
Automatic Attribute Propagation
for Modular Attribute Grammars

SVN revision: r2938

Akim Demaille, Renaud Durlin, Nicolas Pierron, Benoı̂t Sigoure

EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire - FR-94276 Le Kremlin-Bicêtre Cedex - France

first-name.last-name@lrde.epita.fr http://www.lrde.epita.fr

Abstract

Attribute grammars are well suited to describe (parts of) the semantics of pro-
gramming languages: hooked on the syntactic production rules, they allow the
expression of local relations that are later bound globally by a generic evaluator.
However they fall short when working on large and complex languages. First
attributes that are virtually needed everywhere have to be propagated by every
single production rule. Second, this constraint hinders modularity, since adding
a syntactic extension might require the propagation of new attributes in the rest
of the grammar. This paper shows how to solve these problems by introducing a
technique to automatically propagate attributes by completing the set of semantic
rules. We formally define the propagation constraints such that it is optimized to
avoid unnecessary addition of semantic rules. Attribute grammars are thus made
more maintainable, modular and easier to define.

Key words: attribute grammar, context-free grammar,
disambiguation, C, C++, attribute propagator

1 Introduction

Building a framework for program transformation is a tough task if the
target language has not been designed for that purpose. Some languages
are difficult to parse but are extremely widespread nevertheless. Frequently,
needs for language extensions, static analysis and automatic refactoring
arise. These needs cannot be satisfied without appropriate front-ends that
strictly conform to the language specifications.

C++ [9] is one such language. It offers several powerful paradigms that

Preprint submitted to Elsevier Preprint 13 June 2008



are complex to implement and use, such as the overly templated static
algorithms [4]. A common solution is to use syntax extensions to express
these paradigms with higher level constructs and provide a transformation
program that rewrites the extended code in a strictly standard conforming
program [1]. It is thus of utmost importance to have an extensible front-end.

T [5] provides a framework to manipulate C and C++. In
order to guarantee that our implementation is strictly conforming, we chose
to use the grammar exactly as specified in the standards. These grammars
are highly ambiguous, especially in the case of C++. They also lead to
enormous Abstract Syntax Trees (ASTs) because their grammars encode
various information such as precedence rules, which can be handled more
ingeniously with today’s parsing techniques.

Contributions The contributions of this paper are: (1) A formalization
of attribute propagation. (2) An algorithm to automatically propagate at-
tributes in Attribute Grammars (AGs). (3) An implementation in T-
, based on S/XT and Syntax Definition Formalism (SDF).

Outline Section 2 formalizes attribute propagation and how to automat-
ically propagate attributes. Section 3 presents the AG compiler of T-
, and how well it performs on the C and C++ grammars. Section 4
analyzes related works and offers an overview of future works. Finally,
Section 5 concludes.

2 Attribute Grammars

This section introduces AGs with a notation close to that introduced by
Knuth [11]. We formalize attribute propagation and present an algorithm
to automatically propagate Top-Down (TD), Bottom-Up (BU) and Left-to-
Right (LR) attributes by generating new semantic rules.

2.1 Definitions

In Knuth [11, Section 2], AGs are introduced to specify the semantics of
derivation trees. The definition introduces inherited attributes which are
based on attributes of the ancestors of a symbol, as opposed to synthesized
attributes, which are based on the attributes of the descendants of a non-
terminal symbol.

Based on these definitions, we define the following.
• V: the finite vocabulary of the context-free grammar (terminal and non-

terminal symbols).
• P: the set of production rules.

2



• Prod(X): the set of production rules that define the non-terminal symbol
X (e.g, {X ::= Y Z} ∈ Prod(X) in BNF notation).

• Use(X): the set of production rules that use the symbol X (e.g,
{S ::= X Y} ∈ Use(X) in BNF notation).

• SR(p): the set of semantic rules on the production p ∈ P.
• A production p ∈ P is of the form X0 → X1X2 . . .Xnp where X0 is a non-

terminal. We note p0 to be X0 and pi, i ∈ [[1..np]] to be Xi.
• Let X ∈ V and a be an attribute. If a is associated to X, we note it X.a.
• Attr(X): the set of attributes (of the form X.a) associated to the symbol X.
• AttrNames(E): the set of attribute names a extracted from the set E of

elements of the form X.a.

