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Multi-threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Node Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Constant makers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Conclusion 27

Bibliography 28



4 CONTENTS



Chapter 1

State of the art

The purpose of this survey is twofold. First, it is to feel our software needs and how a visual representation
could help doing the job. Second, it is a question of forming the eye of the reader for a better understanding
of the various notation systems.
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1.1 Applications

As the notion of visual programming has a broad scope, examples of visual programming can be
seen in numerous applications. Here follows a bench of common applications to give a feeling of
where the real needs are, and what we expect from this kind of software.

1.1.1 Reason

Reason music system by Propellerhead Software [15] is made of rackable virtual instruments
emulating machines such as analog synthetiser, sampler, drum machine, mixer, effects, pattern
sequencer, and so on. When the user creates a new instrument, the program connects it intuitively
to the other instruments. But if this setup is not satisfying, one can flip the instruments’ panel
and rewire the music system. This ability is extremely enjoyable for the user, and is one of our
needs. Note that if the user wires an instrument incorrectly, this can induce side effects on its
outputs. This behavioral similarity with a real machine is quite droll.

Figure 1.1: Reason’s front and back panels. The user can use on-screen patch cords to set up
complex routings and cross-device modulation patches.
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1.1.2 Virtual Waves

Virtual Waves by Synoptic [16] is a sound synthetiser. One can create any sound by plugging
signal filters together. Every possible effect is represented by a box with plugs. Each box can be
configured with a nice floating panel.

The data-flow graph is made of three kinds of nodes : generators that produces signal, filters
that do treatments, and effectors that output the signal on various devices.

Figure 1.2: Virtual Waves by Synoptic, introducing configurable treatments and graph grammar.

1.1.3 Reaktor

Reaktor by Native Instruments [10] is a complete music synthetiser. Like Virtual waves, Reaktor
describes its treatments with a graph, but adds the notion of composite nodes. A treatment can
encapsulate a complete treatment graph defining its behavior. Such a treatment is called compos-
ite, and the subgraph can also be made of composite treatment. Thus the user can navigate inside
the whole synthetiser system by going more or less deep in the underlying treatment hierarchy.

Figure 1.3: Reaktor by Native Instruments, introducing composite treatments.
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1.1.4 GraphEdit

GraphEdit is contained in the Microsoft DirectX 8 SDK [3]. It is made to combine audio/video
codecs compressor/decompressor and/or converters. This is just to illustrate the power of graph
grammar when used to represent composition of a great diversity of components.

Figure 1.4: GraphEdit by Microsoft, codecs mixer.

1.1.5 LabView

LabView by National Instruments [9] is measurement and automation software. It represents
acquisition devices as virtual instruments that can be linked to software processes. Like Reaktor,
Labview can encapsulate several treatments in a single box.

Figure 1.5: LabView by Native Instruments, a complete development system.

In addition to the fact that LabView has huge collection of treatments in multiple fields, mul-
tiple data controllers and generators, LabView appends particular nodes dedicated to symbolize
control structures such as if, for or while expression, and sequences [1]. This is incredibly useful
and makes LabView a complete programming language. Advanced use of these features tends
to have strong cognitive effect on visual programming representations and their programmers
[20].
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1.2 Visual Languages

This is a quick, far from exhaustive, survey of visual languages over the past two decades. Most
of the presented languages are discussed in [5] which is a good starting point to understand this
field.

1.2.1 Definitions

To better understand visual languages, here are a few preliminary definitions.

Visual Language

• icon (generalized icon)
An object with the dual representation of a logical part (the meaning) and a physical part (the image).

• iconic system
A structured set of related icons.

• iconic sentence (visual sentence)
A spatial arrangement of icons from iconic system.

• visual language
A set of iconic sentences constructed with given syntax and semantics.

• syntactic analysis (spatial parsing)
An analysis of an iconic sentence to determine the underlying structure.

• semantic analysis (spatial interpretation)
An analysis of an iconic sentence to determine the underlying meaning.

Visual Programming Paradigms

Here follows a description of four visual programming paradigms extracted from
http://cbl.leeds.ac.uk/nikos/tex2html/examples/concepts/node35.html .

• Data-flow Paradigm

Here a program is composed of functional modules, with connecting paths between inputs and out-
puts. In textual languages, data-flow diagrams are drawn as part of the program design process and
then translated into text. Visual languages omit the translation step.

