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The main part of a compiler back-end is the instruction selection. Its goal is to generate the assembly code
for the target CPU from an intermediate representation of the program.

There are several methods for performing an efficient instruction selection in an automatic way. So it is
possible to generate the code-generator, similar to the way parsers are generated. That is, the code gener-
ator is generated from a specification that gives the links between the trees of intermediate representation
and the instructions that should be emitted.

First, we will see how the selection of instructions works, and what algorithms are involved. Then we
will explain how they can be automated and generated.
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Chapter 1

Introduction

The code generation, or instruction selection, in the context of a compiler, is the part that deals
with the generation of the assembly code. Given an input program, the compiler generally
translates it in assembly language, so that it can be assembled to an executable for a given
processor.

This process, which takes place in the back-end of the compiler, exhibits the following char-
acteristics:

• First, it is a critical part of the compiler. Indeed, if there is an error somewhere in the code
generation, the resulting binary won’t run properly.

• Then, it is quite difficult to implement, because the CPU instruction set must be known.
The programmer must be aware of the various mnemonics and addressing modes for this
particular instruction set.

• Moreover, the code selector is hard to debug, because its output is a lot of assembly code,
and there is no simple automatic way to verify that the generated binary behaves exactly
like specified by the input source code.

• Finally, the code-generator itself is specific for each architecture supported by the com-
piler. It must be rewritten each time a new CPU needs to be supported.

All these characteristics make one wonder if one could not generate the code generator in-
stead of implementing it by hand. Similarly, the lexer and the parser are already generated
most of the time. So, it seems quite natural to look for a way to derive the code-generator from
a concise specification.

This technical report consists of three major parts. The first part covers the instruction selec-
tion pass, introducing the algorithms involved in this process, that one generally implements
by hand. The second part deals with the automation of the code generation, in this part the
instruction selector is generated. The third part covers the related work, the other well-known
methods that can achieve the same goal.



Chapter 2

Instruction selection

This chapter is about the instruction selection pass in a compiler. We will explain what it is and
how it can be implemented by hand using a simple algorithm which is not optimal, then we
will see the optimal one.

2.1 Inside the compiler

Let’s consider a schematic view of a compiler. Instruction selection is the part that converts the
intermediate representation of the program to assembly instructions.

Parser Semantic
analyses

Source
code

BinaryCode
generator

Bytecode

IR ASMAST

AST: Abstract Syntax Tree.

IR: Intermediate Representation.

ASM: Assembly instructions.

2.1.1 Intermediate representation

In a compiler, several intermediate representations are possible. First, the intermediate repre-
sentation can be of different levels:

• Higher level than the instruction set: the nodes express high-level concepts like source-
level variables, FOR and WHILE loops. This representation is close to the source language.
Thus, it is not convenient for code selection because there is a big difference between the
nodes and the instructions that should be generated.
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• Same level as the instruction set: each node in the intermediate representation tree can be
expressed using one or several assembly instructions.

• Lower level than the instruction set: an assembly instruction can cover several nodes,
because the intermediate representation is only made of atomic operations.

Then, there are several different forms of intermediate representation:

• Directed Acyclic Graph (DAG): in this representation, a node that represents a value is
shared between it’s definition and its uses. This intermediate representation keeps the
memory footprint low, but it is quite complicated to work with. More specifically, general
code selection for a DAG is NP-complete Ertl (1999).
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x := 2 * y + sin(2 * x)
z := x / 2
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• Three-address code: this representation resembles assembly instructions, with mnemon-
ics and operands. Most statements look like x := y op z . It can be in SSA (Static Single
Assignment) form Cytron et al. (1991), where each temporary is assigned exactly once.
This can be very useful for performing code improvement.

L1: i := 2
t1 := i + 1
t2 := t1 > 0
if t2 goto L1

• Trees: in this representation, the program is a forest. Each node represents an operation,
with its children being the arguments, thus making the temporary results locations im-
plicit.

MOVE

MEM MEM

+ +

FP CONST xMEM *

+ TEMP i CONST 4

FP CONST a

In this report, we work with a low-level tree-based intermediate representation. Effectively,
the input program is translated into a list of trees, and each of these trees will generate an
amount of assembly instructions.

2.1.2 From trees to assembly instructions

In order to make this generation possible, each machine instruction is represented as a tree pat-
tern. Then, the goal is to tile the intermediate representation tree with the instruction patterns.
Of course, the tiling needs to be as efficient as possible, with respect to a cost. The cost is chosen
arbitrarily. It can be good to optimize for code size or code speed, or something else.

