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Abstract: Image registration is a process widely used in image processing. Considering two measurements
A and B of the same object (say, a x-ray and a magnetic resonance image (MRI)), this technique estimates
a transformation of A so that the object in A becomes aligned with the object in B. Basically this technique
is able to superimpose the image A over the image B, allowing the client to see mixed information. This
presentation will discuss the implementation of a fast image registration algorithm in Milena, the Cxx
generic image processing library from the Olena platform, developed at the LRDE. Specific techniques
used to improve this process will be introduced.

Résumé : Le recalage d’images est une technique classique en traitement d’images. Soit A et B deux
images représentant le même objet (par exemple une radiographie et une image à résonance magnétique
(IRM)), on calcul une transformation de A telle que le recalage de l’objet dans A soit aligné sur l’objet dans
B. Typiquement, cette technique peut permettre la lecture simultanée de deux mesures A et B. Cet exposé
discutera des procédés de recalage rapide utilisés dans Milena, la bibliothèque C++ générique de traite-
ment d’images de la plate-forme Olena, développée au LRDE. Certaines amélioration seront présentées.
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Chapter 1

Introduction

Image registration is to align objects from multimodal images. The following image shows the
registration of a tumor coming from two different images, a magnetic resonance image (MRI)
and an ultrasound. The resulting image on the right is the addition of these images. Information
are clearly readable because registration has been correctly performed.

Copyright c© Institut Gustave Roussy (Villejuif)

This paper describes a computationally efficient registration of 2-D and 3-D shapes. Based on
the iterative closest point (ICP) algorithm, the method requires only the ability to find the closest
point on a geometric entity to a given point. The ICP algorithm always converges monotoni-
cally to the nearest local minimum of a mean-square distance metric. Given a “model” shape
and a sensed “data” shape that represents a major portion of the model shape, one can use our
algorithm to register those shapes. Important applications of this method are shape registration,
shape alignment or estimation of congruence between shapes.

This work is a part of the Olena project. Olena is a generic image processing library in C++
developped at the LRDE. This work on fast image registration has been performed in a context
of cooperation with the Gustave Roussy Institute (Villejuif).

The first part of this report quickly recalls mathematical notions used further in the paper. In
order to enable readers to reproduce our work, chapter two introduces in details an improved
version of the iterative closest point algorithm from Bresl and McKay. The third chapter presents
the new techniques we used to improved the efficiency of shape registration based on ICP.
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Chapter 2

Mathematical Preliminaries

Expected value Expected value (or mathematical expectation, or mean) of a discrete random
variable is the sum of the probability of each possible outcome of the experiment multiplied by
the outcome value. Let X, be a random variable,

E(X) =
∑

i

pixi (2.1)

Standard Deviation The standard deviation is a measure of statistical dispersion of values.
Standard deviation of a random variable X is defined as:

σ =
√
E((X − E(X))2) =

√
E(X2)− (E(X))2 (2.2)

Mean Square Error In statistical modelling, the MSE is defined as the difference between the
actual observations and the response predicted by the model and is used to determine whether
the model does not fit the data.

The MSE of an estimator θ̂ with respect to the estimated parameter θ is defined as

M̂SE(θ̂) =
1
n

n∑
j=1

(θj − θ)2 (2.3)

Root Mean Square The Root Mean Square (RMS) is root square of the mean of the square
values.

xrms =
√
〈x2〉 (2.4)

where 〈. . .〉 denotes the arithmetic mean.

Rigid Transform An alignment or a rigid transform is the application of a translation and a
rotation.
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If P is a set of point, ~q(P ) means that we apply the rigid transform ~q to every point in P .

Closest Point Given to shape C and X .
The closest point of a point pc in C is the point px in X that minimizes the distance d(pc, px).

Projection The projection of C over X is the set of every closest points.
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Fast Iterative Closest Point (ICP)

3.1 ICP Algorithm

Given too point set P and X , this algorithm produces an optimal rigid transform ~q to a local
minimum Xk such as the mean square error between Xk and ~q(P ) is minimized.

