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Introduction

Let assume the sequence of morphological operators (¢;)ie[1,q, like erosions or
dilations, each one associated to a structuring element p;.

We want this sequence to be able to go from an image / and to result in the image J by
the following operation:

J=¢1(.-- (on(1)))

Finding the good operators (®;); and their associated SE’s can be cumbersome and
time-consuming task.
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Introduction

The authors propose then to make an adaptation of a CNN called Morphological
Neural Networks (MNN’s):

One (morphological) layer = one morphological operator.
However, usual morphological operators are non-differentiable
= no gradient descent method is possible

= some adaptation is needed.

= we will present this adaption and its benefits.
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Introduction

Weaknesses of preceding architectures:
@ they can learn only flat structuring elements (SE),

@ they cannot learn the morphological operations (¢;);.
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The proposed morphological layer

Masci et al. proposed this approximation of erosions and dilations:
(fP + w)(x)
(fPrw)(x) ’
where f is the grayscale image, x the position, w the kernel, and P the power s.t.:

(frp w)(x) :=

@ P — oo leads to the dilation,

@ P — —oo leads to the erosion,

@ P > 0 leads to a pseudo-dilation,

@ P < 0 leads to a pseudo-erosion,

@ P =0 leads to the usual convolution.

However, this approximations are often very inaccurate. Then, Shih et al. proposed to
use the softmin/softmax functions instead:

n n
—In (Z e““fx') , and In [Z e“"'xf] ,
i=1 i=1

where i corresponds to the number of the pixel and n the number of weights of the SE
.
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Architecture of the single layer MNN.
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The proposed morphological layer

Problem: failure of the estimation of the needed SE’s due to rounding errors.

Shen et al. propose then the following definition:

Definition (Differentiable binary dilation)

n
oS oo
i=1

Definition (Differentiable binary erosion)

n
Y, =—In [Z e‘Win) +b
i=
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Definition (Differentiable grayscale dilation)

n
Y =In (2 e‘”f*xf] +b
i=1
Definition (Differentiable grayscale erosion)

n
Y, =—In (Z e-Wf-Xf] +b
i=1

Learning procedure: we can compute the gradient for the proposed layer like usual:

O . __ ﬂ
g = dw
aJ

b._ 7%
9 =%

where J is the (objective) function to minimize. Assuming that the learning rate is n, we
obtain then:

Wiy ‘= wj—1 gtw, and b,'+1 = b,' -1 gtb
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Stacked Morphological Layers (Deep MNN's)

Goal: how we learn the SE’s of a stack of morphological layers where operations are
already defined.

—> o o s —>

Input
Morphological Layer
Morphological Layer
Morphological Layer

Output

Fig. 3. Architecture of the multi-layer deep morphological neural network.
Concerning the computed feature maps, we have either a dilation:

20— of @2 4 b,

or an erosion:
Z0 =o' Q20 + b,
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Stacked Morphological Layers (Deep MNN's)

Assuming we use some activation function ¢, we obtain the new formula :
20 = o (! @ 200 + b)),
then:

o 2 2zl

T v 9z0) dw
from which we will deduce:
(O] (N
Wiy =w =167
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Residual MNN's
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Residual MNN's

Application: detect the corners as residuals of some MM-based procedure (for feature
extraction or shape classification).

| & By
— —>
b |

Fig. 4. The morphological residual model. Applying opening on the original
image with circle structuring elements, then subtraction of result image from
original image can obtain the morphological residuals.

X: Input
v
X1: Erosion Layer
v
X2: Dilation Layer
v
X-X2: Subtraction Layer
'
X3: Fully connected Layer
'
X4: Fully connected Layer
'
Output

Fig. 5. The architecture of residual MNN.
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Adaptive Morphological Layers

Goal: Learn the transformations (erosion vs. dilation)

Proposed model:

N

z; = sign(a) In [Z expS’g”(a)”'XfJ,

i=1

where j is the number of the N studied pixel in the feature map.

Idea: the trainable value a € R induces the sign used in the expression.
Problem: we need an smooth sign function!

Propositions of Shen et al.:

f(x)

X
= —— (soft sign function),
14 |x] ( 9 )

or:

exp* —exp™*
expX + exp™*

9(x) =

(hyperbolic tangent function).
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Adaptive Morphological Layers

— soft sign ’
- = hyperbolic tangent /

08

Fig. 6. The soft sign function and hyperbolic tangent function.
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Adaptive Morphological Layers

Then a is learnable and we obtain:

N
zi=f(a) In Z exp/@wixi

i=1
and

N

zi=g(a) In Zexpg(a)“’ix"

i=1
Now, there is the model to learn an adaptive morphological layer:

+1

Target images are
dilated

Morphological Layer

Input Images Output Images

After training| —1
Target images are
eroded

Target images
Fig. 7. The flow chart of detecting morphological operations by a single
adaptive morphological layer MNN.
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Adaptive Morphological Layers

In brief, a set of input images with their eroded outputs will lead to a signto —1 and a
set of input images with their dilated outputs will lead to a sign to +1.

