Simulation Reductions for TGBA

Preliminaries

Direct Simulation

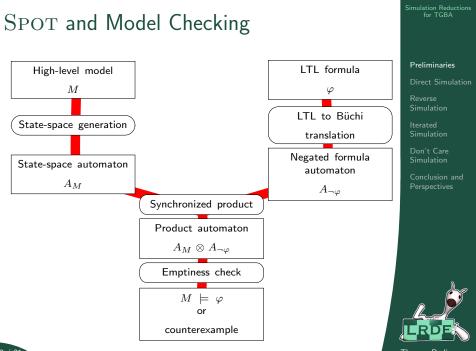
Reverse Simulation

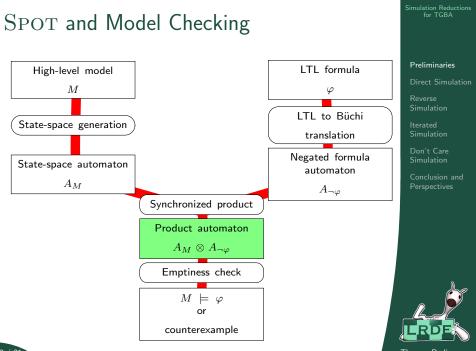
Iterated Simulation

Don't Care Simulation

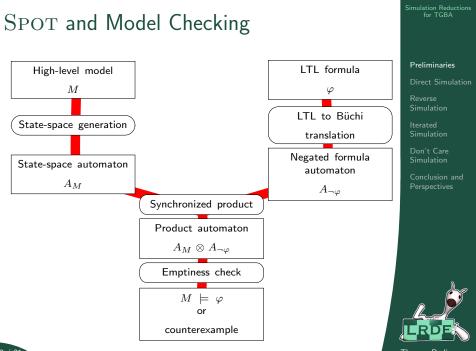
Conclusion and Perspectives

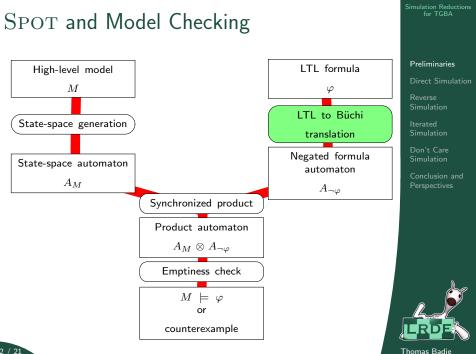
Thomas Badie

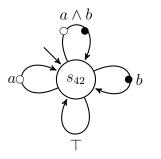

Simulation Reductions for TGBA


Thomas Badie

LRDE Laboratoire de Recherche et Développement de l'EPITA


February 6, 2013


http://lrde.epita.fr/



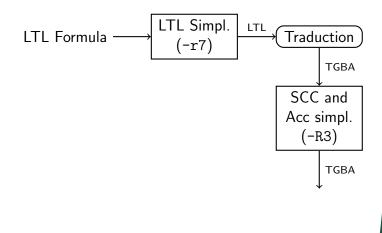
2 / 21

TGBA for $GFa \wedge GFb$

a: 000100010001... b: 010101010101... Simulation Reductions for TGBA

Preliminaries

Direct Simulation


Reverse Simulation

Iterated Simulation

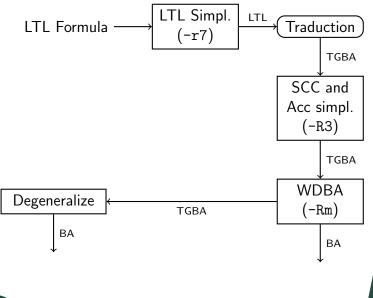
Don't Care Simulation

Conclusion and Perspectives

Simulation Reductions for TGBA

Preliminaries

Direct Simulation


Reverse Simulation

Iterated Simulation

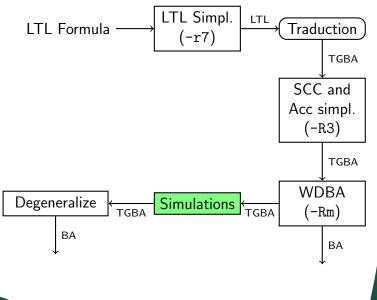
Don't Care Simulation

Conclusion and Perspectives

Simulation Reductions for TGBA

Preliminaries

Direct Simulation


Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Outline

5 / 21

Direct Simulation

Reverse Simulation

Iterated Simulation

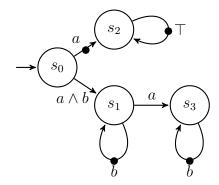
Don't Care Simulation

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Direct Simulation = Suffix Inclusion

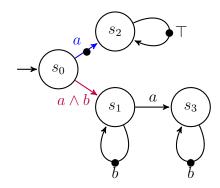
Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation


Don't Care Simulation

Conclusion and Perspectives

Thomas Badie

Direct Simulation with Signatures

Simulation Relation

- t_1 .cond \Rightarrow t_2 .cond
- t_1 .acc \leftarrow t_2 .acc

7 / 21

• $C(t_1.dest) \Rightarrow C(t_2.dest)$

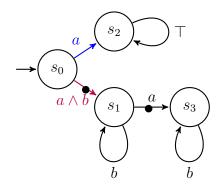
Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation


Don't Care Simulation

Conclusion and Perspectives

Direct Simulation with Signatures

Promises Automaton.

Simulation Relation

- t_1 .cond \Rightarrow t_2 .cond