Also, the difference between an optimal and an optimum tiling must be clear. The tiling is
optimal if for two successive nodes there can’t be another tiling that yields a smaller cost. It is
optimum if for all the nodes there can’t be another tiling that yield a smaller cost. An optimum
tiling is optimal, the opposite is not true.
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2.2 Maximal-Munch

The Maximal-Munch instruction selection is a greedy algorithm that covers the intermediate
representation tree in a single pass.

2.2.1 The algorithm

The algorithm consists in a top-down pattern matching. The intermediate representation tree
is walked recursively, starting from the root node. At each step, the largest instruction pattern
that fits the node is chosen, and the corresponding instruction is generated. Then the algorithm
recurses with the nodes matching the leaves of the tree pattern corresponding to the chosen
instruction.

MOVE

MEM MEM

+ +

FP CONST xMEM *

+ TEMP i CONST 4

FP CONST a

•r1 ←M [fp + a]
•r2 ← r0 + 4
•r2 ← ri × r2

•r1 ← r1 + r2

•r2 ← fp + x
•M [r1]←M [r2]

2.2.2 Discussion

First, it is noticeable that the machine instructions are generated in reverse order. Indeed, the
instruction corresponding to the root node needs the results of the subtrees in order to perform
its calculation. Thus, the instruction pattern that fits the root node is the first one which is
selected, but the last one to be executed.

Moreover, it can be proved that this algorithm produces an optimal tiling in linear time. Ef-
fectively choosing the largest tile that fits the root node ensures local optimality. Indeed, if there
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was a larger tile that matched the same as two smaller tiles, it would have been selected in the
first place.

However, the Maximal-Munch instruction selection does not necessarily find the global min-
imum. That is, it does not guarantee an optimum tiling of the intermediate representation tree.
Indeed, the algorithm selects the first instruction pattern that fits the root node, without taking
into account its subtrees. So, a really big pattern can be missed below the top node.

Finally, the Maximal-Munch algorithm is very efficient, and performs a good code selection
for RISC architectures.

2.3 Dynamic programming

In this section, we will explain an algorithm that performs an optimum tiling of the intermediate
representation tree, using the well-known approach of dynamic programming.

2.3.1 Principle of dynamic programming

The general principle of dynamic programming allows to solve an optimization problem by
caching sub-problems solutions rather than recomputing them.

Let’s take the general approach of "Divide-and-Conquer" problem solving. This approach
is a top-down technique which starts from the initial problem as a whole, and progresses re-
cursively to the sub-problems. The disadvantage of this method is that recursively solving the
sub-problems may perform the same computations several times because several sub-problems
may be identical.

When using dynamic programming, this problem does not appear because the approach is
bottom-up and the intermediate results are memorized, thus avoiding to recompute identical
sub-problems.

2.3.2 The algorithm

The algorithm consists in two steps.

• First, a bottom-up traversal is applied in order to assign a cost to each node. This cost
represents the total cost of the instructions emitted for the whole tree starting at the current
node. For example, if we chose to optimize for code size, the cost of a node would be the
total size of the instructions emitted for the tree rooted at this node.

The cost assignment proceeds like this:

– for each tile t of cost c that matches at node n

– ci = cost of each subtree corresponding to the leaves of t

– cost of n = c +
∑

ci

• Then a top-down traversal selects the minimum cost tiling. Starting from the root node,
the best instruction pattern, as determined by the previous traversal, is selected (its corre-
sponding instructions are generated). This process is applied recursively to the leaves of
the current pattern.
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2.3.3 Discussion

This algorithm produces an optimum tiling of the tree. At each stage, it uses the best results of
the subtrees in order to select the best instruction pattern for the current node. It is also quite
efficient, since it caches the intermediate results for all the nodes.
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Generating the code-generator

In this chapter, the generation of the code-generator is covered. We choose to explain the ap-
proach developed in IBURG Fraser et al. (1992a), because it is very simple yet quite powerful
since it produces optimal code-generators.

3.1 History of code-generator generators

3.1.1 Graham and Glanville - 1980

One of the very first code-generator generation method that proved usable is the Graham-
Glanville method Glanville and Graham (1978). In this method, linearized tree patterns are rec-
ognized using a bottom-up shift-reduce parser. A LR(0) grammar was automatically derived
from the machine instruction set. The biggest problem with this approach is that grammars
for Graham-Glanville code-generators are highly ambiguous. Thus, the disambiguation of the
grammar could introduce blocking states in the parser.