In our system, the propagation is automatic when an attribute a is used on
a symbol X and produced on another Y. The bare name a is thus used to
propagate a value from Y.a to X.a. Of course, there can be and there usually is
a certain number of symbols that intervene between X and Y. For instance,
consider the following trivial grammar: S ::= X, X ::= Y, Y ::= Z . . .where S
is the start symbol and Z is a non-terminal. If the first production uses X.a
and the last one produces Z.a, the propagation will “create” Y.a to transfer
the value of a bottom-up. It is useful to refer both to the attributes associated
to a symbol (e.g, Attr(X) = {X.a}) and to the name of the attributes in a set
(e.g, AttrNames(Psyn(Y ::= Z)) = {a}).

2.2 Propagation properties

Attribute propagation is needed to reduce the number of semantic rules to
write. In order to automatically propagate an attribute, we must know how
it has to be propagated. Since our system is primarily guided by the design
and implementation of a C++ front-end, we implemented three traditional
propagation patterns: Top-Down (e.g, for template parameters), Bottom-Up
(e.g, for type deduction) and Left-to-Right (e.g, for symbol tables). Should
the need arise, it is possible to add more propagation patterns, however.

We define the following sets:
• L(p): The set of local attributes on the production p. An attribute is said

to be local if it is only produced in a synthesized way and optionally used
in an inherited way on the same production. In other words, no other
production references its value, it is “scoped” in p.

• Psyn(p) (resp. Pinh(p)): the set of non-local attributes produced by at least
one semantic rule s ∈ SR(p) in a synthesized (resp. inherited) manner.

• Usyn(p) (resp. Uinh(p)): the set of non-local attributes used by at least one
semantic rule s ∈ SR(p) in a synthesized (resp. inherited) manner.

3



S ::= X Y

S

X

X ::= "b"X ::= "a"

Y

Y ::= "c"

S.a

X.b Y.c

Y.trashY.c = X.b + S.a

S.a = 69

X.b = 51X.b = 42 Y.trash = Y.c

P

U

PP

U

P

On

On On

On

On

U−inh

U−syn P−inh

On

P−syn

On

P−syn

On

P−syn

On

U−inh

P−syn

On this example, the following equalities are verified:

Attr(S) = {S.a} Attr(X) = {X.b} Attr(Y) = {Y.c,Y.trash}

Use(X) = {S ::= X Y} Prod(X) = {X ::= ”a”,X ::= ”b”}

SR(S ::= X Y) = {Y.c = X.b + S.a,S.a = 69} AttrNames(Y) = {c, trash}

Psyn(S ::= X Y) = ∅ Usyn(S ::= X Y) = {X.b}

Pinh(S ::= X Y) = {Y.c} Uinh(S ::= X Y) = ∅

L(S ::= X Y) = {S.a} L(X ::= ”c”) = {Y.trash}

Figure 1: An example AG

• Usyn(p) (resp. Psyn(p), Uinh(p), Pinh(p)): represents the same set as Usyn(p)
(resp. Psyn(p), Uinh(p), Pinh(p)) after attribute propagation.

• To simplify the formulas, we also use the following notation:
PAttr(X)

inh (p) = Pinh(p) ∩Attr(X).

These sets are lifted additively to sets. In other words, we have:

PAttr(X)
syn (Prod(X)) =

⋃
p∈Prod(X)

PAttr(X)
syn (p)

If an attribute is used in a synthesized way, it must be produced in a

4



synthesized way.

UAttr(X)
syn (Use(X)) ⊆ PAttr(X)

syn (Prod(X)) (1)

If an attribute is used in an inherited way, it must be produced in an inherited
way.

UAttr(X)
inh (Prod(X)) ⊆ PAttr(X)

inh (Use(X)) (2)
If an attribute of X is produced in a synthesized way in one production, it
must be produced in a synthesized way in all productions that produce X.

PAttr(X)
syn (Prod(X)) =

⋂
p∈Prod(X)

PAttr(X)
syn (p) (3)

If an attribute of X is produced in an inherited way in one production, it
must be produced in an inherited way in all productions that use X.

PAttr(X)
inh (Use(X)) =

⋂
p∈Use(X)

PAttr(X)
inh (p) (4)

These equations represent a well-defined AG. As opposed to the defi-
nition of Knuth, “well-defined” here does not mean “without circularity”.
Equations (1) and (2) mean that all attributes that are used in some way
must be produced in the same way. This also ensures that an attribute
cannot be used without being produced. Equations (3) and (4) mean that
all attributes that are produced for one symbol must be produced on each
related production of that symbol.