This is due to the learning procedure using the following chain rule:
o_ 0 _2Joz o, .

9 =520 ~Jzaa az7

where g is in {f, g}, and then we have the usual formula:

! (!

a :af)—nga.
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Experimental results

Shen et al. propose to proceed to shape features recognition with MNN’s on these 4

EEBEas
OESOL
i B @ & e
L

Fig. 8. The examples from the four datasets in the experiments. The first row is
the images from MNIST dataset, the second row from SCGS dataset, the third
row from GTSRB dataset, and the fourth row from brain tumor dataset.
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Experimental results

Learning the SE’s |

After 20 epochs: accuracy of 91%, and after 100 epochs, accuracy of 97%.
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Fig. 9. (a) The diamond 3 X 3 structuring element, crossing 5 X 5 structuring
element, and 1 X 5 structuring element, (b) the learned structuring elements by
a single dilation layer MNN after improvement.
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Experimental results

Learning the SE’s Il

With non-flat SE’s, after 20 epochs, original and learned SE are very close:

0.2060 0.3234 0.6542 0.8329 0.4865 0.9737
0.3551 0.5692 0.3950 0.0440 0.8055 0.1752
0.6405 0.5834 0.5104 0.6563 0.5816 0.0463

0.2086 0.3211 0.6521 0.8361 0.4876 0.8951
0.3540 0.8055 0.4135 0.0559 0.5054 0.1763
0.6261 0.5747 0.5097 0.6585 0.5836 0.0573

(@ ®)
Fig. 10. (a) The top box shows the original structuring element and the bottom
box shows the learned structuring elements by a single dilation layer MNN. (b)
The top box shows the original structuring elements and the bottom box shows
the learned structuring elements by a single erosion layer MNN.
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Experimental results

Learning the SE’s IlI

Learned erosions and dilations:

EONEARAE
EON0EEEE
EON0EEEE

(@) ®
Fig. 11. The results of learning grayscale (a) dilation and (b) erosion operations
by MNN. The first row shows the original images, the second row shows the
target images, and the third row shows the output of the network after training
20 epochs.
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Experimental results

Learning the SE’s IV

Learned openings and closings:

@ (©)
Fig. 12. The results of learning (a) opening and (b) closing operations by
DMNN. The first row shows the original images, the second row shows the
target images, and the third row shows the output of the network after training
20 epochs.
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Experimental results

Learning the morphological operators |

Estimation of the accuracy of the sign estimation:

TABLE III
DETECTION ACCURACY OF TWO SMOOTH SIGN FUNCTIONS
Dilation Frosion
Soft sign 100% 100%
Hyperbolic tangent 100% 100%
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Experimental results

Classification |

MNN’s are very competitive:

TABLE VI
COMPARISON OF RESIDUAL MNN WITH STATE-OF-ART CONVOLUTIONAL
NEURAL NETWORKS
Classifier Dataset Testing Number of
accuracy parameters
MCDNN [3] MNIST 99.77% 2,682,470
Residual MNN MNIST 98.93% 104,181
MLeNet SCGS 99.50% 10,493,795
Residual MNN SCGS 98.89% 4,721,175
MLeNet GTSRB 97.94% 4,202,339
(Grayscale)
Residual MNN GTSRB 96.49% 1,594,903
(Grayscale)
MLeNet Brain tumor 96.10% 10,493,795
Residual MNN Brain tumor 95.43% 4,721,175
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Experimental results

Classification |l

TABLE IX
COMPARISON OF RESIDUAL MNN AND RESIDUAL CNN
Residual Residual Residual MNN Residual

MNN CNN (a=16) CNN
(a=1) (b=1 (b =16)
MNIST 98.93% 97.14% 97.78% 98.18%
SCGS 98.89% 98.25% 98.90% 98.91%
GTSRB 96.49% 90.60% 97.48% 93.39%
Brain tumor 95.43% 96.10% 96.75% 94.15%
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Conclusion

Shen and his coworkers succeeded in:
@ making differentiable their morphological feature extractors,

obtaining adaptive morphological layer,

developing new MNN’s based on non-flat SE’s,

making MNN'’s almost as efficient as state-of-the-art CNN'’s but with much less
weights,

@ and then in making faster competitive NN’s for geometrical/topological feature
extraction, classification, etc.
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Conclusion

Questions? :D
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