3.1.2 Davidson and Fraser - 1984

Another method for code selection based on code optimization Davidson and Fraser (1984) was
devised. This method does not try to select good code from the tree directly. First it locally
macro-expands the tree into naive machine instructions. Then, the resulting code is incremen-
tally improved using a set of declarative optimizations, like a peephole optimizer. This method
is still in use today, in GCC (the GNU Compiler Collection) FSF (1987).

3.1.3 TWIG - Aho, Ganapathi and Tjiang - 1989

TWIG Aho et al. (1989) introduced the principles of tree pattern matching and dynamic pro-
gramming. This approach is very similar to the one explained in this report. However, TWIG
uses a table-driven pattern matching, which is more complicated than raw code generation.

3.1.4 BURG - Fraser, Henry and Proebsting - 1992

The BURG Fraser et al. (1992b) code-generators generator is based on BURS (Bottom-Up Rewrite
System) theory Nymeyer and Katoen (1997), in order to move the dynamic programming to
compile-compile time. The generator is more complicated, but it is very efficient. IBURG is a
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variant of BURG that does the dynamic programming at compile time, using a straight-forward
method.

3.2 BURG tree-grammar specification

The BURG tree-grammar specification is considered a standard for code-generators generators.
It consists in a cost-augmented tree-grammar, with an action corresponding to each rule. The
action is used to effectively emit the machine instructions. In the following example, costs are
noted between parenthesis at the end of the line. When there is none, the default cost is 0.
Actions are specified after the ‘=’ symbol.

stmt: ASGNI(disp,reg) = 4 (1);
stmt: reg = 5;
reg: ADDI(reg,rc) = 6 (1);
reg: CVCI(INDIRC(disp)) = 7 (1);
reg: IOI = 8;
reg: disp = 9 (1);
disp: ADDI(reg,con) = 10;
disp: ADDRLP = 11;
rc: con = 12;
rc: reg = 13;
con: CNSTI = 14;
con: IOI = 15;

3.3 Generator implementation

The code-generators generator is a software component that takes as input a specification (a
BURG tree-grammar in the case of IBURG), and generates a software module that plugs into
the compiler. This module reads an intermediate representation tree and generates machine
code as a result.

We have seen that an IBURG-generated code-generator performs two passes over the inter-
mediate representation tree. The first pass, label , assigns a cost corresponding to the best
instruction pattern, to each node, in a bottom-up traversal. The second pass, reduce , executes
the action associated with the best instruction pattern selected for each node, in a top-down
traversal. This second pass is generic and does not depend on the grammar. Most of the time,
the compiler writer builds this part himself. So we will focus on the first pass, performed by the
label function.

As can be seen in the grammar snippet, several non-terminal symbols are used in order to
specify how instruction patterns fit together. This introduces a complexity which prevents us
from using the simple form of dynamic programming explained earlier, with one cost per node.
The next section gives a solution for this problem.

3.4 The label function

The label function is the function that does the labeling pass. All the code generation smart-
ness goes in it. This function takes a node of the intermediate representation as an argument,
and its goal is to assign a cost to this node, based on the selection of the best instruction pattern.
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In order to cope with the complication of using several non-terminal symbols in the BURG
grammar, the best cost of the node must be kept for each non-terminal symbol. Thus, an array
of costs should be included in the data structure used for the nodes. Moreover, the selected
instruction patterns must be memorized as well, in order for the reduction pass to execute the
appropriate action. This leads to the inclusion of another array in the node data structure. This
array keeps for each non-terminal symbol the action number associated with the best instruction
pattern.

3.4.1 The bottom-up traversal

function label(node p)
foreach child q of node p

label(q)

The first step, as we are doing a bottom-up traversal, is to recurse into the children of the
current node, in order to assign the costs for all the trees at the leaves of the instruction patterns
that will be tested on the current node.

3.4.2 Arrays initialization

foreach i in 0..N
p.rule[i] = 0
p.cost[i] = MAX_COST

Then, the rule and cost arrays have to be initialized. They respectively keep the actions and
the costs associated with the best instruction pattern for the current node. rule is initialized to
0 because no instruction pattern have been selected yet, and cost is initialized to MAX_COST
in order to select the next instruction pattern whatever its cost. N represents the number of
non-terminal symbols in the grammar, it is also the size of the two arrays.