Our implementation of the iterative closest point algorithm uses the quaternion-based algo-
rithm that is only valid in two and three dimensions. However the singular value decomposi-
tion (SVD) algorithm can be used in order to generalize the method to n dimensions (Arun et al.
[1], Gu et al. [11]).

The center of mass ~µp of the measured point set P and the center of mass ~µx for the X point
set are given by

~µp =
1
Np

Np∑
i=1

~pi and ~µx =
1
Nx

Np∑
i=1

~xi (3.1)

The cross-covariance matrix Σpx of the set P and X is given by

Σpx =
1
Np

NP∑
i=1

[ (~pi − ~µp)(~xi − ~µx)t ] =
1
Np

NP∑
i=1

[ ~pi ~xi
t]− ~µp ~µx

t. (3.2)

The cyclic components of the anti-symmetric matrix Aij = (Σpx − ΣT
px)ij are used to form

the column vector ∆ = [A23A31A12]T . This vector is then used to form symmetric 4 × 4 matrix
Q(Σpx)

Q(Σpx) =
[
tr(Σpx) ∆T

∆ Σpx + ΣT
px − tr(Σpx)I3

]
(3.3)

Where I3 is the 3×3 identity matrix. The unit eigenvector ~qR corresponding to the maximum
eigenvalue of the matrix Q(Σpx) is selected as the optimal rotation. The Jacobi or the power it-
eration can be applied to the matrix Q(Σpx) so as to obtain this eigenvector (Flannery et al. [6],
Golub and Loan. [9]).
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The optimal translation vector is given by

~qT = ~µx −R( ~aR) ~µp. (3.4)

The 7-space vector ~qk, representing the rigid transform in dimension 3, is constructed as a
concatenation of ~qR and ~qT . That is

~qk = [~qR|~qT ]t (3.5)

Initially, ~qk is the identity vector and Pk = P .
At the beginning of every iteration, A cloud Xk, which is a projection of Pk over X , is built.
Then, the current vector ~qk is computed based on P and Xk. Finally, ~qk is applied to P . Conver-
gence is reach when the mean square error falls below a predefined value t.

1. Compute the projection: Xk = CP (Pk, X)

2. Compute the registration: ~qk = Q(P0, Xk)

3. Apply the registration: Pk+1 = ~qk(P0)

4. Do it until convergence: MSE(~qk(P ), X) < t

3.2 Accelerated ICP

This optimization was originally proposed by Besl and McKay [2]. The idea of their paper was
to prognosticate on the evolution of ~qk, the rigid transform.

As the iterative closest point algorithm proceeds, a sequence of registration vectors is gen-
erated: ~q0, ~q1, ~q2, ~q3, ~q4, . . . , which traces out a path in the registration state space from the
identity transformation toward a locally optimal shape match. Consider the difference vector
sequence defined by

∆~qk = ~qk − ~qk−1 (3.6)

which defines a direction in the registration state space.
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Table 3.1: Variation of qk in the registration state space.

Let the angle in 7 space between the two last directions be denoted

θk = cos−1 ∆~qk
t∆~qk−1

‖~qk‖‖~qk−1‖
(3.7)

and let δθ be a sufficiently small angular tolerance (e.g., 10˚). If

θk < δθ and θk−1 < δθ (3.8)

then there is good direction alignment for last three registration state vectors: ~qk, ~qk−1, and
~qk−2. Let dk, dk−1, and dk−2 be the associated mean square errors, and let vk, vk−1, andvk−2 be
associated approximate arc length argument values:

vk = 0, (3.9)
vk−1 = −‖∆~qk‖, (3.10)
vk−2 = −‖∆~qk−1‖+ vk−1 (3.11)

Next, a linear approximation and a parabolic interpolant to the last three data points are
computed:

d1(v) = a1v + b1, (3.12)

d2(v) = a2v
2 + b2v + c2 (3.13)

which gives us a possible linear update, based on the zero crossing of the line, and a possible
parabola update, based on the extremum point of the parabola:

v1 = −b1/a1 > 0, v2 = b2/2a2 (3.14)
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Besl and McKay adopt a maximum allowable value vmax. According to the following condi-
tion ~qk is updated.

