
ESDF: A Proposal for a More Flexible SDF Handling

Akim Demaille Thomas Largillier Nicolas Pouillard

Epita Research and Development Laboratory (LRDE)
http://transformers.lrde.epita.fr <transformers@lrde.epita.fr>

Abstract

By the means on its annotations, Syntax Defini-
tion Formalism (SDF) seems to be extensible: the
user is tempted to tailor its grammar syntax by
adding new annotation kinds. Unfortunately
the standard SDF crunching tools from Strate-
go/XT do not support the extension of SDF, and
the user has to develop the whole set of tools
for her home grown extension(s). We present
the Extended SDF (ESDF) tool set that provides
“weak” genericity with respect to the grammar
grammar: support for arbitrary SDF annota-
tions. We would like to contribute it to Strate-
go/XT since its components subsume their stock
peers. Finally, we present a set of four exten-
sions we find useful.

1 Introduction

SDF (Visser, 1995) is modular, and extensible
thanks to its support for annotations. The com-
bination of these two features makes SDF a
unique place where additional grammar fea-
tures can be added, immediately taking advan-
tage of all the other SDF features. Examples
of embeddable data include pretty-print direc-
tives, extended Abstract Syntax Tree (AST) gen-
eration directives, attribute rules, disambigua-
tion tags, in addition to the “official” support for
simple disambiguation filters, AST construc-
tors, etc. With such self-contained ESDF files,
mixing grammar modules is straightforward,
and the user can focus on its extensions with-
out having to bother with different concepts of
modules.

Nevertheless aggregating several unrelated
aspects of a grammar within a single file vio-
lates the principle of separation of concerns: a
given facet of a grammar is surrounded with
unrelated, distracting, material.

This contradiction is actually very compa-
rable to a well-known object oriented design
issue: given a family of related classes and
a group of functions to implement on them,
what is the best design? Classical Object Ori-
ented Programming (OOP) recommends to im-
plement the functions as methods. This eases
the addition of new objects, but makes the addi-
tion of functions tedious: each class (read class
implementation file) must be edited. The De-
sign Pattern (DP) approach advocates the intro-
duction of Visitors (objects that implement the
functions) and the extension of the classes to
cooperate with any kind of Visitor. The imple-
mentation of new functions is straightforward
— implement new Visitors —, but the addition
of new classes requires the edition of all the
existing visitors. In fact there is not one right
solution, both axis to read the matrix “classes ×
features” has its advantages: if the classes are
stable and in fixed number, use Visitors (DP);
conversely, if the functions are stable and in
fixed number, sticks to methods1 (OOP).

The same tension exists when working with
grammars. If your grammar modules (classes)
are versatile and numerous, then encapsula-
tion (OOP) is more productive than separa-
tion of concerns: the grammar-centric vision is
best suited. Conversely, stable grammars with
well established features call for separation of
concerns (DP): one feature should be isolated
from unrelated issues (visitors), and the feature-
centric approach is more suitable.

Because we work with several unstable gram-
mar modules, because simple composition of
modules eases our tasks, we wrote the ESDF set
of tools to convert from the all-in-one paradigm
to the separation-of-concern approach. ESDF
should be enriched with reverse conversions,

1Actually this tension is at the origin of the inception
of Aspect Oriented Programming (AOP), but it is unclear
what the parallel would be in the context of SDF.

1

mailto:akim@lrde.epita.fr
mailto:thomas.largillier@lrde.epita.fr
mailto:ertai@lrde.epita.fr
http://transformers.lrde.epita.fr
mailto:transformers@lrde.epita.fr


eventually providing the user with an easy
means to zip and unzip grammar and grammar
annotations.

We would like to contribute ESDF to Strate-
go/XT, since there is quite some code duplica-
tion between ESDF filters and their SDF peers,
which they subsume. In the following, the com-
ponents of ESDF are presented, and then a set
of local SDF extensions we depend upon.