2.3 Propagation algorithms

Given a valid AG, the previous equations must be satisfied by the propaga-
tion. To do so, the attribute propagation algorithm must add the required
semantic rules. We want to add the least number of rules, however. Indeed,
we could propagate all the attributes throughout the entire grammar to sat-
isfy the equations, but that solution is far from optimal. We define three
algorithms to implement the traditional Top-Down (TD), Bottom-Up (BU)
and Left-to-Right (LR) propagations. Each algorithm must find the shortest
path between the “use” site and the “production” site, by following a given
pattern. To do so, instead of going from the production sites to the use
sites, we do the search the other way around, that is, from the use sites
to the production sites. As a consequence, the propagation path for BU is
discovered top-down (and vis versa).

For this section a new operator “∪=” is introduced to express the aug-
mentation of a set, for example SR(p)∪= f is equivalent to SR′(p) = f ∪SR(p)

5



A ::= B A

B

B ::= C D

DC

D ::= "d"C ::= "c1" C ::= "c2"

B.a

C.a C.trash

B.a = 42

C.trash = C.a

C.a = B.a

P

U

P

UU

PP P

On

On

On

On

P−inh

On

U−inh P−syn

On

U−inh

P−syn

Figure 2: An example AG for TD propagation

where SR′(p) represents the extended set.

2.3.1 Top-Down
The TD propagation is defined as follows. Let TD be the set of all attributes
propagated top-down.

For all p ∈ P, i ∈ [[1..np]] and a ∈ TD:

pi.a ∈
(
UAttr(pi)

inh (Prod(pi)) ∪ PAttr(pi)
inh (Use(pi))

)
\ PAttr(pi)

inh (p)

Attr(p0)∪={p0.a} SR(p)∪={pi.a = p0.a}

In other words, for a production p that has a symbol pi, itself involved in
another production that uses or produces a in an inherited way, if p does
not produce a in an inherited way, then we augment SR(p) with a rule that
propagates a from p0 to pi. As a consequence, a also becomes an attribute of
p0 if it was not already in Attr(p0).

2.3.2 Bottom-Up
For the BU propagation, we need to find a path from the “use site” to the
“production site(s)” located deeper in the grammar. This problem does
not occur in TD because the path from the “use site” to the “production
site” (higher up in the grammar) is unique and can be trivially found by
traversing the only ancestor of each production. Since a production has one
ancestor but (potentially) multiple descendants, the algorithm is not trivial
the other way around.

Since algorithms on AGs are easier to implement when they only make
local decisions by looking at a single production, we introduce a concept of

6



A ::= B

B

A

B ::= C D

DC

D ::= "d"C ::= "c1" C ::= "c2"

A.trash

B.a

C.a

A.trash = B.a

C.a = [51]C.a = Conc([])

B.a = Conc([C.a])

U

P

P

UU

PP P

On

On

On

On

P−syn

U−syn

On

P−syn OnP−syn

On

P−syn

U−syn

Figure 3: An example AG for BU propagation

flag to guide our BU propagation. This concept will turn out to be useful to
define the LR propagation.

Before starting the process of propagation, we first assign flags to all
productions in the grammar with the following formula.

For all p ∈ P:

BUFlags(p0) =

AttrNames
(
Psyn(p) ∪ L(p)

)
∪

⋃
i≥1

BUFlags(pi)

 ∩ BU

Note that we also consider the local attributes on p. Indeed, the locality of
an attribute can be caused by the fact that it is used by a production higher
up in the grammar. The propagation can add a semantic rule that uses this
attribute in an inherited way, making it non-local.

The BU propagation is then defined with the following equation (where
BU is the set of all attributes propagated bottom-up).

For all p ∈ P and a ∈ BU with i ∈ [[1..np]]:

p0.a ∈
(
UAttr(p0)

syn
(
Use(p0)

)
∪ PAttr(p0)

syn
(
Prod(p0)

))
\ PAttr(p0)

syn (p)

∀i | a ∈ BUFlags(pi) Attr(pi)∪={pi.a} SR(p)∪=
{
p0.a = Conc({pi.a})

}
Conc is a user-defined function that takes all the possible values of a coming
from the various candidates pi and merges them together. Traditionally this
is implemented by producing a list that is the concatenations of all the pi.a.