1. If 0 < v2 < v1 < vmax or 0 < v2 < vmax < v1 use the parabola-based updated registration
vector: ~qk

′ = ~qk+v2∆~qk/‖∆~qk‖ instead of the usual vector ~qk when performing the update
on the point set, i.e., Ck+l = ~qk

′(C0).

2. If 0 < v1 < v2 < vmax or 0 < v1 < vmax < v2 or v2 < 0 and 0 < v1 < vmax, use the
line-based updated registration vector ~qk

′ = ~qk +v1∆~qk/‖∆~qk‖ instead of the usual vector
~qk.

3. If both v1 > vmax and v2 > vmax, use the maximum allowable update ~qk
′ = ~qk +

vmax∆~qk/‖∆~qk‖ instead of the usual vector ~qk.

Based on Bresl and McKay recommendation, we used an arbitrary vmax value set to 25‖∆~qk‖.

This technique significantly improved the number of iterations needed to converge to the
local minimum. Though sometimes without consequences on the number of iterations, this
methods allowed us to earn an average of 20 iterations in some specific cases. Generally, this
method improves results in terms of time and number of iterations (Besl and McKay [2]).
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Our proposals

This chapter introduce the work performed at the LRDE during the year 2007.

It is easy to see that the costliest part of the iterative closest point algorithm is the projection
step (3.1). Indeed, finding closest points has a complexity in n2. The following chart based on
gprof analysis, clearly shows the importance of this step.

Table 4.1: ICP: Percentage of running time

We propose two original methods for the computing of closest points. Those methods, both
improving running time, will be compared. Then an efficient implementation of the multi-scale
registration is described. Finally, we present a new method introducing correction a posteriori of
ICP results.

4.1 Distance Map Computation

Distance map Considering a binary image I on a domain D(I), distance map is an image of
points, that is an array holding points, that contains in every point p of D(I) the closest point of
p.

We saw that during the registration of a cloud of points P over an another cloud X , only the
point set P was moving. Closest points are then taken in X for every point in P . We propose
here to pre-compute closest point for all the domain of X so as to do not have to compute it
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during the registration.

A distance map can be computed in O(d), where d is the number of point in D(I). We will
not describe the implementation of such a map since E. Folio produced a consequent report on
the subject [7].

Lazy map While still a map, this version is called lazy because it computes the distance only
at call time, only the first though, since results are stored for every point. In this way we can
say the version uses concepts of the dynamic programming paradigm. However, This calculus
is performed in O(n2), which is quite costly.

Listing 4.1: Lazy Map

c l a s s lazy_map
{

. . .
const point
operator ( ) ( const point& p ) const
{

i f ( is_known ( p ) )
return value ( p ) ;

value ( p ) = c l o s e s t _ p o i n t ( p ) ;
is_known ( p ) = t rue ;
return value ( p ) ;

}
}

Using our test set (10 different registrations) we found out that more than 50% of closest point
requests were computed at least twice. We saw that the transformation evolved first quickly
then very slowly. Moreover we would be able to show that the translation only evolved even
more quickly. Actually, most of the registration occurs in a very local area. Most of the clos-
est point research is performed in the same small area. It results that closest point of the same
points have a high probability to be computed twice.

Typically we obtained an improvement of 39% using the lazy map compared to the original
algorithm (not lazy 3.1). The following chart shows 10 different registrations and the part of
closest point (CP) computed compared to the number of closest point requested (actually com-
puted by the not lazy version).
We observe that the lazy map strongly decreases the number of closest points calculated (mean
percentage of CP Computed/CP requested: 42.48, median: 39.04).
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Table 4.2: Lazy Map: Closest Point (CP) Calculations

Projection being the costliest part of the algorithm, the execution time is seriously decreased
(mean gain: 4.7, median: 3.92)[Athlon 2Ghz, RAM 1G]:

Table 4.3: Lazy Map: Execution Time Improvement
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Discussion Let’s naively compare both complexities. We observe that the lazy version is more
effective than the distance map version if the number of points describing the object is lower
than square root of the number of point in the domain.