• Constraint-based paradigms

A constraint may affect many variables, which in turn may affect more. This kind of interaction can
benefit from a diagrammatic representation. ThingLab is an example of such a language where a set
of constraints (rules) describe the invariant properties and relationships of all objects in a problem
space. The solutions is the set of values that satisfy all the constraints simultaneously. This approach
resembles logic programming.

• Programming-by-demonstration

Programming is done by graphically manipulating the data on the screen, demonstrating to the
computer what the program should do. [...] Examples of this programming style are ThinkPad,
Rehearsal World [Later influencing AUDITION], and PT (Pictorial Transformation). The latter is
a procedural language using a film-making metaphor. [See also Marquise in the Garnet Toolkit.]
[See also Figure 1.6]

http://cbl.leeds.ac.uk/nikos/tex2html/examples/concepts/node35.html
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Figure 1.6: Project Cocoa [2], a programming by demonstration VPL for kids.

• Form-based paradigms

This programming style can be thought of as a generalization of spreadsheet programming. [...] The
visual representation of a cell matrix allows the omission of the concepts of variables, declarations,
and output formatting. [...] Forms extends the spreadsheet paradigm. The basic ‘sheet’ is a form on
which the user can place cells called objects. A cell expression can reference any cell (or cells) in any
object within the containing form. Subforms can be used to implement some kind of inheritance.

Liveness

Apart from the fact that data-flow models can be either data driven in which case nodes fire
as soon as all inputs become available or demand driven in which case nodes respond only to
explicit firing requests; several firing strategies exist to update the runtime visualization of a
program. In [17] Tanimoto proposes a distinction between four liveness levels :

• informative : just a visual representation, no semantic feedback is provided to the user.

• significant : execution on demand, feedback is not provided automatically.

• responsive : automatic re-execution on re-edit.

• live : continuous execution.

A discussion on the differences between live and non-live visualization strategies for program
debugging in [7] declares live to be the best choice.

1.2.2 ARK

ARK (Alternate Reality Kit) created at Xerox PARC is known to be the more unique and visionary
domain-specific VPLs. It is an animated environment for creating interactive simulation. A user
can manipulate physical objects, like balls and blocks, having their own properties, like mass
and velocity. A user can add interactors in the environment to represent physical laws that will
interact with these objects.

ARK is made with Smalltalk-80. All of the objects in the underlying Smalltalk environment are
available to the ARK programmer. Objects which are not ARK-specific appear as representative
objects which can be linked with ARK objects the same way as native objects.
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Figure 1.7: ARK, 1986.

1.2.3 Prograph

Prograph is considered to be the most successful of the general-purpose visual languages. Pro-
graph is a visual object-oriented language. It provides simple inheritance, classes with methods,
exception handling, persistent objects. Each method is defined with a series of case which con-
tains a dataflow diagram. A method call consist in executing every method’s cases, stopping
prematurely if special controls like terminate-on-success or failure are encountered. This permits
explicit control over evaluation order.

Figure 1.8: Prograph, 1988.

1.2.4 MET++

MET++ [19] is a visual programming framework using data-flow graphs. As recent softwares, it
proposed a full node library with gui components and so on. One of Its particularities is to offer
bidirectional connections between data units. This implies bidirectional behavior of treatment
units. Figure 1.9 shows a simple Fahrenheit to Celsius converter which uses this functional-
ity. MET++ has another particularity. Access to different kinds of containers such as vectors or
2d/3d images is made via a data mapper. Data mapped units provide a void port which, when
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Figure 1.9: MET++, 1996. A Fahrenheit/Celsius converter, using bidirectional connections.

connected to a container unit’s index port, dynamically creates an iterator port to map the linked
data container. This procedure is shown in Figure 1.10.

Figure 1.10: Connecting a mapper: dynamic generation of iterator ports.

1.2.5 VIPR

VIPR (Visual Imperative PRogramming) represents a unique approach to completely visual gen-
eral purpose programming. It uses nested series of concentric rings to visualize programs. Figure
1.11 shows how VIPR represents simple function calls sequence from a static and dynamic point
of view.