7



B ::= C D

C D

D.a = C.a

B

C ::= "c"

C.a

D ::= "d"C.a = 69 D.trash = D.a

D.a D.trash

U U

On

P

P

On

P

On On

On On

U−syn P−inh

P−syn U−inh P−syn

Figure 4: An example AG for LR propagation

This equation means that given a production p that defines the non-
terminal p0, if another production of p0 produces a in a synthesized way or
if another production that involves p0 uses a in a synthesized way, and if p
itself does not produce a in a synthesized way, then we augment SR(p) so
that a is propagated from all the descendants pi bearing the BU flag for a to
p0.

2.3.3 Left-to-Right
The implementation of LR is comparable to that of BU because we must
also find a path from the “use site” to the “production site(s)”. We thus tag
the productions with another set of flags specific to BU propagation. Again,
this needs to be done only once before any propagation begins.

For all p ∈ P:

LRFlags(p0) =

AttrNames
(
Pinh(p) ∪ Psyn(p) ∪ L(p)

)
∪

⋃
i≥1

LRFlags(pi)

 ∩ LR

In order to define the LR propagation, we need the following auxiliary
function that finds the first descendant of a production that bears the LR
flag for a given attribute.

rightmost(p, a,n)
p∈P a∈LR n∈[[0..np]]

=


0 if n = 0
n if a ∈ LRFlags(pn)
rightmost(p, a,n − 1) otherwise

The LR propagation is defined with the following equations (where LR

8



is the set of all attributes propagated left-right).
For all p ∈ P and a ∈ LR:

p0.a ∈
(
UAttr(p0)

syn
(
Use(p0)

)
∪ PAttr(p0)

syn
(
Prod(p0)

))
\ PAttr(p0)

syn (p)

j = rightmost(p, a,np) Attr(p j)∪={p j.a} SR(p)∪={p0.a = p j.a}

This equation means that given a production p that defines the non-
terminal p0, if another production of p0 produces a in a synthesized way or
if another production that involves p0 uses a in a synthesized way, and if
p itself does not produce a in a synthesized way, then we augment SR(p)
so that a is propagated from the rightmost non-terminal which produces a
to p0. If no descendants of p bear the expected attribute then an ancestor
production of p should bear the attribute.

For all p ∈ P, i ∈ [[1..np]] and a ∈ TD:

pi.a ∈
(
UAttr(pi)

inh

(
Prod(pi)

)
∪ PAttr(pi)

inh

(
Use(pi)

))
\ PAttr(pi)

inh (p)

j = rightmost(p, a, i − 1) Attr(p j)∪={p j.a} SR(p)∪={pi.a = p j.a}

This equation means that given a production p that has a symbol pi, itself
involved in another production that uses or produces a in an inherited way,
if p does not produce a in an inherited way, then we augment SR(p) with
the same semantic rule as the previous equation except that the right most
descendant of p can only be searched at the left-side of the non-terminal pi.

These algorithms always check whether a semantic rule is missing to
satisfy the properties enunciated in Section 2.2 before trying to add one.
Therefore, an attribute is produced at most once per grammar production.
In addition since the algorithms manipulate growing sets, the same attribute
cannot be added twice in a given set. Moreover these sets of attributes are
majored by the set that contains all attributes of the grammar. Consequently
these equations, which do not remove either attributes or semantic rules and
do not modify the grammar, can be used until a fixed-point is reached, which
satisfies the equations of a well-defined AG.

3 T Attribute Grammars

This section presents our system which uses AGs to disambiguate the C and
the C++. First it introduces the framework used by T. Then it
delves deeper in the implementation techniques we used.

9



3.1 Framework

The framework of T is based on S/XT [3]. Its aim is to
provide a generic, extensible, strictly standard conforming C++ front-end. By
using S, we reap the benefits of Syntax Definition Formalism (SDF)
[14] which comes with a generic Scanner-less Generalized LR (SGLR) parser
[15] and pretty printer [10].

Two primary reasons motivate the design of a C/C++ front-end in SDF.
Firstly, SDF fosters modularity and extensibility. Secondly, this is mandated
to easily use C/C++ concrete syntax in Stratego [1]. With our approach,
anyone willing to extend C++ can do so by adding SDF modules and ex-
tending the AG. No modification of the existing C++ front-end is required
whatsoever.