Let n be the number of point describing the object and d the number of point in the domain.
Complexities of the distance map and lazy map algorithms are respectively O(d) and O(n2).
We have n2 < d if and only if n <

√
d. That is, lazy map is more efficient than distance map if

n <
√
d.

This assertion seems quite weak. First because we didn’t compare complexities themselves
but complexity classes. Then because the use of cache or such optimizations can deeply modify
this kind of consideration. Finally we didn’t mention the part of distances that are computed
twice. This part definitely need further investigation.

We decided to avoid using distance map for the moment since we observed better time us-
ing the lazy map versions (between 5 and 25% of improvement). Further parts of this report
assume the use of the lazy map version.

4.2 Multi-scale registration

Multi-scale techniques are often wise methods in image-processing (JL Starck and Bijaoui [12]).
Such techniques aim at observing an image at different resolutions in order to obtain certain
information in a less expensive way. Some properties are, indeed, very robust to resizing. For
instance, morphological properties are pretty well preserved.

During image registration, real issues deal with morphological properties. We are continu-
ously comparing 2 shapes. In fact, specialized press particularly recommends multi-scale image
registration (Granger and Pennee [10], Rusinkiewicz and Levoy [16]). This techniques succes-
sively register the same image at low resolution first, higher resolutions next. Each consecutive
registration is performed using informations acquired during the preceding registration.

Image registration we used in this report uses clouds of points in order to represent objects.
In practice, we use an array of point.

We would like to extract a representative sub-set of the general shape of the object from this
vector. For the moment, let’s say we take one point out of two in this vector. The fact that the
sub-set is or not representative of the shape depend on the way points have been extracted.

Generally, such a vector is build upon a black and white image. This image is scanned and
every white points is added to the vector. De facto points ordering strongly depends on the way
the scan has been done; the vector building method is very central.

Let’s consider our naive sub-set again (one point out of two). The following figure 4.4 shows
that the shape of the subset is very sensitive to the scanning method. We notice that, generally
speaking, this naive sub-set is not representative of the object’s shape.
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Table 4.4: Representativeness of a sub-set.

It has been shown that a sub-set extracted using a random selection generally conserves mor-
phological properties of the object (McNeill and Vijayakumar [15]). Masuda et al. [14] uses
Random sampling (with a different sample of points at each iteration). Turk and Levoy [18]
also use uniform sub-sampling of the available points.

We suggest the following algorithm for multi-scale registration:

• e is the number of scales used

• q is a quotient chosen by users

Let N be the number of point in C.
We perform e registrations of a subset of N/qi points from C, i varying from e− 1 to 0.
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The following charts represents the evolution of a multi-scale registration (q = 7,e = 4).

Table 4.5: Multi-Scale(7,4): Evolution of the Mean Square Error during 33 iterations

We can see that the last registration, which uses every point, has an extremely fast conver-
gence. Indeed it benefits from information gained during the preceding registrations. As most
of the information is acquired with only few points (registration 1, 2 and 3), only few closest
points have been computed. More precisely, ~qk is upgraded by ICP at every iteration but exists
outside of the function. Thereby every registration is able to apply the last ~qk before to start.
Then it upgrade itself the ~qk.

This method offers different advantages. First the array is randomized only one time (which
differs from Masuda et al. [14] version). Secondly, successive registrations re-use every points
of the preceding registration so that every successive registration is guaranteed to be more ac-
curate than its predecessor.

