
C/C++ Disambiguation Using Attribute Grammars

Valentin David Akim Demaille Renaud Durlin Olivier Gournet

Epita Research and Development Laboratory (LRDE)
http://transformers.lrde.epita.fr <transformers@lrde.epita.fr>

Abstract

We propose a novel approach to seman-
tics driven disambiguation based on Attribute
Grammars (AGs). AGs share the same mod-
ularity model as its host grammar language,
here Syntax Definition Formalism (SDF), what
makes them particularly attractive for work-
ing on unstable grammars, or grammar exten-
sions. The framework we propose is effective,
since a full ISO-C99 disambigution chain al-
ready works, and the core of the hardest ambi-
guities of C++ is solved. This requires specific
techniques, and some extensions to the stock
AG model.

1 Introduction

1.1 The Transformers Project

In order to implement a fast and generic im-
age processing library, the EPITA Research and
Development Laboratory (LRDE) chose a lan-
guage that supports several paradigms and
never sacrifices speed for features. Back at the
end of the 90’s, C++ was the only reasonable
answer, unchallenged as of today thanks to its
incredibly powerful template mechanism al-
lowing meta-programs (i.e., compile-time pro-
grams). Unfortunately, inheriting from C, a lan-
guage designed in the early 70’s, C++ features a
poorly designed syntax and baroque semantics.
This is troublesome both to compiler writers
(most C++ crunching programs are not com-
pliant and fail to capture the whole language)
and to C++writers. Indeed, template intensive
programming is error-prone and often incom-
prehensible. Therefore we considered building
a new language with better meta-programming
support, a daunting task in itself, and rather fo-
cused on means to add syntactic sugar to C++.
This prompted for the inception of the Trans-

formers project, aiming at providing a C++
transformation framework, i.e., a modular C++
front-end (and “back-end”: a pretty-printer),
so as to enable its users to develop transforma-
tions.

1.2 C++

The C++ programming language is an object
oriented extension to C. It is large and com-
plex. It inherits from the old and well known
ambiguities of C. For instance, parsing a * b;
depends on the context: if a is a variable name,
it denotes a product, and if a is a type name,
it denotes the declaration of b. Many similar
ambiguities exist, and their common root is the
spirit in which the C++ grammar appears to be
written: it is tailored for compilers which parser
provide feed-back to the scanner to escape from
context-free grammar by being able to distin-
guish different identifier types (variable name,
type name, etc.). Clearly, the C++ grammar
was written with implementations in mind, not
with the language itself.

C++ also adds ambiguities of its own, even
with known identifier kinds. For instance, let T
be a type, depending on the context T(a); de-
notes either the declaration of the variable a, or
a call to the constructor T::T(a). According to
the standard, the latter is the correct interpreta-
tion, unless it cannot be correct in the context.
The template keyword comes with its set of
specific issues, a single of which is be presented
here, Fig. 1.

1.3 Semantics Driven Disambigua-
tion

Because we aim at using Stratego/XT to write
transformations (such as syntactic sugar) and
in order to enjoy C++ concrete syntax in Strat-
ego code, we chose to use regular “Stratego/XT

1

mailto:jesus@lrde.epita.fr
mailto:akim@lrde.epita.fr
mailto:renaud.durlin@lrde.epita.fr
mailto:olivier.gournet@lrde.epita.fr
http://transformers.lrde.epita.fr
mailto:transformers@lrde.epita.fr

1 template <int>
2 struct A { typedef int t; }; // A<i>::t is a type (by default).
3

4 template <>
5 struct A<0> { static int t; }; // A<0>::t is a value.
6

7 int v(A<0>::t); // Defines a variable since A<0>::t is a value.
8 int f(A<1>::t); // Declares a function since A<1>::t is a type.

The last two lines show the two possibilities for a single ambiguity: int a(b); may denote the
definition of the variable a if b is a value (int zero(0);), or the declaration of a function if it’s a
type (int abs(int);). To disambiguate, the class template Amust be instantiated with its actual
parameter, since there is no requirement that a symbol (t) defined by a class template (A) has a
constant kind (value or type).

Figure 1: Ambiguities on A<?>::t need A instantiations

Figure 2: Disambiguation process

parsing techniques” (Klint and Visser, 1994):
SDF to define a context free super set of the C++
syntax, Scanner-less Generalized LR (SGLR) to
parse possibly ambiguous C++ programs and
to return an AsFix parse forest, and then a set of
disambiguation filters. However our approach
relies on AGs to disambiguate: computations
similar to type checking are performed on the
attributes, revealing the invalid alternatives of
ambiguities. These branches are flagged, and
pruned in a latter stage. We use a homegrown
extension to SDF with attribute rules embedded
(Borghi et al., 2005). Fig. 2 presents the parsing
chain, from source code to (unique) Abstract
Syntax Tree (AST).