The advantage of SGLR is that ambiguities are preserved. Our tools,
based on S/XT, use AT as input and manipulate the AST or
Parse Tree (PT) to disambiguate. Memory-wise, AT is advantageous
thanks to its maximal sharing. It efficiently represents the large ambiguous
parse forests of C++.

In order to express AGs directly in SDF, with annotations on the pro-
ductions, we extended SDF. We designed another extension to handle the
pretty-print table similarly. Extending SDF is easy thanks to the S-
/XT framework. Our tools desugar Extended SDF (ESDF) files down to
standard SDF modules.

The advantage of putting everything in SDF modules is that we tie the
relevant information together, instead of spreading it in multiple indepen-
dent files (for the grammar, pretty-print rules, AG . . . ) that must remain
synchronized. Thanks to the modularity of SDF, one can design a front-end
that isolates the different parts of the grammar in different modules. This is
an extremely valuable asset if you want to reuse parts of a grammar (such as
the C++ constant-expression used to implement a C++ pre-processor, for
instance) or to assimilate a part of a language in another [2]. Our experience
shows that the resulting front-end is much more maintainable.

The semantic rules are written in S so as to directly manipulate
ASTs and PTs with AT and to benefit from the well-furnished standard
libraries of S/XT.

3.2 Compilation process

Our AG compiler is divided into five steps, the transformation to a core
language, extraction of the various information from the ESDF, attribute
propagation, cycle detection and generation of an evaluator.

The compilation pipeline depicted on Figure 5 consists mainly in ex-
tracting the various information from the ESDF modules (SDF grammar,

10



The ESDF is desugared down to SDF, from which a parse table is gener-
ated. This parse table contains the AG on which we propagate attributes.
Then we ensure the propagated AG is cycle-free before compiling it with
attrcwhich generates an evaluator in S.

Figure 5: Compilation Pipeline

Language AG → S → C → Binary Total

C 3.3KL 21s 9.5KL 61s 102KL 63s 145s

C++ 6.5KL 70s 28KL 190s 237KL 195s 455s

Timings performed on an AMD Athlon XP 3000+ (2.1 Ghz) with 512M of
DDR RAM, running GNU/Debian Linux with the kernel 2.6. We use the
S compiler version 0.17 and GCC 4.1 for the C back-end.

Table 6: Number of lines (KL: Kilo-lines) & Compilation time (seconds).

Language User-defined rules Generated rules Total

C 166 (27.0%) 448 (72.9%) 614

C++ 995 (37.3%) 1671 (62.6%) 2666

Table 7: Ratio Explicit (User) / Implicit (Added) semantic rules.

pretty-print rules, AG, . . . ) and then pass them to the standard tools of
S/XT. Our tools extend the S/XT toolchain in various places.
We provide Makefiles to ease the compilation process.

Our attribute grammar compiler uses the cycle detection algorithm de-
scribed by [12, Section 6]. If the grammar is well-defined, it is compiled to
a S evaluator, itself compiled in a native binary by the S/XT
toolchain (which uses C as an intermediate language). The compilation
times are depicted on Table 6.

Table 7 confirms that most of the semantic rules can be generated by an
automatic propagator. Our compiler also implements an optimizations for
aliases. Indeed, when a semantic rule is only transfering a value from a

11



Language Aliased Non-Aliased Total

C 469 (76.3%) 145 (23.6%) 614

C++ 1920 (72.0%) 746 (27.9%) 2666

Table 8: Number of semantic rules that are replaced by Aliases.

Figure 9: Execution Process

symbol to another, it can be optimized out with an alias. Aliasing consider-
ably optimizes the runtime, especially in terms of memory usage, since an
important number of semantic rules can be optimized, as shown in Table 8.

3.3 Execution

The execution is divided into four steps: parsing, evaluation, pruning and
attribute selection. The process is depicted on Figure 9.

SGLR generates the parse-forest of all the possible derivation trees which
our generated evaluator attributes. Then the attributed parse-forest of ASTs
is evaluated and invalid branches are pruned to eventually yield the only
valid derivation tree. The attributes that are not required by the subsequent
transformations or analysis are removed from the AST.