A multi-scale registration requests impressively less calculation of closest points than the non
multi-scale version. The following table 4.6 compares the number of points processed using our
test set for q = 4, e = 5. We observe that the multi-scale version processes an average of 65% of
closest points less than the non multi-scale version.
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Table 4.6: Multi-Scale: Improvement in terms of number of point processed

Projection being the costliest part of the algorithm, the execution time is again seriously de-
creased (mean gain: 3.12, median: 2.33) [Athlon 2Ghz, RAM 1G]:

Table 4.7: Multi-Scale: Time Gain
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4.3 Final Transform

Applying ICP may give bad results. Indeed, due to noise or huge deformations in the object,
considering every points can be inadequate for a real shape alignment. The following figure
shows an application of ICP which is not satisfactory.

Table 4.8: Instance of ICP registration.

Indeed, the registered object presents a hole in its right side. This deformation compared to
the reference object, modifies the value of the center of mass and of the greatest eigenvector of
the cross-covariance matrix. Hence, the algorithm produce a results more or less far from the
one a human would have done.

Visually, we would like to see the object’s borders matching the reference object’s borders
almost everywhere. However ICP only minimizes the global mean square error 2. We would
like a transformation minimizing error for “most of” the points.

Consider two identical shapes, an object and a reference object. Let move one point of the
object extremely far from its original location.

Table 4.9: One point only can influence a registration.
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Existence of the right-most point in the object 2 prevents ICP to correctly align shapes. That
is because the center of mass of the object is modified by the noised point. This leads to a wrong
alignment:

Table 4.10: Registration disturbed by a noised point.

It is unfortunately not possible to say a priori if a point will or will not be significant for a
given registration. We actually need to have shapes aligned so as to conclude.

The technique we are exposing here aims at correcting any registration, only once this one
has been performed (Masuda et al. [14]). Thereby we take advantage of the fact the local mean
square error minimum has been discovered and so of the final ICP projection, that is the set of
closest point in Object 1 for every points in Object 2. Hence, we only assume that the projection
is correct.

Let’s color every points according to their distances from their projection points. The standard
deviation (stddev) is computed. Distances longer than 1 time the standard deviation are marked
orange , distances longer than 2 times the standard deviation are marked red . Points from P
and X are respectively in green and black.
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Table 4.11: Distance between points and their final projections.

We observe that filtering points with the standard deviation is relevant here. A big part of the
hole on the left matches the sup 2 × stddev range. The steam on the right, which does not exist
in the reference object, matches too.

We propose to simply remove points further than 1 time the standard deviation and compute
again a final rigid transform. Mean square error of the subset selected is mathematically de-
creased. Moreover, this way we achieve our goal to minimize the error for “most of” the points.

Table 4.12: Final transformation avoiding furthermost points.
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Let’s summarize this final registration process:

1. : Apply ICP registration.

2. : Compute every distances between each point and their projection on X .

3. : Compute the standard deviation of those distances.

4. : Construct a vector of points closer than the standard deviation from their projection.

5. : Compute the rigid transform between this vector and its projection on X .

6. : Apply the final transform to the registered object.

Alignement has been improved on every test of our test set.

Multi-scale point escaping We also suggest to take advantage of the multi-scale registration
in order to pre-select furthermost points. Assuming that the good local minima is focused since
the first scale of registration, we can mark furthermost points so that those points won’t be eval-
uated during the following registration. Moreover, inasmuch as bad points are statically due to
macro deformation, we propose a technique to anticipate on points to be escaped.

• Register at scale 0.

• Built A0, the set of point farther than n times the standard deviation.

• Dilate A.

• Register at scale 1 while not using points from A0.

• Built A1 and dilate it.

• . . .

This techniques unfortunately give bad results, even removing the dilation step. Future work
should improve this technique.
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Results

This chapter introduces results obtained mixing all of the three enhancements described before.

Combined together, multi-scaling and lazy map give interesting results in terms of time of
execution. We observed an average gain of 18.8 × (ICP reference time divided by our modified
version of ICP), median 12.94 [Athlon 2Ghz, RAM 1G]. Registration is performed with the same
precision. Moreover if we apply the algorithm described in the section “Final transform” 4.12,
the partial (“most of” the points) MSE decreases and the alignment (common meaning) seems
better in any cases of our test set.