3.4.3 Performing the actual work

switch (p.node_type)

The body of the function, actually doing all the work, is a dispatch depending on the type of
the current node. Then, code must be generated for each possible type of node, in order to fill
the rule and cost arrays using the best instruction pattern. In this report, we will explain two
examples of node types corresponding to the BURG grammar given earlier: ADDRLPand CVCI.

First, let’s introduce an helper procedure that will be useful for dealing with the nodes in the
switch statement: record .

function record(node p, integer nt, integer cost, integer rule)
if cost < p.cost[nt] then

p.rule[nt] = rule
p.cost[nt] = cost

endif

This is the record procedure used in the rest of the code. It is quite trivial, it just records the
rule and cost for non-terminal nt if the cost is lower than the one already registered.
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3.4.4 Handling the ADDRLPnode

Now we can move on to the ADDRLPnode handling. Remember the rule for ADDRLP:

disp: ADDRLP = 11;

ADDRLPnode gives a disp non-terminal symbol, with cost 0, associated with action 11.

case ADDRLP:
c := 0
record(p, disp, c, 11)
record(p, reg, c + 1, 9)
record(p, rc, c + 1 + 0, 13)
record(p, stmt, c + 1 + 0, 5)

The first call to record precisely registers what can be seen in the grammar rule. As for the
other calls, we should recall a few other rules of the grammar to understand them:

stmt: reg = 5;
reg: disp = 9 (1);
rc: reg = 13;

Those rules are injections of non-terminals, those chain-rules simply derive one non-terminal
from another. Since an ADDRLPnode gives a disp non-terminal, we must also register every
non-terminal symbol that can be derived from disp . These rules show that reg , rc and stmt
can lead to disp , which explains the calls to record in the above code.

3.4.5 Handling the CVCI node

Now let’s see how to handle a CVCI node. This one is interesting because the instruction pattern
matches several nodes. First recall the grammar:

reg: CVCI(INDIRC(disp)) = 7 (1);

The code for this node must recognize the CVCI(INDIRC(disp)) pattern:

case CVCI:
if p.child[0].node_type = INDIRC

and p.child[0].child[0].rule[disp] != 0
then

c := p.child[0].child[0].cost[disp] + 1;
record(p, reg, c, 7)
record(p, rc, c + 0, 13)
record(p, stmt, c + 0, 5)

endif

The cost for this node is based on the cost of the tree corresponding to the disp non-terminal.
Then, there are the usual injections coming from the reg non-terminal.
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Other approaches

This chapter gives an overview of some related work. Indeed, IBURG is not the only way to
generate a code-generator, some other methods have been created to fulfill other needs.

4.1 BURG

BURG Fraser et al. (1992b) was the first code-generators generator to build up on the BURS
(Bottom-Up Rewrite System) formalism. It was developed by Fraser, Henry and Proebsting, in
1992. The major difference between BURG and IBURG is that the former performs the dynamic
programming at compile-compile time (ie: during the generation of the code-generator), while
the later does it at compile time.

Dynamic programming is achieved at compile-compile time by encoding the unbounded
number of tree configurations into a finite set of equivalence classes. The detailed explanation
of the technique used in BURG goes beyond the scope of this report, since we chose to explain
IBURG which is simpler.

There are two disadvantages when comparing this method to IBURG. First the cost associated
with each rule in the grammar must be static, because they are used in compile-compile time.
In IBURG they can be dynamic, evaluated during the code generation. Then, the generation of
a BURG matcher takes a long time. However, Proebsting explained several techniques to make
the BURG generator go faster Proebsting (1992).

4.2 MBURG

MBURG Gough and Ledermann (1997) is very similar to IBURG. It can select optimal code on
trees in two passes: first a labeling pass, then a reduction pass.

Although MBURG uses the same concepts as IBURG, the implementation is different. First,
it produces its output in ISO Modula-2. Then, two major improvements are provided. First, the
labelling is incremental, it is performed when the intermediate representation nodes are created,
thus avoiding the recursion of a bottom-up traversal. Then there are forced reductions which
are performed during the labelling pass, which can help significantly when register allocation
takes place during instruction selection, by doing some adaptations in the tree during the first
pass.
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4.3 WBURG

WBURG Proebsting and Whaley (1995) generates code-generators that produce an optimal code
in a single bottom-up pass. This is an advantage compared to the two passes required by an
IBURG-style code-generator because it allows to get rid of the intermediate representation.

