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Dividing a picture into areas of interest is called picture segmentation, it is useful in particular to point
out cancerous cells in medical imaging. The Watershed Transform provides such a segmentation and can
be implemented in many ways. Here we will focus on the Topological Watershed, an efficient algorithm
producing results with nice properties. In this report, we will explain all the mechanisms of this algorithm
and then show that thanks to Milena, the C++ generic image processing library of the Olena platform,
developed at LRDE, it can handle classical image format as well as trickier ones like pictures mapped on
general graphs.

Segmenter une image consiste à en extraire les régions d’intérêt, par exemple pour séparer des cellules
cancéreuses en imagerie médicale. L’approche par transformation de la ligne de partage des eaux (LPE)
ou Watershed Transform permet d’obtenir une telle segmentation. Il en existe de nombreuses définitions,
ainsi que diverses implémentations, dont certaines sont à la fois performantes et produisent un résultat
avec de bonnes propriétés, comme le Topological Watershed. Ce rapport présentera

l’implémentation d’un algorithme calculant cette LPE au sein de Milena, la bibliothèque C++ géné-
rique de traitement d’images de la plate-forme Olena, développée au LRDE. Nous nous intéresserons tout
d’abord aux les formats d’images “classiques”, puis la généralisation à des formats d’images plus inhabi-
tuels (images à support de graphe généraux, etc.).
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Introduction

Milena is a generic and efficient image processing library. As it is aimed to be used by people
working in medical imaging, it needs some image segmentation algorithm in order to fulfill the
needs of its users.

Image segmentation is a process used to disclose areas of interest. It has many applications
in biology or medecine, for exemple to locate tumors, to measure tissue volume... But also for
some tasks like face or fingerprint recognition, traffic regulation, site localisation in satellite im-
ages...

Many approaches had been implemented to locate the limits between image regions:

• edge detection that focuses on the characteristic lines between regions;

• region detection that focuses on the detection of the regions (region growing, water-
shed...);

• hierarchic fragmentation that clusters the image in order to get a stack of growing regions
(histogram-based methods...);

• stochastic algorithms like neural networks.

This paper focuses on watershed algorithms. In fact these algorithms are easy to apprehend
and are very flexible, one can choose to use a more efficient algorithm at the expense of infor-
mation. A quasi linear topological watershed and its implementation in Milena is presented
here.

After a brief reminder on the principle of a basic watershed, we will present some common
watershed algorithms. Then we will describe step by step a topological watershed algorithm.
Finally, a little tool designed to display exotic image formats is presented to conclude.
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Chapter 1

State of Art

1.1 Watershed Algorithm

The watershed transformation is a segmentation algorithm mainly used because of its simplic-
ity. It allows a user to slice a greyscale image by filling an image with water. Let us consider a
2D image as a heightmap: each point’s altitude is given by its gray level. Consequently, lighter
areas are seen as mountains and darker ones as basins.
The relief is now filled with water through holes made in the minimas. Each time that water
from two different basins meet, a dam is built. Once the whole image is flooded, the image is
partitioned into basins separated by the dams, called watershed lines.

Many implementations exist and some very efficient algorithms have been proposed.

1.2 Classical Immersion Watershed

A commonly used algorithm of watershed is the immersion algorithm : it consists in flooding
the image with water. These are the main steps of the algorithm :

• Take the image as an heightmap1

• Cut holes in the local minima (darkest points)

• Fill the image through the holes

• Each time two basins meet, build a dam at the top of the crest

• Once the image is flood, the dams are the watershed lines

To illustrate this algorithm, let’s take a 1D image and represent it as a function. Then, apply
the steps described above.

1the grey level of a pixel is taken as its altitude
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The 1D image seen as an heightmap The first dam is built when basins meet

A second dam is built The image is flood. Red lines are watershed
lines.

1.3 The Need for a Topological Watershed

Unfortunately, much information is lost during a classical watershed, essentially contrast in-
formation. In fact, most of the time the watershed is in the first stages image processing. It is
commonly followed by a region merging in order to obtain the desired granularity. In order to
select the region to merge, a binary partition of the image is not enough. The altitude of basins
and edges are essential information needed to take a decision on which components to merge.
In fact, computing each component’s minimum can be done afterward, but it requires a lot of
useless operations.

