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Stephen S. Wilson, Morphological networks, 1989

Probably the first paper on the topic
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J.L. Davidson & G. X. Ritter,
A theory of morphological neural networks, 1990

Neural networks without learning



  

J.L. Davidson & G. X. Ritter, A theory of morphological neural networks, 1990



  

J.L. Davidson & G. X. Ritter, A theory of morphological neural networks, 1990



  

J.L. Davidson & G. X. Ritter, A theory of morphological neural networks, 1990



  

J.L. Davidson & G. X. Ritter, A theory of morphological neural networks, 1990



  

J.L. Davidson & G. X. Ritter, A theory of morphological neural networks, 1990



  

J.L. Davidson & G. X. Ritter, A theory of morphological neural networks, 1990



  

J.L. Davidson & F. Hummer,
Morphology neural networks: An introduction with applications, 1993 

Learning dilations on images



  

J.L. Davidson & F. Hummer, Morphology neural networks: An introduction with applications, 1993
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G. X. Ritter & P. Sussner,
An introduction to morphological neural networks, 1996

Learning some decision surfaces (two classes)



  

G. X. Ritter & P. Sussner, An introduction to morphological neural networks, 1996

• Computing capabilities of Morphological Neural networks (can represent any boolean function)

• Morphological Associative Memories

• Single Layer Morphological Perceptron (SLMP): learning in finite steps but limited class of decision surfaces



  

P. Sussner, Morphological perceptron learning, 1998

Learning any decision surfaces (two classes)



  

P. Sussner, Morphological perceptron learning, 1998

• Generalized Single Layer Morphological Perceptron (SLMP)

• Multilayer Morphological perceptrons (MLMP): learning in finite steps and arbitrary decision surfaces (for 2 classes)
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• Generalized Single Layer Morphological Perceptron (SLMP)

• Multilayer Morphological perceptrons (MLMP): learning in finite steps and arbitrary decision surfaces (for 2 classes)



  

E. Zamora, H. Sossa,
Dendrite morphological neurons trained by stochastic gradient descent, 

2017

Improving the learning of hyperboxes with SGD
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dn , c (x)=min1≤i≤N (min( x i−wmin ,i
n ,wmax,i

n
−x i))
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L. Pessoa, P. Maragos,
Neural networks with hybrid morphological/rank/linear nodes:

a unifying framework with applications to handwritten
character recognition, 2000

Between linear and morphological networks
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Example:
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Application to OCR (MNIST)

PCA
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MLP and MRL nets compared: similar performance with faster convergence for MRLs.



  

V. Charisopoulos, P. Maragos,
Morphological perceptrons: Geometry and Training Algorithms, 2017

A new method to prune networks?
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Weightsα jk for N=64 Weightsw ij for the 10active filters

V. Charisopoulos, P. Maragos, Morphological perceptrons: Geometry and Training Algorithms, 2017



  



  

Yunxiang ZHANG,
Travaux de stage, 2018
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