Table 5.1: Our Proposal: Time Gain



Chapter 6

Related Work

Many variants of ICP have been proposed, affecting all phases of the algorithm from the seg-
mentation and matching of points to the minimization strategy.

Rusinkiewicz and Levoy [16] classify these variants as affecting one of six stages of the algo-
rithm:

1. Selection of some set of points in one or both meshes.

2. Matching these points to samples in the other mesh.

3. Rejecting certain pairs based on looking at each pair individually or considering the entire
set of pairs.

4. Minimizing the error metric.

Here follow some of the variants that distinguish from our work.

Selection of Points

• Always using all available points, Besl and McKay [2].

• Selection of points with high intensity gradient, in variants that use per-sample color or
intensity to aid in alignment, Weik [19].

• Each of the preceding schemes may select points on only one object, or select source points
from both objects, Godin et al. [8].

• Bucket points according to the position of the normals in angular space, then sample as
uniformly as possible across the buckets [16].
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Table 6.1: Average Convergence Rate According to Points Selection Methods

Besl and McKay [2] version is actually the one we used in the original ICP registration. About
the Weik version, we actually doing almost the same thing since we pre-process shapes in order
to extract boundary based on the difference of gradient.

Matching of points

• Find the closest point in the other mesh (Besl and McKay [2]). This computation may be
accelerated using a k-d tree and/or closest-point caching, Simon [17].

• Find the intersection of the ray originating at the source point in the direction of the source
point’s normal with the destination surface Chen and Medioni [4].

The use of k-d tree is a well known optimization for the projection step. This technique uses
segmentation of the surface space (X) in order to reduce the cost of a closest point request. We
plan to compare this method to our lazy map technique.

Rejecting Pairs

• Rejection of the worst n% of pairs based on some metric, usually point-to-point distance.
As suggested by K [13], we reject 10% of pairs.

• Rejection of pairs that are not consistent with neighboring pairs, assuming surfaces move
rigidly, Dorai et al. [5]. This scheme classifies two correspondences (p1, q1) and (p2, q2) as
inconsistent iff |Dist(p1, p2)−Dist(q1, q2)| is greater than some threshold.
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Table 6.2: Average Convergence Rate According to Pair Rejection Methods

We did not used the Pulli version since the percentage of point rejected is purely subjective.
We want something stronger and more objective. We could probably implement the Dorai
optimization [16].

Error metric

• Performing the iterative minimization using various randomly-selected subsets of points,
then selecting the optimal result using a robust (least median of squares metric Masuda
et al. [14].

• Stochastic search for the best transform, using simulated an nealing, Blais and Levine [3].

We are also working on some tools that are sometimes considered as part of ICP registration.
We would rather call it pre-processing.

• Image sub-sampling: Simplify initial image.

• Binarization (or Thresholding): Reduce quantity of useless information.

• Image auto-orientation: pre-align shapes under certain assumptions.
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Conclusion

The iterative closest point algorithm (ICP) is an efficient technique for shape registration, shape
alignment or estimation of congruence between shapes.

In the first part of this report we described the method. We saw that ICP converges mono-
tonically to the nearest local minimum of a mean-square distance metric. We also presented an
optimization from Besl and McKay [2]. Those algorithms are now written in the Milena library
and give efficient results for shape registration.

Then the report get onto three main optimization techniques, respectively treating problems
from Selection of Points to Rejection of Pairs.
First we introduced the concept of Distance map. We saw that the use of a Lazy map drastically
improves efficiency of the iterative closest point algorithm.
Then we addressed the problem of point selection with multi-scale registration. We also saw
that the execution time could be really improved with such a technique.
Finally we spoke about pairs rejection while introducing an efficient way to decrease the mean
square error at the end of the process.
Using those techniques, we obtained interesting results like a average improvement of 18.9
times concerning execution time.

Future works will deals with k-d trees so as to optimize our distance computation techniques.
We also may consider the use of distance map for very local area in order to reduce the dimen-
sion of the domain and so to reduce the cost the distance map calculation. Fundamentally
different methods for shape registration like heuristic methods also deserve to be discussed.
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