
Integrating Mathematical Morphology within
Deep Convolutional Neural Networks

Alexandre Kirszenberg
September 30th, 2019



An introduction to Image Segmentation

Given an image, detect the outline of objects automatically.

Chen et al., “Rethinking Atrous Convolution for Semantic Image
Segmentation”

1/32



An introduction to Image Segmentation

Given an image, detect the outline of objects automatically.

Chen et al., “Rethinking Atrous Convolution for Semantic Image
Segmentation”

1/32



Image Segmentation: Application to Medical Imaging

HeLa cells
Axial adult brain

Ronneberger, Fischer, and Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation”
Xu, Géraud, and Bloch, “From neonatal to adult brain MR image

segmentation in a few seconds using 3D-like fully convolutional network and
transfer learning”

2/32



An Introduction to Mathematical Morphology

• The theory of Mathematical Morphology considers images
as landscapes.1

• The value of the pixel at position (x, y) represents its
elevation.

255 192

128128 00

255
192128128

00

1Géraud, A Quick Tour of Mathematical Morphology.

3/32



An Introduction to Mathematical Morphology

• The theory of Mathematical Morphology considers images
as landscapes.1

• The value of the pixel at position (x, y) represents its
elevation.

255 192

128128 00

255
192128128

00

1Géraud, A Quick Tour of Mathematical Morphology.

3/32



An Introduction to Mathematical Morphology

• The theory of Mathematical Morphology considers images
as landscapes.1

• The value of the pixel at position (x, y) represents its
elevation.

255 192

128128 00

255
192128128

00

1Géraud, A Quick Tour of Mathematical Morphology.

3/32



Morphological Filters

• Mathematical Morphology defines a variety of
morphological filters (or operators).

• These filters are the composition of two operations:
• sum +

• infimum ∧ (or supremum ∨)

• They take a structuring element as parameter.

4/32



Morphological Filters

• Mathematical Morphology defines a variety of
morphological filters (or operators).

• These filters are the composition of two operations:
• sum +

• infimum ∧ (or supremum ∨)

• They take a structuring element as parameter.

4/32



Morphological Filters

• Mathematical Morphology defines a variety of
morphological filters (or operators).

• These filters are the composition of two operations:
• sum +

• infimum ∧ (or supremum ∨)

• They take a structuring element as parameter.

4/32



Morphological Filters: an example

X

D =

A set X and a structuring element D

Serra and Vincent, “An overview of morphological filtering” 5/32



Morphological Filters: an example

X

X D⊕

^

D =

The dilation of X by D

Serra and Vincent, “An overview of morphological filtering” 5/32



Morphological Filters: an example

X

X DΘ

^

D =

The erosion of X by D

Serra and Vincent, “An overview of morphological filtering” 5/32



Morphological Filters: with an actual image

Dilation δC

Erosion ϵC

Dilation δD

Erosion ϵD

6/32



From Binary Dilation to Grayscale Dilation

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

0 1 0

1 1 1

0 1 0

-∞ 0 -∞

0 0 0

-∞ 0 -∞

7/32



Grayscale Filters

Dilation δC

Erosion ϵC

Dilation δD

Erosion ϵD

8/32



Higher Order Filters

We can combine these filters to create higher order operators:

• The opening γ = δ ◦ ϵ.
• The closing ϕ = ϵ ◦ δ.

9/32



Higher Order Filters: an example

Opening γC

Closing ϕC

Opening γD

Closing ϕD

10/32



Convolutional Neural Networks

CONVOLUTION POOLING

...

FULLY CONNECTED

(f ∗ g)(t) ≜
∫ ∞

−∞
f(τ)g(t− τ)dτ

Lecun et al., “Gradient-based learning applied to document recognition”
Masci, Angulo, and Schmidhuber, “A Learning Framework for Morphological

Operators using Counter-Harmonic Mean”
11/32



A Fixed Dilation Layer

• Rather straightforward to implement with Tensorflow.2

• Tensorflow implements Grayscale Dilation3:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• We first experimented with fixed binary structuring
elements (e.g. a vertical cross, an X).

• As such, we had to apply the previously mentioned
transformation to our structuring elements.

2Abadi et al., “TensorFlow: A system for large-scale machine learning”.
3Dougherty, An introduction to morphological image processing.

12/32



A Fixed Dilation Layer

• Rather straightforward to implement with Tensorflow.2

• Tensorflow implements Grayscale Dilation3:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• We first experimented with fixed binary structuring
elements (e.g. a vertical cross, an X).

• As such, we had to apply the previously mentioned
transformation to our structuring elements.

2Abadi et al., “TensorFlow: A system for large-scale machine learning”.
3Dougherty, An introduction to morphological image processing.

12/32



A Fixed Dilation Layer

• Rather straightforward to implement with Tensorflow.2

• Tensorflow implements Grayscale Dilation3:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• We first experimented with fixed binary structuring
elements (e.g. a vertical cross, an X).