Our implementation reports errors in the input source (e.g, multiple
derivation trees are still valid because the code is ambiguous) to the user,
but the error reporting is not as sound as that found in today’s C and C++
compilers.

3.4 Development tools

AG systems are difficult to debug when the error must be found in large
AT outputs. We implemented some debugging tools to help the user
visualize the propagation.

Large PTs formated in AT are really difficult to read and are even
less readable with attributes attached on each non-terminal symbol. For a
long time this has been a real struggle in the development of T.

12



The main window presents the tree on which remaining ambiguous nodes
are displayed with yellow diamonds and each other node has a color to
summarize the status of its attributes. The top left window is used to
reference the production rules involved in this particular derivation tree.
The bottom left window gives access to attribute values. All views are
synchronized to simplify the navigation in the tree.

Figure 10: Debugger

We implemented a graphical debugging tool that filters attributes by their
name or namespace, and convert the resulting PT or AST to a dot-file [7]
which can then be converted to a SVG file. Our graphical user interface
reads the SVG file and presents the derivation tree with colors and details
about each attribute and each symbol as depicted on Figure 10.

One advantage of the attribute propagator is its ability to generate code.
Our propagator can issue warnings when the user writes semantic rules
that could be generated automatically. This helps the user keep the minimal
number of semantic rules in their ESDF modules.

13



4 Discussions

4.1 Related work

UU-AG [13] is an AG system in Haskell [8] where semantic rules are written
in Haskell. Each attribute has to be declared on every symbol of the grammar
where it is used. Attributes are declared inherited or synthesized or both
to define default propagations. Each synthesized attribute can be declared
with a default Conc function and an initial value if the set of attribute is
empty. Each inherited and synthesized attribute is propagated as described
in Section 2.3.3. Thus UU-AG seems to be the closest system except that this
approach is not really suitable for disambiguation problems because of the
declaration of a generic ambiguous node. In addition attribute declarations
lead the system to a non-optimized attribute propagation in the case of a
user error (e.g, if one declares that attributes a is to be propagated from
symbol X to symbol Y whereas the semantic rules do not actually require
this, the value of a will be propagated anyway). Furthermore, the wildcard
notation, which propagates an attribute on all symbols, forbids modularity
(e.g, it is impossible to re-use a part of the AG where such attribute is not
defined).

JastAdd [6] uses different technologies and thus a different approach.
They rely on Java and object-oriented programming to express the AG and
manipulate it. In JastAdd, synthesized attributes are virtual methods with-
out side-effects. This helps to reduce the amount of code to propagate
values across large grammars. Inherited attributes are propagated to all the
descendants of the node that produced it, which is sub-optimal compared
to our propagation. The framework was also designed to be extensible and
modular. There are several problems, however, which make it inappro-
priate in the context of T. JastAdd relies on third-party Java
parser generators. Even though implementations of generalized parsers in
Java are currently being developed, the framework is not suitable for dis-
ambiguation, one of our main concerns. Moreover, it has no representation
for ambiguities, so they must be encoded in the grammar (such as the in-
famous PackageNameOrType node in Java front-ends) which does not scale
for grammars such as that of C++.

4.2 Future work

In our implementation, attributes start to exist as soon as they are used in
a semantic rule. We want to add declaration blocks to ease maintenance
and have an appropriate place to document the attributes. Additionally,
we want to express invariants on attributes when they are declared. This
would help constrain their domain of definition, for instance.

14



Currently, the TD, BU and LR propagations are hard-coded in our propa-
gator. We want to be able to easily define new propagations schemes directly
in our AG to remove several semantic rules that propagate attributes with
less common patterns. The idea is to dynamically load S modules
that implement the propagation schemes at runtime. This would greatly
facilitate the extensibility of our propagator.

To ease disambiguation, we would like to improve our system with re-
spect to automatic branch pruning. Currently, the user has to add an extra
attribute, usually named ok, to indicate whether a branch is valid or not.
Without this attribute, branches with some invalid attributes could synthe-
size their valid values. The user has to manually check that no value is
synthesized from a branch where ok is invalid. We would like to do this
verification automatically. This would greatly enhance the maintainability
of AGs by reducing the complexity of semantic rules in the context of dis-
ambiguation. One idea to tackle this issue is to automatically adjust the
dependency graph of the evaluator, but this remains an open issue.