- t_1 .acc $\Rightarrow t_2$.acc

7 / 21

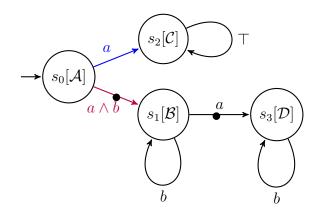
• $C(t_1.dest) \Rightarrow C(t_2.dest)$

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

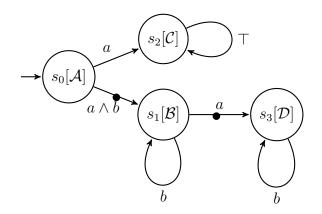
Thomas Badie

 $\operatorname{sig}(s_0) = (a \wedge \mathcal{C}) \vee (a \wedge b \wedge \bullet \wedge \mathcal{B} \wedge \mathcal{C})$

imulation Reductions for TGBA

Preliminaries

Direct Simulation


Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

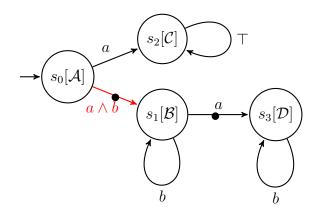
$$\mathsf{sig}(s_0) = (a \land \mathcal{C}) \lor (a \land b \land \bullet \land \mathcal{B} \land \mathcal{C})$$

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Thomas Badie

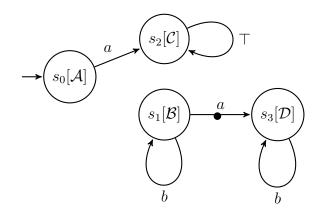
 $\operatorname{sig}(s_0) = (a \wedge \mathcal{C}) \vee (a \wedge b \wedge \bullet \wedge \mathcal{B} \wedge \mathcal{C})$

imulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Thomas Badie

$$\operatorname{sig}(s_0) = (a \wedge \mathcal{C})$$

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Thomas Badie

Translate the TGBA into a Promise Automaton;

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

- Translate the TGBA into a Promise Automaton;
- Compute the signature of each state;

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

- Translate the TGBA into a Promise Automaton;
- Compute the signature of each state;
- Put states into classes according to their signatures;

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

9 / 21

- Translate the TGBA into a Promise Automaton;
- Compute the signature of each state;
- Put states into classes according to their signatures;
- Compute an implication relation between the classes;

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

- Translate the TGBA into a Promise Automaton;
- Compute the signature of each state;
- Put states into classes according to their signatures;
- Compute an implication relation between the classes;
- Iterate until fixpoint.