2 Disambiguating with AGs

The formalism of AGs is well defined, and well
covered in the literature. Yet little attention was
devoted to using ambiguous AGs: how can in-
formation flow when there is uncertainty. As
usual, C++ added on top of this its own issues,
requiring an extension to AGs.

2.1 Ambiguous synthesis

In attribute grammars, evaluation consists
in information flowing across nodes of the
Parse Tree (PT), either upwards (synthesized at-
tributes), or downwards (inherited attributes).
Extension of inherited attributes flow in am-
biguity nodes is straightforward: the node
simply forwards the unique information flow-
ing downwards to its children. Synthesized
attributes are a problem: each children con-
tributes a possibly different value. In our
model, if the values are equal, this value is
assigned to the ambiguity node, but if they
are different, an error is raised and the evalu-
ation stops. None of our current applications
required a more subtle policy. In the future,
we might consider ambiguity support for at-
tributes, similar to the amb node in AsFix. A
formal treatment of our extension of AGs to
ambiguity remains to be done.

2.2 Template instances

C++ templates challenge the compiler writers:
they are the number one reason for lack of com-
pliance with the C++ standard. There is no
exception for AGs: special mechanisms are re-
quired to cope with this part of the language.

One issue with parsing (and disambiguating)
(class or function) templates is that their context
is incomplete. Consider for instance the Fig. 3:
what is the kind of the symbol T::t? It turns out
that in this case the standard made provisions to
turn this context sensitive problem into context-
free thanks to the typename keyword.

2

1 // Is T::t a type, or a value?
2 template <typename T>
3 void g() { int f(typename T::t); }
4

5 // Is T::t a type, or a value?
6 template <typename T>
7 void h() { int f(T::t); }

In the definition of g, using the keyword
typename, the programmer declares any actual
parameter will define t as a type. Conversely,
for h, the absence of typename requires the user
to provide actual parameters that define t as a
value. In this specific case (extracting a symbol
from a template parameter) the C++ standard
mandates explicit disambiguation.

Figure 3: The mandatory typename disam-
biguation keyword

1 // A<I>::t is A<I-1>::t.
2 template <int I>
3 struct A : public A <I-1> {};
4

5 // A<0>::t is a value.
6 template <>
7 struct A<0> { static int t; };
8

9 // A<14>::t is a type.
10 template <>
11 struct A<14> { typedef int t; };

Figure 4: Recursive template instantiations

Therefore template definitions are easily han-
dled. However, template uses are much more
delicate: they require that templates be (par-
tially) instantiated. Consider for instance the
Fig. 1: disambiguating lines 7 and 8 require
the instantiation of Awith its actual parameters.
To this end, AGs are troublesome. One sim-
ple solution involves two passes: the first pass
gathers the actual template parameters (0 and
1 in our example), and the second pass instan-
tiates the template definition with them, finally
providing the dependent information (the kind
of A<?>::t) to disambiguate (v is a variable,
and f a function). Unfortunately because tem-
plate instantiations can trigger arbitrarily many
other template instantiations (Fig. 4) this is not
possible.

Therefore the template must be carried from its

definition to its uses together with its set of at-
tribute rules, since they have to be evaluated
“on site”. This requires a dramatic extension to
AGs: part of a PT is a possible attribute value,
and a means to fire the evaluation of attributes
is needed.

As a consequence, the template definitions
are no longer evaluated where they are defined,
but where they are used. This is insufficient
though: errors in the template definitions must
also be caught to comply with standard C++.

There are two options to evaluate template
definitions. The simplest solution consists in
instantiating the template with fake parame-
ters. Alternatively, one could exploit informa-
tion gathered from the uses of a template to dis-
ambiguate its body. Consider Fig. 3, line 5: any
use of this template provides an actual value
for T, hence an explicit definition for T::t. This
framework would relieve the user from having
to use the typename keyword to disambiguate
by hand template uses.

3 Discussion

3.1 Results

We developed a complete AG for the ISO-C99
language. Our grammar strictly conforms to
the standard in about 340 rules (half of which
are lexical) and 90 attributes. Contrary to
C++, it has few and easy-to-resolve ambigui-
ties, making it a realistic test bed case. Its de-
velopment represented about 1-2 month-man.
The sheer size of this grammar prompted for
the addition of AG syntax extension in order to
minimize code duplication. In the long run,
when a fully blown redesign of AG in SDF
is completed, extensions such as featured by
Utrecht University Attribute Grammar System
(UU-AG) (Swierstra et al., 2003) will be imple-
mented. Performances are, as expected from
a naive implementation, poor: disambiguating
stdio.h takes 75s on a 3GHz microprocessor.