We want a Watershed that preserves more information on the image. A topological watershed
has some nice properties and gets rid of major defaults of classical watersheds:

• thickness: if a limit between two basins is delimited by several pixels of the same height,
a classical watershed would leave a thick limit between the basins. This behavior is a pain
because the pixels in this limit don’t belong to any component. The Topological Watershed
ensures that all limits are 1 pixel thick;

• contrast: as said before, keeping the contrast of the picture is essential (Najman and Cou-
prie, 2003). In a topological watershed, the height of the edges represents the height of the
lowest mountain between the components.
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1.4 Watershed in Milena

There is, for the moment, only one watershed algorithm in Milena: Meyer’s Watershed which
is one of the simplest. Many image processing libraries do not implement any watershed and
the one who do implements Meyer’s algorithm most of the time.

Few implement a topological watershed – without giving their complexity – like Vigra or
Wolfram and others have chosen to propose a classic watershed with the ability to choose the
level of segmentation like Insight. It is in fact implemented in Pink, because the algorithm
creators are also the authors of this library.



Chapter 2

Topological Watershed

In 2005, Michel Couprie, Laurnet Najman and Gilles Bertrand proposed a quasi-linear imple-
mentation for the topological watershed in (Couprie et al., 2005). The reader is highly encour-
aged to read their paper for a full comprehension of the algorithm. Here is a graphical example
of the algorithm in order to give a general idea of it to the reader. Detailed mechanisms are not
described here, please refer to the paper.

2.1 The idea

The idea of the topological watershed is to let the water “erode” the relief of the picture. This
operation is called “lowering” it consists in reducing the altitude of a point to its minimum.

The processus of topological watershed

2.2 The algorithms

Before describing the general layout of the algorithm, three little tools need to be introduced :

• the component tree is a segmentation of the image;

• the Least Common Ancestor of two points a and b that gives the furthest node from the
root that is an ancestor of both points;
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• the characterisation of points that uses the tools described above to let us know if a point
can be lowered or not.

After this preprocessing, two sub-algorithms are applied to the image :

• M-watershed;

• W-watershed.

In fact, the topological watershed can be done by applying successively the W-watershed un-
til stability (when the image stays the same after two following iterations) but this repetition
is costly. That’s why we need the M-watershed : applying the M-Watershed before guarantees
that a single iteration of the W-Watershed is needed to obtain the topological watershed.

We will also introduce an algorithm that merge both M and W watersheds. This algorithm is
faster but offers less liberty to the user.

2.3 The Component Tree

The component tree can be seen as a segementation of the image in layers of increasing height.
This structure is needed for the characterisation of points.

1 1 1 1 3 0 0 0 0

0 0 0 3 2 3 0 0 0

0 0 3 2 2 2 3 0 0

0 3 1 3 2 3 1 3 0

0 0 3 0 2 0 2 0 0

0 0 0 0 2 0 0 0 0

Figure 2.1: example image to process

This algorithm, usually named max-tree (or min-tree) consists in building a hierarchy of the
connected components of the image (represented by a tree).

Let I be an image and k ∈ K. Let’s define a binary threshold of the image such as:

∀p ∈ I, Ik(p) =

{
1 if I(p) ≤ k

0 otherwise
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By overlaying the thresholds, we obtain a tree of the components (2.2).

c c c c g b b b b

a a a g f g b b b

a a g f f f g b b

a g e g f g d g b

a a g a f b f b b

a a a a f b b b b

g

f

c

a

b d

e

Figure 2.2: The component mapping and its tree

Since this algorithm was already implemented in Olena 0,11, I have just imported it and made
a few corrections. This tree will be used later to determine the type of a point.

2.4 The Least Common Ancestor

We defined by the LCA of two nodes a and b the furthest node from the root which is an ancestor
of a and b. Even if this algorithm seems unrefined, computing it in a linear time is harder than
it seems. Furthermore, this algorithm is extensively called in the watershed and is one of the
main culprits for the complexity of the algorithm. In fact, thanks to it and to the component
tree, one can determine if a set of points belongs to a shed or not.

2.4.1 A Naive Implementation

When looking at the problem, one would code this basic algorithm by intuition:

1 Node LCA (Tree t, /* the component tree */
2 Node a, /* the first node */
3 Node b) /* the second node */
4 begin
5 /* The level of the node is known, first climb up at the same level */
6

7 while (a.level 6= b.level)
8 if (a.level < b.level)
9 a ← a.father

10 else
11 b ← b.father
12

13 /* This is not the best way to do this but this is not important */
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14

15 while (a 6= b)
16 a ← a.father
17 b ← b.father
18

19 return a
20

21 end

The complexity of this algorithm is O(log(n)) but, since the tree will not change during the
process, it is easy to see that if the LCA of two nodes is computed one time, we can store the
result for a future request. Moreover, we can preprocess the tree in order to answer every
request in a linear time.