Simulation Reductions for TGBA

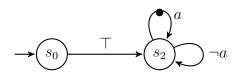
Preliminaries

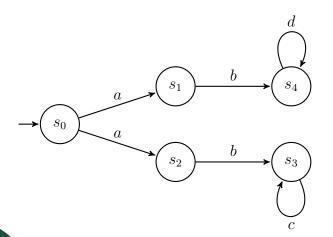
Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation


Conclusion and Perspectives



Thomas Badie

Simulation limits

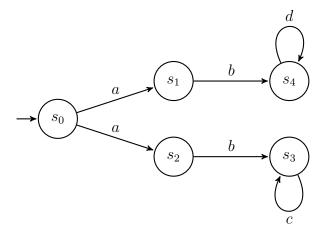
10 / 21

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Reverse Simulation = Prefix Inclusion

Transposing a TGBA is complex

11 / 21

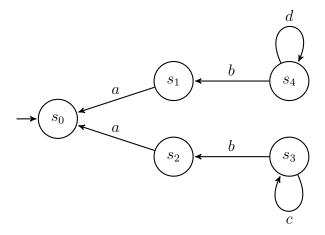
- ▶ SPOT does not support several initial states;
 - A TGBA does not have final states.

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Reverse Simulation = Prefix Inclusion

Transposing a TGBA is complex

11 / 21

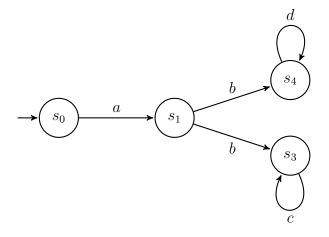
- ▶ SPOT does not support several initial states;
 - A TGBA does not have final states.

Simulation Reductions for TGBA

Preliminaries

Direct Simulatior

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Reverse Simulation = Prefix Inclusion

Transposing a TGBA is complex

11 / 21

- ▶ SPOT does not support several initial states;
 - A TGBA does not have final states.

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Iterated Simulation

Idea

12 / 21

- Reverse Simulation reduces cases the simulation can not. And vice-versa;
- We can run the two until we reach a fixpoint;
- Adding scc_filter allows to remove some useless SCC left by the reverse simulation.

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Benchmark Parameters

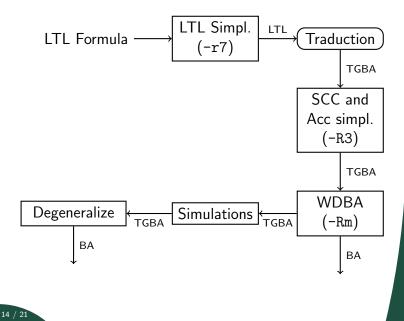
What we test

- We test with options -r7, -R3, -Rm; On 188 formulae from the literature [1, 2, 3] and we present a cumulative result;
- Algorithms:
 - No Sim No more options than the ones described above;
 - RDS The Direct Simulation;
 - RRS The Reverse Simulation;
 - RIS The Iterated Simulation.

Simulation Reductions for TGBA

Preliminaries

Direct Simulation


Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Size

Algo.	Automata				Product						
Spot	St.	Tr.	ND St.	ND	states	trans.	time				
TGBA											
No Sim	702	1901	233	70	140167	6371627	3.46				
RDS	676	1761	120	51	134677	4917433	3.45				
RRS	668	1688	185	67	133369	5352279	3.43				
RIS	659	1638	102	51	131507	4668891	3.73				
BA											
No Sim	768	2156	293	70	153364	7345375	3.60				
RDS	742	2015	142	51	147727	5405417	3.57				
RRS	732	1918	224	67	146159	6145500	3.50				
RIS	721	1854	122	51	143810	5118850	3.71				

Simulation Reductions for TGBA

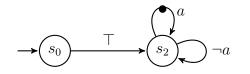
Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation


Conclusion and Perspectives

Thomas Badie

16 / 21

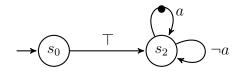
 Acceptance conditions on transitions that are out of a SCC do not contribute to the language. We can modify them;

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

 Acceptance conditions on transitions that are out of a SCC do not contribute to the language. We can modify them;

 Adding or removing an acceptance condition is not enough in that case. We need to split the transition; Simulation Reductions for TGBA

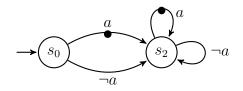
Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation


Conclusion and Perspectives

16 / 21

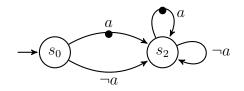
 Acceptance conditions on transitions that are out of a SCC do not contribute to the language. We can modify them;

 Adding or removing an acceptance condition is not enough in that case. We need to split the transition; Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

 Acceptance conditions on transitions that are out of a SCC do not contribute to the language. We can modify them;

- Adding or removing an acceptance condition is not enough in that case. We need to split the transition;
- We can detect which states could imply another, and find what must change;

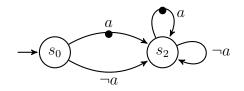
16 / 21

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation


Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

 Acceptance conditions on transitions that are out of a SCC do not contribute to the language. We can modify them;

- Adding or removing an acceptance condition is not enough in that case. We need to split the transition;
- We can detect which states could imply another, and find what must change;

16 / 21

 Interaction between different changes is complicated. We brute force to keep the best result. Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Algo.	Automata				Pro						
Spot	St.	Tr.	ND St.	ND	states	trans.	time				
TGBA											
No Sim	702	1901	233	70	140167	6371627	3.46				
RDS	676	1761	120	51	134677	4917433	3.45				
RRS	668	1688	185	67	133369	5352279	3.43				
RIS	659	1638	102	51	131507	4668891	3.73				
RDCS	676	1750	120	51	134677	4917433	5.18				
RDCIS	659	1614	93	51	131507	4644451	5.52				
BA											
No Sim	768	2156	293	70	153364	7345375	3.60				
RDS	742	2015	142	51	147727	5405417	3.57				
RRS	732	1918	224	67	146159	6145500	3.50				
RIS	721	1854	122	51	143810	5118850	3.71				
RDCS	766	2080	151	51	152463	5551454	5.19				
RDCIS	744	1899	121	51	148334	5230622	5.58				

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Thomas Badie

Conclusion

The work done

- The direct simulation was already implemented;
- RDS, RRS, RIS are integrated in SPOT 1.0 and in the web interface (http://spot.lip6.fr/ltl2tgba.html);
- ▶ RDCS, RDCIS are ready to be integrated.

The future work

18 / 21

- Don't care simulation is not perfect yet;
- Experiment the simulations on the BA (after degeneralize);
- Work on Delayed Simulation.

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Question?

Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Thomas Badie

Bibliography I

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.

Property specification patterns for finite-state verification.

In Mark Ardis, editor, *Proceedings of the 2nd Workshop on Formal Methods in Software Practice (FMSP'98)*, pages 7–15, New York, March 1998. ACM Press.

Kousha Etessami and Gerard J. Holzmann.

Optimizing Büchi automata.

In C. Palamidessi, editor, *Proceedings of the 11th International Conference on Concurrency Theory (Concur'00)*, volume 1877 of *Lecture Notes in Computer Science*, pages 153–167, Pennsylvania, USA, 2000. Springer-Verlag. Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

Bibliography II

21 / 21

Fabio Somenzi and Roderick Bloem.

Efficient Büchi automata for LTL formulæ.

In Proceedings of the 12th International Conference on Computer Aided Verification (CAV'00), volume 1855 of Lecture Notes in Computer Science, pages 247–263, Chicago, Illinois, USA, 2000. Springer-Verlag. Simulation Reductions for TGBA

Preliminaries

Direct Simulation

Reverse Simulation

Iterated Simulation

Don't Care Simulation

Conclusion and Perspectives