Figure 1.11: VIPR, 1994. Visualization of program execution.
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Figure 1.12 shows a function definition and call. Function arguments are symbolized by rings
on the upper-right corner, and their return values on the lower-right. VIPR also defines control
structures like if and while with a comparable style.

Figure 1.12: Function definition and call in VIPR.

The VIPR group has also developed a visual representation for the lambda calculus which
they refer to as VEX for Visual EXpressions.

1.2.6 Cube

Cube [12] is a visual programming system with three-dimensional representation. The first in-
terest of having a three-dimensional representation is the ability to display more information
than a traditional two-dimensional representation, and with an easier user interaction. Cube was
conceived to evolve in a virtual-reality based programming environment.

Figure 1.13: Cube, 1991.

1.2.7 3D-PP & PrologSpace

3D-PP is another visual programming system with three-dimensional representation.

"3D-PP is based on the concurrent logic programming language GHC (Guarded
Horn Clauses) which is one the high level declarative languages. A declarative pro-
gramming language is suitable to be visualized by a visual programming system be-
cause visual programming is also declarative. A logic programming language is also
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suitable to be visualized because a logic programming language requires compara-
tively fewer number of programming elements than a procedural language." [13]

Figure 1.14: 3D-PP, 1999.

The 3D-PP approach is very similar to PrologSpace [21]. PrologSpace adopts three-dimensional
program representation based on the logic programming language Prolog. PrologSpace is built
on top of VisualProlog which is a version of Prolog that provides support for X windows, widget,
three-dimensional graphics, animation and audio.

1.2.8 Visual Haskell

Visual Haskell [14] is an attempt to define a visual language with a syntax as close as possible to
the original textual language. To visualize an Haskell program, the source code is first translated
to an intermediate form which is then directly translated into visual representation. The goal is
make a two-view programming system with both visual and textual representations.

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Figure 1.15: Visual Haskell, 1994.

1.2.9 GenGED

GenGED [4] is a generic graphical editor for visual languages based on algebraic graph grammar.
Giving a visual alphabet and a grammar, GenGED generates a graphical editor for this language.
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GenGED serves as the basis for a more formal research in visual languages. For example, in [8]
Ermel & Bardohl use it to visually design a software’s architecture and its evolution by defining
graph transformation visual rules to formalize the system evolution.
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Chapter 2

Welcome to VISHNU

Vishnu, preliminary acronym for Visual Interface for Simple Human Newbie User, is a visual program-
ming framework made to design and run programs at the same time. Vishnu is a mixture of features seen
in the previously cited softwares and languages. Here is a first description of this environment.
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2.1 Overview

As a starter, figure 2.1 shows an hello world application to comply with language presentation
standards. This section explains Vishnu’s notation and bridges over traditional programming
idioms to check the symbols’ powerfulness.

Figure 2.1: The mythical hello world.

2.1.1 Nodes

Vishnu programs are made of nodes. A node encapsulates a treatment unit and is symbolized by
a circle (Fig 2.2). Nodes can have outputs (Fig 2.3) and/or inputs (Fig 2.4).

Figure 2.2: A node... Figure 2.3: ... with outputs ... Figure 2.4: ... and inputs.

2.1.2 Inputs & Outputs

An output represents a data owned by a node, and so has a type and a name (Fig 2.5). An input
represents a possible connection to an output. Like outputs, it also has its own name and type.
An output is linked to zero or many inputs, an input is connected to zero or one output (Fig 2.6).

Figure 2.5: Typed output and input. Figure 2.6: Interconnections.
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2.1.3 Constants

A constant node represents a constant value of a type. Its runtime behavior is to produce once
the associated constant value at the first turn after instantiation, and then keep quiet. Constants
somehow have the effect of booting a graph by introducing a value in the data flow.

Because of their simpleness, their visual representation is condensed into a single square.

Figure 2.7: Constant node representation.

Note that with these few icons, we can already create basic data-flow diagrams.

2.1.4 Streams

We want no cycle in node graphs because it leads to ambiguous scheduling order. However, to
refer to the past value of an output, which is what we mean when intuitively linking an node’s
input to one of its outputs, we introduce a stream notation for outputs (Fig 2.8). That way, inputs
linked to an output past value can be discarded of the scheduling algorithm.

Figure 2.8: Explicit cycles and streamed output notation.