2.4.2 A Naive Implementation With Preprocessing

The first idea for this implementation is to build a n×n matrix that gives, for each pair of nodes,
the LCA.

1 Matrix lca[n][n];
2

3 Preprocess (Tree t)
4 begin
5 for each p in t
6 for each q in t
7 lca[p][q] = LCA(p, q) /* call to our previous LCA function */
8 end
9

10 Node LCA2 (Tree t, /* the component tree */
11 Node a, /* the first node */
12 Node b) /* the second node */
13 begin
14 return lca[a][b]
15 end

This implementation raises two problems:

• the huge size of the matrix: let’s take a 1000 × 1000 image in which every pixel is a
component. The tree has n = 1000 × 1000 = 1000000 nodes, so the matrix size is s =
1000000 × 1000000 = 1012. It is impossible for a computer to handle such an amount of
data.

• the LCA processing time: in fact, this implementation still relies on the naive LCA imple-
mentation described above.

Even if the preprocessing can help to improve the LCA speed, we need to look at the problem
closer to find an efficient way to improve it. In fact, this idea is not new. D. Harel and R.E.
Tarjan D. Harel (1984) have proposed an algorithm to answer this question in linear time. Let’s
see how to do so and propose an implementatable algorithm.
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2.4.3 LCA Seen as a Range Minimum Query (RMQ)

The RMQ problem consists in finding the local minimum in a subarray:

Given a length n array A and two points indices i and j in [1..n], RMQA(i, j) returns the index of the
smallest element in the subarray A[i..j].

In M.A. Bender (2000), complete description and proof of the following affirmations is given.
The step between LCA and RMQ is given in the Observation 4:

Observation 4 The LCA of nodes u and v is the shallowest node encountered between
the visits to u and to v during a depth first search traversal of T

This observation is obvious with an example. Let’s take the example component tree com-
puted above and build an Euler Tour1 of it (2.3).

g

f

c

a

b d

e

Node g f c a c f b f d f g e g
Depth 0 1 2 3 2 1 2 1 2 1 0 1 0

Figure 2.3: Example of LCA computing through RMQ resolution. The LCA of a and d is the
RMQ of a and d in the depth array coresponding to the Euler Tour. The minimum (in bold) is
the minimum of the subarray (in blue).

This problem is also called ±1 RMQ because the difference between two values in the depth
array is always 1. Now that the LCA problem is reduced to a RMQ, we can focus on a more
efficient way to preprocess the datas.

2.4.4 Fast Preprocess for the RMQ Problem

There are many ways to solve this problem. The chosen solution is a good compromise between
speed and memory consumption. The idea is to precompute all 2k long requests only (with
1 ≤ k ≤ n log n). This can be done in O(n log n) thanks to dynamic computing. Then, to answer
the RMQ(i, j) request, one just has to take two overlapping 2k long subarrays that cover the

1The Euler Tour of T is the sequence of nodes obtained by writing down each node encountered during a deprh first
search traversal. Each internal node is encountered c+1 times (with c =number of children) and each leaf only one time.
If T has n nodes, the Euler Tour is 2n + 1 long.
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[i..j] subarray (with k = blog2(j − i)c) and return the minimum of these two blocks. Let’s see
how it works on our previous example (2.4).

Node g f c a c f b f d f g e g
Depth 0 1 2 3 2 1 2 1 2 1 0 1 0

Po
si

ti
on

Si
ze

2

Si
ze

4

Si
ze

8

0 0 (g) 0 (g) 0 (g)
1 1 (f) 1 (f) 1 (f)
2 2 (c) 5 (f) 5 (f)
3 4 (c) 5 (f) 10 (g)
4 5 (f) 5 (f) 10 (g)
5 5 (f) 5 (f) 10 (g)
6 7 (f) 7 (f)
7 7 (f) 10 (g)
8 9 (f) 10 (g)
9 10 (g) 10 (g)

10 10 (g)
11 12 (g)

Example for a (pos. i = 3) and d (pos. j = 8):

1. determine k, the size of our 2 overlapping subarrays:

k = blog2(j − i)c = 4

2. identify the k long subarrays:

• [i..i + k] = [3..7]

• [j − k..j] = [4..8]

3. find the RMA thanks to our matrix:

RMA(i, j) = min(M [i, log2 k], M [j−k, log2 k]) = 5 (f)

Figure 2.4: An exemple of RMQ request processed in linear time

2.4.5 From LCA to Highest Fork

In order to process our image, we would like to apply the LCA on all the neighbours of a point.
The HF (Highest Fork) of a set of points V is the LCA of all points of V that doesn’t belong
to V (the highest fork may not exist). Thanks to this definition, we can now go further in the
algorithm with the characterisation of the points.