• As such, we had to apply the previously mentioned
transformation to our structuring elements.

2Abadi et al., “TensorFlow: A system for large-scale machine learning”.
3Dougherty, An introduction to morphological image processing.

12/32



A Fixed Dilation Layer

• Rather straightforward to implement with Tensorflow.2

• Tensorflow implements Grayscale Dilation3:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• We first experimented with fixed binary structuring
elements (e.g. a vertical cross, an X).

• As such, we had to apply the previously mentioned
transformation to our structuring elements.

2Abadi et al., “TensorFlow: A system for large-scale machine learning”.
3Dougherty, An introduction to morphological image processing.

12/32



The Data

• For the purpose of these experiments, we used the MNIST
Handwritten Digits4 dataset.

• 28× 28 grayscale, 60 000 training images, 10 000 test
images.

4LeCun and Cortes, “MNIST handwritten digit database”.

13/32



The Data

• For the purpose of these experiments, we used the MNIST
Handwritten Digits4 dataset.

• 28× 28 grayscale, 60 000 training images, 10 000 test
images.

4LeCun and Cortes, “MNIST handwritten digit database”.

13/32



Testing a Dilation Layer on MNIST: Architecture

Conv2D 3x3x4 Dilation 3x3 Conv2D 3x3x8 Dense

28x28x1 27x27x4 27x27x4 26x26x8 128x1 10x1

Also tested with a single level of convolution + dilation.

14/32



Testing a Dilation Layer on MNIST: Training

Trained over 40 epochs, with a batch size of 128.

0.981

0.983

0.985

0.987

0.989

0.991

400k 600k 800k 1M 1.2M 1.4M 1.6M

Accuracy on the test set amax = 0.9914

0.03

0.04

0.05

0.06

200k 600k 1M 1.4M 1.8M 2.2M

Loss on the test set lmin = 0.0325

A more classical architecture with a MaxPooling layer reaches similar
scores: amax = 0.9923, lmin = 0.0252 (~150 epochs).

15/32



Testing a Dilation Layer on MNIST: Training

Trained over 40 epochs, with a batch size of 128.

0.981

0.983

0.985

0.987

0.989

0.991

400k 600k 800k 1M 1.2M 1.4M 1.6M

Accuracy on the test set amax = 0.9914

0.03

0.04

0.05

0.06

200k 600k 1M 1.4M 1.8M 2.2M

Loss on the test set lmin = 0.0325

A more classical architecture with a MaxPooling layer reaches similar
scores: amax = 0.9923, lmin = 0.0252 (~150 epochs).

15/32



Learning a Structuring Element

• Tensorflow5 itself already implements the operations of
Grayscale Dilation and Erosion6:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• Creating a grayscale dilation layer is mainly just a call to
Layer::add_weight and tf.nn.dilation2d.

Convolution Dilation Convolution Dilation

1@28x28
4@26x26 4@24x24

8@22x22 8@20x20

1x128

1x10

5Abadi et al., “TensorFlow: A system for large-scale machine learning”.
6Dougherty, An introduction to morphological image processing. 16/32



Learning a Structuring Element

• Tensorflow5 itself already implements the operations of
Grayscale Dilation and Erosion6:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• Creating a grayscale dilation layer is mainly just a call to
Layer::add_weight and tf.nn.dilation2d.

Convolution Dilation Convolution Dilation

1@28x28
4@26x26 4@24x24

8@22x22 8@20x20

1x128

1x10

5Abadi et al., “TensorFlow: A system for large-scale machine learning”.
6Dougherty, An introduction to morphological image processing. 16/32



Learning a Structuring Element

• Tensorflow5 itself already implements the operations of
Grayscale Dilation and Erosion6:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• Creating a grayscale dilation layer is mainly just a call to
Layer::add_weight and tf.nn.dilation2d.

Convolution Dilation Convolution Dilation

1@28x28
4@26x26 4@24x24

8@22x22 8@20x20

1x128

1x10

5Abadi et al., “TensorFlow: A system for large-scale machine learning”.
6Dougherty, An introduction to morphological image processing. 16/32



Adding Destructive Filters to the Mix

• We experimented with adding destructive filters to the
input.

• For instance, with gaussian blur and/or gaussian noise:

• Dilation layers do not appear to outperform
similarly-shaped convolution layers.
Val. acc. of 0.9792 vs 0.9819 after ~20 epochs, resp.

17/32



Adding Destructive Filters to the Mix

• We experimented with adding destructive filters to the
input.

• For instance, with gaussian blur and/or gaussian noise:

• Dilation layers do not appear to outperform
similarly-shaped convolution layers.
Val. acc. of 0.9792 vs 0.9819 after ~20 epochs, resp.

17/32



Adding Destructive Filters to the Mix

• We experimented with adding destructive filters to the
input.