5 Conclusion

In this paper, we outlined several formal properties of Attribute Grammars
(AGs) and defined what is a “well-defined” AG in the context of automatic
propagation. We presented an iterative fix-point algorithm to implement
automatic attribute propagation for three traditional patterns: Top-Down
(TD), Bottom-Up (BU) and Left-to-Right (LR). The algorithm adds semantic
rules to propagate the values along optimal paths throughout the AG.

T, a framework with two generic front-ends to manipulate
C and C++, implements this algorithm in its AG compiler. We show how
automatic propagation is effective and scales to complex and ambiguous
grammars such as that specified by the C++ standard [9]. Indeed, about two
thirds of the semantic rules are generated by our propagator in the case
of C++. AGs are thus made easier to define and maintain, by reducing the
number of semantic rules written by the user. Additionally, T-
 benefits from the modularity and extensibility of the Syntax Definition
Formalism (SDF) [14] and from the power of S/XT [3], a framework
dedicated to program transformation. It is thus possible to use our AG
compiler to create front-ends that can be re-used, extended or assimilated
in other front-ends.

Acknowledgment
Steve Frank for taking the time to proofread the paper.

15



References
[1] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific language

embedding and assimilation without restrictions. In D. C. Schmidt, editor, Proceedings
of the 19th ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA’04), pages 365–383, Vancouver, Canada, October 2004. ACM
Press.

[2] M. Bravenboer and E. Visser. Designing syntax embeddings and assimilations for
language libraries. In Workshop on Language Engineering (ATEM’07), Nashville, USA,
October 2007. (to appear).

[3] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.16. Com-
ponents for transformation systems. In ACM SIGPLAN 2006 Workshop on Partial
Evaluation and Program Manipulation (PEPM’06), Charleston, South Carolina, January
2006. ACM SIGPLAN.

[4] N. Burrus, A. Duret-Lutz, Th. Géraud, D. Lesage, and R. Poss. A static C++ object-
oriented programming (SCOOP) paradigm mixing benefits of traditional OOP and
generic programming. In Proceedings of the Workshop on Multiple Paradigm with OO
Languages (MPOOL), Anaheim, CA, USA, Oct. 2003.

[5] V. David, A. Demaille, and O. Gournet. Attribute grammars for modular disam-
biguation. In Proceedings of the IEEE 2nd International Conference on Intelligent Computer
Communication and Processing (ICCP’06), Technical University of Cluj-Napoca, Roma-
nia, Sept. 2006.

[6] T. Ekman. A case study of separation of concerns in compiler construction using
JastAdd II. In The Third AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), 2004.

[7] E. R. Gansner and S. C. North. An open graph visualization system and its applications
to software engineering. Software — Practice and Experience, 30(11):1203–1233, 2000.

[8] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: being lazy
with class. In HOPL III: Proceedings of the third ACM SIGPLAN conference on History of
programming languages, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-766-X.

[9] ISO/IEC. ISO/IEC 14882:2003 (e). Programming languages — C++, 2003.

[10] M. d. Jonge. Pretty-printing for software reengineering. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM’02), pages 550–559, Washington, DC,
USA, Oct. 2002. IEEE Computer Society. ISBN 0-7695-1819-2.

[11] D. E. Knuth. Semantics of context-free languages. Journal of Mathematical System
Theory, pages 127–145, 1968.

[12] M. Rodeh and M. Sagiv. Finding circular attributes in attribute grammars. Journal of
the ACM, 46(4):556–575, 1999.

[13] S. D. Swierstra, A. Baars, and A. Löh. The UU-AG attribute grammar system. http:
//www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem, 2003.

[14] E. Visser. A family of syntax definition formalisms. In M. G. J. van den Brand
et al., editors, ASF+SDF’95. A Workshop on Generating Tools from Algebraic Specifications,
pages 89–126. Technical Report P9504, Programming Research Group, University of
Amsterdam, May 1995.

[15] E. Visser. Scannerless generalized-LR parsing. Technical Report P9707, Programming
Research Group, University of Amsterdam, July 1997.

16

http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem

	Introduction
	Attribute Grammars
	Definitions
	Propagation properties
	Propagation algorithms

	Transformers Attribute Grammars
	Framework
	Compilation process
	Execution
	Development tools

	Discussions
	Related work
	Future work

	Conclusion