2 ESDF: An SDF Chain Ro-
bust to New Annotations

ESDF is a set of simple tools that provide generic
support to SDF annotations.

2.1 Packing Modules: pack-esdf

The regular pack-sdf tool takes a grammar
module as argument, gathers all its dependen-
cies and produces a single big self-contained
grammar file. If modularity was considered as
syntactic sugar, then pack-sdf is its desugaring
pass: none of the tools downstream need to sup-
port modularity. Unfortunately pack-sdf does
not support annotation plug-ins: this is what
pack-esdf addresses. It supports an additional
option to be given the actual SDF grammar to
use.

2.2 Filtering Annotations Out:
sdf-strip

This simple tool strips (or preserves) selected
annotations from a grammar. Of course, as
pack-esdf, it needs to be given the SDF gram-
mar used (unless it is the stock grammar).

2.3 Parsing Extended Grammars:
parse-esdf

One would like to handle ESDF grammars
seamlessly, like regular SDF grammars. There-
fore it is the SDF parser that needs to be
extended, or rather, extensible. Even the
two aforementioned tools (pack-esdf and
sdf-strip) need to parse ESDF grammars, and
therefore demand a separated parser to avoid
code duplication.

This tool is parse-esdf, an extension of
parse-sdf. Based on the same ideas used to im-
plement (foreign) concrete syntax within Strat-

ego, parse-esdf looks for a foo.meta file for
each foo.sdf file. This meta file describes the
actual SDF grammar used.

This one tool factored several of the tools we
had, since they all addressed the particular ex-
tension we were working on (BoxedSDF, Det-
Gen etc.).

3 The lrde-syntax bundle

In addition to the general framework to extend
SDF, we propose a set of specific extensions de-
signed to support the grammar-centric vision.

3.1 Pretty-Printing: boxedsdf

Embedding the GPP pretty-printing tables in
the grammar eases the maintenance, and pro-
vides a more comfortable environment to edit
these tables: one can use names instead of num-
bers etc. See Fig. 1.

3.2 Disambiguation Tags:
sdf-detgen

It is convenient, in particular to write disam-
biguation test cases or to check by human the
result of a disambiguation pass, to enrich an
ambiguous grammar with special comments to
specify the correct alternative. For instance, in
C++ namespace A {} is ambiguous: its actual
nature depends whether the namespace name A
was met for the first time (is “original”) or not.
Therefore parsing the following:

namespace A {}
namespace A {}

results in the following disambiguated text,
printed with disambiguation comments (org
stands for original, and ns for namespace):

namespace /*<org>*/A/*</org>*/ {}
namespace /*<ns>*/A/*</ns>*/ {}

The generation of such comments and the rules
that recognize them is straightforward. The
most adequate place to specify these comments
is the grammar, as additional dettag annota-
tions (Fig. 2).

2



%% 7.3.1 [namespace.def]
"namespace" Identifier "{" NamespaceBody "}" → OriginalNamespace
Definition

{pp (V[H[KW["namespace"] Identifier]
V is=2[KW["{"]

NamespaceBody]
KW["}"]])}

In BoxedSDF, one can use symbol names to denote nonterminals (e.g., Identifier and
NamespaceBody in the first rule) or labels, instead of _1 as with GPP.

Figure 1: BoxedSDF sample

The following piece of C++ grammar extensions introduces special comments that can be used
to disambiguate explicitly the “first occurrence of namespace name” issue.

"namespace" "/*<org>*/" Identifier "/*</org>*/" "{" NamespaceBody "}"
→ OriginalNamespaceDefinition

"/*<ns>*/" Identifier "/*</ns>*/" → OriginalNamespaceName

"/*<org>*/" | "/*</org>*/" → LAYOUT {reject}
"/*<ns>*/" | "/*</ns>*/" → LAYOUT {reject}

These rules were generated by detgen from the following annotated SDF rules. The first rules
disambiguate the type names, and the last reject the parsing of the disambiguating tags as
comments.