2.5 Characterisation of Points

2.5.1 Goal

The topological watershed algorithm consists in lowering points. But to lower a point, one has
to know the new value to give to this point, that’s the purpose of the characterisation. There are
many kinds of interesting points in a picture (see Couprie et al. (2005)) but we will focus on two
of them in particular :

• W-destructible points that belong to a shed and can be lowered;

• M-destructible points that belong to a basin and can be lowered too;

• W-constructible points that are neither M-destructible, neither W-destructible.

Moreover, the following algorithms can indicate if a point is M-destructible or W-destructible
but if they are, they also give the component at which they can be attached (and therefore the
height at which the point can be lowered).



2.5 Characterisation of Points 14

2.5.2 Preliminary

Given two points p, q ∈ I , we say that p and q are k-separated in I if they belong to the same
component in Ik and to different components in Ik−1. We can also write I(p, q) = k. This
operation is algorithmically equivalent to a highest fork.

c c c c g b b b b

a a a g f g b b b

a a g f f f g b b

a g e g f g d g b

a a g a f b f b b

a a a a f b b b b

Component mapping

1 1 1 1 0 1 1 1 1

1 1 1 0 0 0 1 1 1

1 1 0 0 0 0 0 1 1

1 0 1 0 0 0 1 0 1

1 1 0 1 0 1 0 1 1

1 1 1 1 0 1 1 1 1

I1

1 1 1 1 0 1 1 1 1

1 1 1 0 1 0 1 1 1

1 1 0 1 1 1 0 1 1

1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

I2

Figure 2.5: Example with points in a and d: they belong to separated components in I2 and to
the same component in I1. They are 2-separated, which is also the height of their highest fork
(f).

2.5.3 W-destructible Points

A point p is W-destructible if, for any q and r neighbours of p, I(q, r) < I(p).

Our function not only returns whether a point is W-destructible or not but also the compo-
nent to which the point should be attached.
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1 component W-destructible (point p)
2 begin
3 set_of_points V ← neighbours of p lower than p
4 if (V is empty)
5 return not_W-destructible
6

7 point hf = highest_fork(V)
8

9 if (not (hf exists))
10 return component(min (V))
11

12 if (hf.height < p.height)
13 return component(hf)
14

15 return not_W-destructible
16 end

Interpretation. As we can see in the algorithm, there are two types of W-destructible points:

• crest: if the highest fork exists and is lower than p, then p is on a watershed line and can
be lowered to the value of the lowest crest around it.

0 0 0 0 0

1 0 0 0 0

1 1 2 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1 1 1 1 0

0 0 0 0 1

0 0 0 0 0

Figure 2.6: The point is W-destructible. Its neighbours are 1-separated, so it is lowered to 1.

• gradient: if the highest fork does not exist, p is in a slope and can be lowered to the value
of the lowest of its neighbours.
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4 5 6 7 8

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

0 1 2 3 4

4 5 6 7 8

2 4 5 6 7

2 2 4 5 6

1 2 2 4 5

0 1 2 2 4

Figure 2.7: These points are W-destructibles. Their lowest neighbours are at 2, so they are
lowered to 2.

One can see here that lowering the points in 2.7 is pointless because the will be lowered again
to 0 further on in the algorithm. In order to avoid this behaviour, we want a stronger condition
on our points in order to lower each point once and for all.

2.5.4 M-destructible points

An M-destructible point is a W-destructible point which becomes part of a minimum when low-
ered. The interest of this characterisation is obviously to spot the points which can be lowered
once and for all. Let’s take our previous example and see the M-destructible points.

1 component M-destructible (point p)
2 begin
3 set of points V ← neighbours of p lower than p
4

5 if (V is empty)
6 return not_m-destructible
7

8 if (min(v) is not a leaf)
9 return not_m-destructible

10

11 point hf = highest_fork(V)
12

13 if (not (hf exists))
14 return component(min (V))
15

16 return not_m-destructible
17 end



17 Topological Watershed

4 5 6 7 8

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

0 1 2 3 4

4 5 6 7 8

3 4 5 6 7

2 3 4 5 6

0 2 3 4 5

0 0 2 3 4

Figure 2.8: These points are M-destructibles. Their lowest neighbours are at 0, so they are
lowered to 0. They can’t be lowered anymore.