Indeed, the labeling pass being a bottom-up process, it can be performed when the intermedi-
ate representation is created. Since the code-generator produced by WBURG does the labelling
and the reduction in a single pass, the need for a intermediate tree is eliminated. This results in
space and time savings.

In order to make a one-pass traversal possible, a WBURG-generated matcher buffers a small
fixed-size stack of previously seen operations for deferred matches. The drawback of the method
is that it only supports a proper subset of the grammars handled by two-pass systems. However
it can handle the most common instruction sets (SPARC, MIPS R3000, x86).

4.4 GBURG

The GBURG Fraser and Proebsting (1999) (Greedy Bottom-Up Rewrite Generator) code-generators
generator was developed for a very specific purpose. This generator targets the field of JIT (Just-
In-Time) compilation, in virtual machines. The requirements in this environment are different
than for a standard compiler. The generation time is at least as important as the execution time,
since code generation takes place during the execution.

In order to minimize the generation time, several ideas are used. First, the generator must be
small. The smaller it is, the more it can fit in the CPU cache, thus considerably accelerating its
execution. A code-generator generated by GBURG for x86 can be as small as 8 KB, allowing it
to fit entirely in an 8 KB I-cache.

Another idea to speed up the code generation is to sacrifice the quality of the generated code
in order to use a finite-state machine to emit instructions in one pass. This involves using a
simplified grammar (regular expressions), working on a linearized postfix intermediate rep-
resentation (the bytecode generally used in virtual machines has this property), and using a
greedy pattern matching for selecting the instructions.

As a result, GBURG generates code-generators that emit x86 instructions at 3.6 MB/sec on
a 266 Mhz P6 machine. In comparison, an IBURG-generated instruction selector, like the one
explained in this report, emits code at 1.8 MB/sec on the same machine.
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Implementation for the Tiger
compiler

All the bibliographic research exposed in this report takes place in the context of an imple-
mentation in a Tiger compiler. The Tiger language is specified by Andrew Appel in "Modern
Compiler Implementation in C, Java, ML" Appel (1998). We wanted to replace the hand-written
code-generators in our compiler with a generated one, using a simple technology that could be
taught in compilation lectures.

5.1 The intermediate representation

The intermediate representation we are working on is the LIR (Low level Intermediate Repre-
sentation). An example of such representation was given in section 2.1.1.

Our goal is to produce MIPS assembly language. The MIPS CPU, being a RISC architecture, is
really simple and orthogonal. The grammar for describing the mapping between LIR and MIPS
instructions should not require a lot of work and must be accessible for the students. Moreover,
register allocation is deferred completely after the instruction selection pass, using an unlimited
set of registers. This considerably simplifies the process.

5.2 Monoburg

Monoburg is an implementation of IBURG, developed in the context of Mono Novell (2004), the
open source effort sponsored by Novell to create a free implementation of the .NET Develop-
ment Framework. It was created in order to generate the code-generator for the Mono Virtual
Machine, which uses JIT (Just-In-Time) compilation.

Since this code-generators generator is simple, maintained, easily available and free, it seemed
like a good candidate for our Tiger compiler.

5.3 Further work

A prototype grammar has already been written, but it is not yet integrated in the compiler. Since
our Tiger compiler is written in C++, it makes use of object-oriented data structures. These data
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structures must be modified to be able to host a Monoburg-generated code-generator, and this
change must not be intrusive to the other parts of the compiler. The work on this part is on-
going, and shouldn’t take more than a few week to complete.



Chapter 6

Conclusion

To conclude, we have seen that code-generator generation is practical. Indeed, several tech-
niques have been developed to fulfill different needs and different requirements. As a result,
code-generator generators are widely used in a lot of production compilers today, as well as JIT
compilers for virtual machines.

The generation of the instruction selection pass introduces several benefits. First, the quality
of the code generated by the compiler is better, because the code-generator is known to perform
on optimal code selection, when using the algorithm based on dynamic programming. Then,
the maintenance of the compiler is easier, because the programmer manipulates a declarative
grammar instead of lines of codes. Last but not least, using a code-generator generator eases
the process of retargetting the compiler to a different CPU. Indeed, changing the grammar is
much easier than writing a new code-generator in the back-end.

Anyway, the more we generate, the better it is.
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