The extension of this grammar to support
GNU C is straightforward, and requires no
modification to the baseline grammar. C++ is a
much more challenging grammar to tackle (560
rules and more and much harder ambiguities).
As a proof of concept, a mini C++ grammar was
developed to include all the difficult aspects of
C++ disambiguation (virtually everything re-
lated to templates). Its extension into a disam-

3

biguating AG is completed, which supports our
claim that AG can disambiguate C++.

3.2 Others solutions

We propose the use of AGs to perform se-
mantics driven disambiguation, but other tech-
niques have been applied with success.

van den Brand et al. (2003) use ASF+SDF
to disambiguate ambiguous parse trees. Nev-
ertheless, according to our initial experiments,
this approach is delicate to extend to a fully
blown language. It remains yet to be proved
that templates can be properly handled.

Our first experiments using Stratego did not
use the recently introduced dynamic rules, and
therefore the code was entangled with scopes
and tables processing. In addition, because
a primary motivation for the inception of the
Transformers project is to ease the implemen-
tation of C++ grammar extensions, we looked
for seamless modularity. Embedding the dis-
ambiguation specifications in the grammar pro-
vides modularity for free.

3.3 Further works

ASF+SDF, Stratego, and AGs provide three dif-
ferent means to write elegantly and concisely
disambiguation filters. Because of template in-
stantiation, C++ challenges these techniques,
and a thorough comparison between the three
paradigms is underway (Vasseur, 2004). Once
completed, this comparison will address a small
subset of C++ containing the following fea-
tures: modularity by modeling C++ as an ex-
tension of C, templates to mandate instantia-
tions (comparable to extending the PT during
its traversal), namespaces to introduce named
scopes, and context sensitivity (by introducing
two kinds in C, union and typedef, and a third
for C++, class).

A formalization of our extensions to stock
AGs remains to be done. Yet our model is
still slightly changing, tailored to ease the im-
plementation of disambiguation filters. For in-
stance, it is considered to allow the evaluator to
prune incorrect branches, sort of a cut, instead
of merely flagging them as incorrect. Early ex-
periment show a small speedup, but significant
simplifications of attribute rules.

Finally, to implement actual transformations
we wish to use C++ concrete syntax in Strat-
ego, what prevents C++’s intrinsic ambiguity.

We are toying with the idea of using AGs to dis-
ambiguate embedded languages. A successful
early experiment allows the programmer to dis-
ambiguate C in Stratego by hand as follows.

mytest = ?|Expression[(i0) (i1)]|
with i0 => "typedef",

i1 => "variable"

4 Conclusion

We demonstrated how (ambiguous) AGs can be
used to perform semantics driven disambigua-
tion. The disambiguation of difficult languages
demonstrate the validity of the approach: C99
is fully covered, and the most delicate parts of
C++ have been solved. It is ongoing work to
address the full language. AGs are modular
and extendable, which we shall use to imple-
ment grammar extensions, and explore embed-
ded languages disambiguation.

References

Borghi, A., David, V., Demaille, A., and Gour-
net, O. (2005). Implementing attributes in
SDF. Submitted to Stratego Users Day 2005.

Klint, P. and Visser, E. (1994). Using fil-
ters for the disambiguation of context-free
grammars. In Pighizzini, G. and San
Pietro, P., editors, Proc. ASMICS Workshop
on Parsing Theory, pages 1–20, Milano, Italy.
Tech. Rep. 126–1994, Dipartimento di Scienze
dell’Informazione, Università di Milano.

Swierstra, S. D., Baars, A., and Löh, A.
(2003). The UU-AG attribute grammar sys-
tem. http://www.cs.uu.nl/groups/ST.

van den Brand, M., Klusener, S., Moonen, L.,
and Vinju, J. J. (2003). Generalized parsing
and term rewriting: Semantics driven disam-
biguation. volume 82 of Electronic Notes in
Theoretical Computer Science. Elsevier Science
Publishers.

Vasseur, C. (2004). Semantics driven
disambiguation: a comparison of dif-
ferent approaches. Technical report,
LRDE. http://publis.lrde.epita.fr/
20041201-Seminar-Vasseur-Disambiguation-Report.

4

http://www.cs.uu.nl/groups/ST
http://publis.lrde.epita.fr/20041201-Seminar-Vasseur-Disambiguation-Report
http://publis.lrde.epita.fr/20041201-Seminar-Vasseur-Disambiguation-Report

	Introduction
	The Transformers Project
	C++
	Semantics Driven Disambiguation

	Disambiguating with AGs
	Ambiguous synthesis
	Template instances

	Discussion
	Results
	Others solutions
	Further works

	Conclusion