2.5.5 W-constructible

A W-constructible point is a point which is neither W-destructible, neither M-destructible. The
algorithm differs from the previous ones because it should be used on an inverted image.

1 component W-constructible (point p)
2 begin
3 set of points V ← neighbours of p greater than p
4

5 if (V is empty)
6 return not_w-constructible
7

8 if (size(V) == 1)
9 return V[1]

10

11 point hf = highest_fork(V)
12

13 if (hf.height ≤ p.height)
14 return not_w-constructible
15

16 return hf
17 end

2.6 M-watershed

The M-Watershed is a full-fledged watershed and is the first step of the topological water-
shed : it prepares the image for the W-watershed. Indeed, the W-Watershed tries to lower
W-destructible points, but, as seen before, once that some points have been lowered, some other
points become W-destructible according to the new image and need to be lowered again, these
points are M-destructible points.
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This watershed’s goal is to remove all M-destructible points. Since a point needs to have a
minimum near it in order to be M-destructible, the algorithm takes image minima as starting
points. To process all points in importance order, the points are enqueued in a priority queue
depending on their height. Then they are all lowered one by one until the algorithm reach the
crests.

A strong property of this algorithm is given in Couprie et al. (2005):

Property 13 Whatever the chosen priority function, the output of Procedure M-watershed
is an M-watershed of the input.

This means that the user could change the priority function if he wants to get another water-
shed.

Let us now see the pseudo-code of this algorithm. Then a step by step example is given, on a
more explicit image than the one used before.

1 M-Watershed (image I,
2 component mapping C)
3 begin
4 priority queue L
5

6 for all p in I
7 c ← M-destructible(p)
8 if (c 6= not_m-destructible)
9 L.enqueue(p)

10 mark(p)
11

12 while (L is not empty)
13 p ← L.pop()
14 c ← M-destructible(p)
15 if (c 6= not_m-destructible)
16 I(p) ← height(c)
17 C(p) ← c
18 for all neighbours q of p
19 if (q is not marked)
20 c ← M-destructible(q)
21 if (c 6= not_m-destructible)
22 L.enqueue(q)
23 mark(q)
24 end
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 11 11 11 4 4 3 3 0 5 11 11 11 3 2 0

0 3 12 6 7 5 11 7 6 5 7 11 5 7 7 12 4 0

0 15 7 4 2 3 5 11 11 11 11 5 3 1 7 7 15 0

0 3 14 7 3 5 11 8 7 8 8 11 5 3 7 14 5 0

0 1 2 13 11 11 3 2 2 1 2 4 11 11 13 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Circled points are M-destructible and will be lowered

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 11 0 0 0 0 0 0 11 11 11 0 0 0

0 0 12 2 2 2 11 7 6 5 7 11 1 1 1 12 0 0

0 15 7 2 2 2 5 11 11 11 11 5 1 1 1 7 15 0

0 0 14 2 2 2 11 8 7 8 8 11 1 1 1 14 0 0

0 0 0 13 11 11 0 0 0 0 0 0 11 11 13 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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This reduction can seem unnatural but the 0s on each side of the points belong to the same component.
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Final result

Figure 2.9: M-Watershed step by step
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2.7 W-Watershed

The W-Watershed, also called W-thining, is the second step of the topological watershed. It will
flatten the edges so that the height of the watershed line between two components will become
the altitude of the minimal crest between the two components.

In order to lower W-destructible points, we run through the picture by levels in ascending
order and lower the W-destructible points. The algorithm has a little optimization: every time
a point is lowered, we look at its neighbours to see if another point is W-destructible (through
the variables K and H in the algorithm). So each time a point is lowered, we know that it will
not be lowered anymore. In our example, all W-points are lowered in the same loop thanks to
this mechanism.