A nice example of stream use is a Fibonacci number generator (Fig 2.9). It also introduces the
way to initialize past stream values by linking it to a constant node.

Figure 2.9: Fibonacci numbers generator using streamed output.
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2.1.5 Membranes

Membranes are tissue layers that line node’s organs. A node can contain several membranes.
A membrane holds a nodes graph, and has inputs and outputs. A node owning a membrane
programmatically controls the membrane nodes graph execution. It means that when a node
is computed, it can decide to run zero or many times its membranes. For example, figure 2.11
shows a node with a single membrane and a boolean output called start/stop. Its behavior is to
execute its membrane only if the boolean output is true.

Figure 2.10: A node with two membranes. Figure 2.11: Start/Stop node.

Membranes also permit procedural abstraction. The basic node has one membrane, and its
behavior is simply to execute the membrane’s graph. With such a node, a user can encapsulate a
composite treatment in a single node.

Figure 2.12: Procedural abstraction with a basic node.

On figure 2.12, we notice that a node input (resp. output) faces a membrane’s output (resp.
input). This construction emphasizes the propagation of the data inside the node (resp. outside).
Implementation details of such implicit links will be discussed later.

2.1.6 Meta-Membranes

Keep in mind that what we visualize is both program structure and execution. Therefore every
nodes shown before are living nodes. Even if a membrane’s node graph execution is controlled by
its parent node, we can consider that nodes in a membrane are somehow persistent. To declare
a graph of not yet living nodes, we introduce meta-membranes (Fig 2.13), represented by dotted
lines.

Instead of having a graph of node instances, meta-membranes contain a graph of node classes.
A node owning a meta-membrane can instantiate it at will, creating regular membranes out
of it. These freshly created membranes may be visualized by a stack below the mother meta-
membrane.
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Figure 2.13: Node with a meta-membrane.

With this notation, we can create an if node. Depending on the value of a boolean stream
formerly named “condition”, the if node instantiates the true of false meta-membrane. Figure
2.14 gives an example of such a construct. If we had used regular membranes instead of meta-
membranes in this example, the behavior would have been completely different. Nodes con-
tained in regular membrane are created (resp. destroyed) when the parent node is created (resp.
destroyed). For meta-membranes, their content is created on demand. Imagine figure 2.14 using
a if with regular membranes, the execution would have produced (log "bad input") only the first
time the condition is false because afterwards the constant node will not generate a value, thus
not firing the log node. With a meta-membrane, the if node behavior is to re-instantiate a mem-
brane from the meta-membrane every turn, thus having a fresh constant node ready to produce
its value.

Figure 2.14: y = if x < 0 then (log "bad input"; 0) else f(x)

Using a meta-membrane, we can also create a kind of for node. Figure 2.15 shows a maxi-
mum vector value node that makes use of such a node. Its behavior is to create, at every turn,
n membranes out of its meta-membrane, and then chain them together as shown in figure 2.16.
The dynamic representation of this internal behavior will be as a stack of membranes below the
mother meta-membrane.
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Figure 2.15: Maximum value of an integer’s vector.

Figure 2.16: Membrane instances created programmatically during execution of the for n node in
figure 2.15.

2.1.7 Factories

A factory is a type that provides an interface to dynamically create new inputs or outputs. Instead
of representing this sort of node output as usual, an editor may symbolize it like a striped input
(Fig 2.17) to add a kind of syntactic sugar for node editing. To tell an editor where to place the
symbol, a factory can be associated to the outline of a node, or to any of its membranes.

Figure 2.17: Editor’s syntactic sugar for factories.

When a user links an output to a factory, the editor will ask the factory to create a correspond-
ing input, and then link it to the from output. This behavior is a bit inspired by MET++ (see
1.2.4).
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Figure 2.18: Concrete for n node ...
Figure 2.19: ... and its representation in an edi-
tor.

Figure 2.20: Connecting an output to a factory... Figure 2.21: ... makes it create a new input.

What a factory creates is controlled programmatically. That way a node can offer several
factories to accomplish different tasks. For example, the for n node proposes an import factory to
simply make an outside value available inside (Fig. 2.20 & 2.21). This can be seen as membrane
drilling. Another factory is made to export a value compute inside (Fig. 2.22 & 2.23). It creates
all necessary inputs and outputs to initialize and propagate the value through the membranes
instantiated during execution.

