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Probably the first paper on the topic
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Weighted rank order filters

The weighted rank order filter will be defined informally as follows. The reference point of the structuring ele-
ment is placed at an image pixel. That pixel value is changed by (a) adding the weights of the structuring
elements to the corresponding pixels that the structuring element contacts, (b) ordering the resulting sums, and
(c) choosing the Rth element in the ordered list as the output. The same notation as election will be used

where the symbol Z implies a three dimensional structuring element.
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Learning in single layer weighted rank networks.

Figure 11.

Example of a rank trace
in a multi-layer network.
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Neural networks without learning
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1. Introduction. The recent resurgence of interest in artificial neural networks has brought a
deluge of publications to the field [4,9,15]. Applications of neural networks are appearing in a wider
variety of fields each year. Recently, neural networks have been tied to a mathematical structure
known as image algebra [14]. Image algebra was developed specifically for the concise expression and
clear representation of image processing techniques and to provide a mathematical environment for
image processing algorithm development, comparison, and optimization [5,12,13]. It has been shown
that a subalgebra of the image algebra includes the mathematical formulations of currently popular
neural network models [14], and image algebra expressions have been derived that represent some
well-known algorithms designed for neural network computations. The neural network algorithms
represented by these expressions look like their textbook formulations. These image algebra expres-
sions are extremely simple and translucent, and the number of expressions representing each algorithm
is very small. Furthermore, the image algebra has suggested a more general concept of neural compu-
tation than those that are currently used. In this paper we present a theory for a neural network that
uses morphological operations. Several specific applications are given. In particular, we discuss net-
works that compute the morphological operations of opening and closing. We also give an example of
a net that can perform the morphological operation of a sieve. A sieve is a morphological filter which
filters out objects which are larger than a specified size [16].

We remark that an entirely different approach to a morphological network was presented in [17).
However, this particular model uses the usual operation of multiplication and summation at each node,
a fundamental difference from the model presented here, which uses the operation of addition and
maximum at each node.
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17. S.S. Wilson, “Morphological Networks,” in Proc. of the 1989 SPIE Visual Comm. and Image
Proc. IV, Phila., PA (Nov., 1989).
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While in classical network models, the initial computation of 7 (Equation II) is a linear process,
the computation of 7 in the model described by Equations VI and VIII is nonlinear. If the neural net-
work model can be expressed using Equations VI and VII as the underlying equations of computation,
we call it a morphological neural network. The remainder of this paper presents several specific mor-
phological neural networks that can calculate openings, closings, and the boolean sieving filters as
described by Serra [16].
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Learning dilations on images
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Example 4. The Boolean Dilation Net with Learning.

The set of training data for this network consists of P pairs of images, (a*,d>),
k=0,... P—1, where a* represents the input image and d* = a* & t is the
input image dilated with an ideal (invariant) template t, which is the same for
all images. In practical cases, the template t is assumed to be unknown. The

Example 6. Grayscale Dilation with Learning for Variant Templates. This
network is a generalization of nets in Examples 4 and 5, and is a more gen-
eral form of the network in [5]. The additive maximum transform that this net
attempts to learn can be any arbitrary grayscale one, including a variant trans-
form. For a given set of P training data pairs, the learning rule needs about

three passes through the data set to guarantee perfect recall of the P training
images.
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Example 4. The Boolean Dilation Net with Learning.

+ & * 0w
L ]
case al d}‘ c}ﬁ new value for wy; is
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3 lorQ 1 1 current value : v > v 3 L 2 X
4 lor0 0 0 current value . . . - - 0w -
5 1 0 1 -0Q
Figure 5. Table of change-of-weight rules for boolean dilation network. m m H H
@ (e) () @

Figure 6. (a) Sample input training data; (b) sample natural scene (panda); (c) image in
(b) dilated with von Neumann template; (d) output of net after X = 5 training images
applied, for input of (b); (e) output of net after X = 10, for input of (b); (f) output of net
after X = 15, for input of (b); (g) output of net after X = 20, for input of (b).
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Example 6. Grayscale Dilation with Learning for Variant Templates.

(d) @ () (g)

Figure 12. (a) One of the 13 training input images. (b) Test image. (¢) Dilation of the
test image by t. (d) Dilation of the test image by w{0}. (¢) Dilation of the test image
by w(13). (f) Dilation of the test image by w(26). (g) Dilation of the test image by
w(37) =w(3P - 2). '
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Learning some decision surfaces (two classes)
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Computing capabilities of Morphological Neural networks (can represent any boolean function)
Morphological Associative Memories

Single Layer Morphological Perceptron (SLMP): learning in finite steps but limited class of decision surfaces

P = (p1,p2,---,pn) € I" W ={wy,ws,...,wa} € L%,
o(p) = Efl [p: + wi] flz) = {é Z{S:_} ’
foglp)=1
fog(p)=0

_wl

Fig. 3. Decision boundary for a
single layer morphological perceptron.



P. Sussner, Morphological perceptron learning, 1998

Learning any decision surfaces (two classes)
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Figure 2:
Decision boundaries for different types of generalized
single layer morphological perceptrons in the
two-dimensional case.

Multilayer Morphological perceptrons (MLMP): learning in finite steps and arbitrary decision surfaces (for 2 classes)

Finally, we present an algorithm for solving arbitrary
instances of the 2-class problems by means of a two-layer

morphological perceptron. Given a set of k training pat- - "
terns in K™, this algorithm finds appropriate weights for a 5 of "o of*
two-layer morphological perceptron such that each of the L et

training patterns is correctly classified by the two-layer
morphological perceptron. This algorithm also determines .
how many nodes in the hidden layer are necessary in order ' x

to solve the given problem. Figure 6: . .
Decision surface found by learning algorithm.
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Decision boundaries for different types of generalized
single layer morphological perceptrons in the
two-dimensional case.

Multilayer Morphological perceptrons (MLMP): learning in finite steps and arbitrary decision surfaces (for 2 classes)

Learning in conventional mul-
tilayer perceptrons can be achieved by minimizing a certain — 5
error function which depends on the weights. Finding the 5 of *lo. .|
global minimum of this error function is a very difficult L et
task, and is not always possible. Weight training in mul- -
tilayer morphological perceptrons does not encounter such i
limitations. : Yo

Figure 6:

Decision surface found by learning algorithm.
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Improving the learning of hyperboxes with SGD
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Hyperboxes Decision Boundaries
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Fig. 3. Neural architecture for a DMN with a softmax layer. Each class corresponds
to one dendrite cluster d..

hy.c(X) = min (min (X — Wy ., W . + by . — X))

de (%) = max (hi.c ()

exp (dc(x))

Pr.(X) =
) = SR exp (@)

y = arg max(Pr¢(Xx))
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Between linear and morphological networks
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Fig. 2. Structure of the Ith layer in an MRNN.
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Example: Yy, = Amin{x; + a;, x, + a,}

+ (1 —A)x1b1 + x2b5 + 14).

(a) (b)
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framework with applications to handwritten character recognition, 2000

Application to OCR (MNIST)
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A new method to prune networks?
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Table 2. MNIST results

Layer ni | Accuracy | Accuracy without “dead” units # Active filters
24 84.29% 84.28% 17
32 84.84% | 84.85% 15
48 84.63% | 84.61% 18
64 92.1% 92.07% 10
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