%% 7.3.1 [namespace.def]
Identifier → OriginalNamespaceName {dettag("ns")}
"namespace" Identifier "{" NamespaceBody "}"

→ OriginalNamespaceDefinition {dettag("org", 1)}
"namespace" OriginalNamespaceName "{" NamespaceBody "}"

→ ExtensionNamespaceDefinition

Figure 2: Disambiguation annotations.

3.3 Attribute Grammar (AG):
sdf-attribute

A more ambitious extension of SDF consists
in supporting AGs. Two companion papers
present this topic in depth: Borghi et al. (2005)
detail the evaluation mechanisms, and David
et al. (2005) demonstrate how AGs can be used
to disambiguate C and C++. A simple sample
follows.

e1:Exp "+" e2:Exp → Exp
{attributes(eval:
root.value := <add> (e1.value,

e2.value))}

3.4 Flexible AST generation:
sdf-astgen

Thecons annotations relieves the SDF user from
having to implement an abstract syntax gram-
mar: it is extracted from the concrete gram-
mar. As long as the concrete syntax is “natural”,
the resulting ASTs are lightweight and pleasant
to process. But if the grammar is entangled
with Yacc idiosyncrasies, or disambiguates “by
hand” instead of relying on precedence and as-
sociativity directives, then the ASTs look like
Parse Trees (PTs)... Some advocate the de-
Yaccification of the grammar, but when this is
not possible or desirable, one would like a more
powerful cons annotation.
sdf-astgen allows the user to specify her

abstract syntax, using an extended cons an-

3



e:Expr "+" t:Term -> Expr { ast(BinOp(Plus, e, t)) }
t:Term -> Expr { ast(t) }
t:Term "*" f:Fact -> Term { ast(BinOp(Mult, t, f)) }
f:Fact -> Term { ast(f) }
n:NUM -> Fact { ast(Int(n)) }
"(" e:Expr ")" -> Fact { ast(e) }

Constructors such as Infix, Mult . . . are freely choosen by the user.

Figure 3: More flexible AST generation: the ast annotation

notation: ast (Fig. 3). This enables the ex-
change of ASTs between closely related, but
different, grammars. For instance we plan to
use sdf-astgen to bridge the gap between our
(standard) C++ASTs, and CodeBoost’s tailored
ASTs.

4 Conclusion

We emphasized that self-contained grammar
modules can be the most productive paradigm
depending on the actual constraints of the
project at hand. Because regular Stratego/XT
tools do not support SDF annotation variations,
we propose to replace them with the ESDF set of
tools that support genericity with respect to an-
notation kinds. We also submitted four such ex-
tensions that are useful in our framework. Inter-
esting extensions to this work include the sup-
port of more ambitious changes in the grammar
of the grammars, and the exploration of means
to provide easy composition of several differ-
ent aspects of grammar modules while keeping
concerns separated.

References

Borghi, A., David, V., Demaille, A., and Gour-
net, O. (2005). Implementing attributes in
SDF.

David, V., Demaille, A., Durlin, R., and Gour-
net, O. (2005). C/C++ Disambiguation Using
Attribute Grammars.

Visser, E. (1995). A family of syntax definition
formalisms. In van den Brand, M. G. J. et al.,
editors, ASF+SDF’95. A Workshop on Generat-
ing Tools from Algebraic Specifications, pages
89–126. Technical Report P9504, Program-

ming Research Group, University of Amster-
dam.

4


	Introduction
	esdf: An sdf Chain Robust to New Annotations
	Packing Modules: pack-esdf
	Filtering Annotations Out: sdf-strip
	Parsing Extended Grammars: parse-esdf

	The lrde-syntax bundle
	Pretty-Printing: boxedsdf
	Disambiguation Tags: sdf-detgen
	ag: sdf-attribute
	Flexible ast generation: sdf-astgen

	Conclusion