Figure 2.22: Connecting an output to a factory...
Figure 2.23: ... can create complex arrange-
ments.
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2.1.8 Recursiveness

Although this feature is not planned to be implemented in a near future, Vishnu may provide a
recurse symbol to ease writing of naturally recursive algorithms. The recurse symbol is displayed
with a black disk linked to a parent node. It can only be defined in meta-membranes to prevent
eternal recursion at its sight.

Figure 2.24: Factorial node using a if node and the recurse symbol.
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2.2 How do these things work?

After this first glimpse of the framework, we try to describe a bit deeper how these things work.

2.2.1 Types & Triggers

As we have seen, nodes have typed inputs and outputs. A type definition has the following parts:

• a name,

• a data structure,

• a set of triggers,

• a set of remote triggers.

A trigger is a method of an output that calls a corresponding method in every inputs linked to the
emitting output. Triggers will serve as the basis for further optimization because calls to input’s
methods could be inlined during crystallization of a node graph (see 2.3.4).

Likewise, a remote trigger is a method of node input that callbacks a method in its linked
output. The difference between regular and remote triggers is that remote triggers don’t directly
call the corresponding output method, but push the message on the remote output’s message
queue. Thus a node’s execution would look like this:

• 1. receive callbacks triggered by nodes linked to inputs,

• 2. receive output callbacks by processing message queues,

• 3. compute its outputs.

During each step, a node can freely access its members and fire any triggers.

2.3 Standard Framework Components

2.3.1 Multi-threading

To support multi-threading, we only need to add one new node definition. A thread node has a
single membrane where to place nodes to be executed continuously. Its behavior will be to cache
regular and remote callbacks in thread-safe message queues (roughly fig 2.26).

Figure 2.25: A thread node enclosing a single
treatment.

Figure 2.26: Internal thread-safe buffers (this is
not a real representation).
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2.3.2 Node Library

Definition

A node library contains a list of node definitions and methods to instantiate them. Like a node
interface, a node library is also a type. This permits the user to dynamically see who is connected
to the library.

Dictionaries

Interesting treatments on a library would be to extract “dictionaries” out of node definitions. A
type dictionary could list all known types, giving for each type a list of node definitions having
inputs or outputs of this type. An editor could use this kind of dictionary to implement a right-
click contextual popup menu on a node output to offer the creation of related node. Besides, a node
dictionary lists all node definitions, giving for each definition N a list of node definitions having
their input types matching N’s outputs. Respectively, in an editor, right-clicking on a whole
node would open a contextual popup menu that propose to create the corresponding nodes and
automatically link their inputs to the clicked node’s outputs.

2.3.3 Constant makers

Because types tend to be more and more complex, creating constants for them is not a natural
task. Therefore every type should offer at least one “constant maker” node capable of creating
new nodes representing a constant of this type. For example an simple integer constant maker
would be a dialog box with an input field to type the value and a “create” button.

Constant makers may feature two kinds of input type depending on their powerfulness. The
first kind of possible input is a membrane interface input, the “create” button creates a living
constant node inside the linked membrane. A maker could also have a node library input to offer
a “generate” button that would produce source code for a new node definition to be then inserted
in the library.

2.3.4 Crystallization

Definition

After having played with for a while with a node’s subgraph, the user may choose to crystallize
the node. This has the effect of generating specific code for this node. Its membranes become
uneditable and its factories are removed.

Crystallizers

This technique permits strong optimizations because the node system offers a large playground
to do in-depth analysis of a component graph. Crystallizers are nodes that do this kind of job.
They have an node interface input connected to the node to be crystallized, and a library input
to put in the generated node definition.
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Conclusion

After a presentation of visual languages, we have presented a new visual programming frame-
work designed to be user friendly and extremely scalable. We have checked its abilities to express
common language structures, and started to explain its internal procedure.

Further work

There is still work to do to find an optimal way to unify trigger fashioned and stream wrapped
communication styles.

As this framework can support both functional (with regular triggers) and message oriented
(using remote and regular triggers) design, there is much work to sketch a standard library of
common algorithms, widget set, rendering engine, and so on, using for each the paradigm that
fits best to offer an intuitive framework.
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