1 W-Watershed(image I,
2 component mapping C)
3 begin
4 image K;
5 component mapping H;
6

7 array of sets of points L[number of levels in I];
8

9 for all p in I
10 c ← W-Destructible(p)
11 if (c 6= not_w-destructible)
12 L[height(c)].insert(p)
13 K(p) ← height(c)
14 H(p) ← c
15

16 for all levels k of I in ascending order
17 while (L[k] is not empty)
18 p = L[k].extract_first()
19 if (K(p) == k)
20 I(p) ← k
21 C(p) ← H(p)
22

23 for all neighbours q of p
24 if (k < I(q))
25 c ← W-Destructible(q)
26 if (c == not_w-destructible)
27 K(q) ← \infinity
28 else
29 if K(q) 6= height(c)
30 L[height(c)].insert(q)
31 K(q) ← height(c)
32 H(q) ← c
33 end
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Circled nodes are W-destructible points
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Final result

Figure 2.10: W-Watershed step by step

2.8 Topological Watershed

This algorithm is a merge of the algorithms described above. This is obviously faster but one
can’t use a customized priority function as in the M-watershed, but as a previous step, it is
needed to invert the colors of the image.

1 Topo-Watershed (image I,
2 component mapping C)
3 begin
4 priority queue L
5

6 for all p in I
7 if (C(p) is a leaf)
8 mark p // p is fixed
9

10 for all p in I
11 if (p is marked)
12 enqueue neighbours of p
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13

14 while (L is not empty)
15 p ← L.pop()
16 c ← W-constructible(p)
17 if (c 6= not_W-constructible)
18 I(p) ← height(c)
19 C(p) ← c
20 if (C(c) is a leaf)
21 mark c
22

23 for all neighbours q of p
24 if (q is not marked and not enqueued)
25 L.enqueue(q)
26 end
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TikZ Export

3.1 The Need for an Image Output

Milena is able to manipulate many image types including exotic ones like graph images. Unfor-
tunately, these unusual types cannot be visualized simply. Therefore we need a tool to visualize
such images but also to integrate them in reports since their purpose is highly theoretical for
the moment. A typical example would be graph images which can be valuated on the nodes,
on the edges or on both.

We want to:

• visualize clearly various but little images;

• tag images with their values and chosen colors;

• modify generated images after resizing, add annotations. . .

3.2 From Milena to LATEX

After a little overview of all existing tools, the PGF LATEX extension seems to meet all our re-
quirements. It is easy to use thanks to its little programming languages (TikZ), it is easy to
customize, integrate in a LATEX report or to output it in an eps file for an external use.

For the moment, only greyscale or rgb 2D images (and compatible) can be displayed. For
other color types, the easiest way is to provide a conversion function to RGB or Greyscale. For
other image types, we can imagine a conversion toward 2D coordinates or using the gnuplot
compatibility of pgf for 3D images for example.

The only problem encountered to convert Milena images to TikZ was the color format.

3.3 Tikz Color Conversion Algorithm

In TikZ, color rendering is made through the xcolor extension. This extension allows color
definitions in multiple formats: RGB, CMYK . . .
Colors can also be aliased thanks to the definecolor command:
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\definecolor{alias}{value}

Or their color can be defined directly in a TikZ structure:

node [color=red]

Unfortunately, using definecolor is a pain for TEX capacity and further human reading. Plus,
for an obscure reason, it is impossible to use anything else than the mix color format to define
colors in TikZ. The most simple workaround for this issue was to convert RGB colors to the
color mix format.

The color mix format is defined as follows (C and C ′ are predefined names of colors):

|C
|C ! p ! C ′ = p× C + (1− p)× C ′

This unusual format is obviously not supported by Milena but a naive algorithm has been
implemented to convert RGB value to it.

This algorithm consists in the following simple steps:

• compute the percentage of black in the color

• normalize the image by removing black

• compute the percentage of the max color

• normalize the image by removing the max color

• compute the percentage of the second color

• normalize the image by removing the last color

• compute the percentage of the last color
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Figure 3.1: The RGB to TikZ algorithm step by step

3.4 Examples

All images displayed in this paper have been generated by Milena in TikZ and here is an exam-
ple of a color image : 3.2.
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Figure 3.2: TikZ generated colored image
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Conclusion

The implemented algorithm is functional and gives images that fit exactly the requirements.
There is still some work left to optimize the transformation by speeding up inner algorithms. A
region merging algorithm can also be implemented to increase the interest of the algorithm. A
variant of the algorithm can also be done to work on graph image and on coloured ones.

As seen is the state of art, this algorithm is not widespread. This is a real advantage compared
to other image processing library, notably in term of efficiency because such an algorithm can
be costly. With our quasi-linear implementation, it will be easy to process large images, making
Milena a true competitor in this domain.

The TikZ export function can be enhanced in order to support more image types. Many
options could be added (like tue ability to highlight some points) in order to make it more user
friendly.
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Example

Original image of Lena Meyer’s Watershed Topological Watershed
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