• For instance, with gaussian blur and/or gaussian noise:

• Dilation layers do not appear to outperform
similarly-shaped convolution layers.
Val. acc. of 0.9792 vs 0.9819 after ~20 epochs, resp.

17/32



A Different Problem: Segmentation

We keep our MNIST dataset, but this time we want to classify
each input pixel into binary classes.

Source Target Input

18/32



Building A Simple Architecture

We can already get some results with very few parameters.

28×28×1 28×28×2 28×28×4

Conv2D 1×1×1
Opening/Closing 3×3 Opening/Closing 3×3

n times

Total number of parameters: 135

19/32



Comparing Results

• This architecture reached a F1-score7 of 0.8304 (precision
0.8469, recall 0.8145).

• However, a similar fully convolutional model using
approximately the same number of parameters (147 vs
135) reached a F1-Score of 0.8542 (precision 0.8400, recall
0.8690).

7Rijsbergen, Information retrieval. 20/32



Comparing Results

• This architecture reached a F1-score7 of 0.8304 (precision
0.8469, recall 0.8145).

• However, a similar fully convolutional model using
approximately the same number of parameters (147 vs
135) reached a F1-Score of 0.8542 (precision 0.8400, recall
0.8690).

7Rijsbergen, Information retrieval. 20/32



Comparing Results

• This architecture reached a F1-score7 of 0.8304 (precision
0.8469, recall 0.8145).

• However, a similar fully convolutional model using
approximately the same number of parameters (147 vs
135) reached a F1-Score of 0.8542 (precision 0.8400, recall
0.8690).

7Rijsbergen, Information retrieval. 20/32



Conclusions

• These experiments showed no significant benefit in
leveraging morphological filters within the structure of
standard convolutional neural networks.

• However, the “toy” challenge we set ourselves does not
map to a real world problem.

• There is still much experimentation to be done in the field!

21/32



Conclusions

• These experiments showed no significant benefit in
leveraging morphological filters within the structure of
standard convolutional neural networks.

• However, the “toy” challenge we set ourselves does not
map to a real world problem.

• There is still much experimentation to be done in the field!

21/32



Conclusions

• These experiments showed no significant benefit in
leveraging morphological filters within the structure of
standard convolutional neural networks.

• However, the “toy” challenge we set ourselves does not
map to a real world problem.

• There is still much experimentation to be done in the field!

21/32



PConv

• We started experimenting with PConv layers8:

PConv(f;w,P)(x) = (fP+1 ∗ w)(x)
(fP ∗ w)(x)

• These layers learn not only the filter, but also the
morphological operation:

• P < 0 is a pseudo-erosion.
• P > 0 is a pseudo-dilation.

8Masci, Angulo, and Schmidhuber, “A Learning Framework for Morphological
Operators using Counter-Harmonic Mean”.

22/32



PConv

• We started experimenting with PConv layers8:

PConv(f;w,P)(x) = (fP+1 ∗ w)(x)
(fP ∗ w)(x)

• These layers learn not only the filter, but also the
morphological operation:

• P < 0 is a pseudo-erosion.
• P > 0 is a pseudo-dilation.

8Masci, Angulo, and Schmidhuber, “A Learning Framework for Morphological
Operators using Counter-Harmonic Mean”.

22/32



PConv

• We started experimenting with PConv layers8:

PConv(f;w,P)(x) = (fP+1 ∗ w)(x)
(fP ∗ w)(x)

• These layers learn not only the filter, but also the
morphological operation:

• P < 0 is a pseudo-erosion.
• P > 0 is a pseudo-dilation.

8Masci, Angulo, and Schmidhuber, “A Learning Framework for Morphological
Operators using Counter-Harmonic Mean”.

22/32



A first PConv result

Target

Input P = −0.6663 P = 4.2216 P = −1.2166

23/32



Training PConv layers

• PConv layers are harder to train than our fixed-operation
layers...

• ...with a bunch of edge cases involving NaN.
• The original paper proposes alternating between learning
P and the weights w.

24/32



Training PConv layers

• PConv layers are harder to train than our fixed-operation
layers...

• ...with a bunch of edge cases involving NaN.

• The original paper proposes alternating between learning
P and the weights w.

24/32



Training PConv layers

• PConv layers are harder to train than our fixed-operation
layers...

• ...with a bunch of edge cases involving NaN.
• The original paper proposes alternating between learning
P and the weights w.

24/32



What’s next?

• Move to a real problem, e.g. dHCP.9

• This will allow us to experiment with integrating
morphological filters within much more complex
architectures.

9http://www.developingconnectome.org/project/

25/32

http://www.developingconnectome.org/project/


What’s next?

• Move to a real problem, e.g. dHCP.9

• This will allow us to experiment with integrating
morphological filters within much more complex
architectures.

9http://www.developingconnectome.org/project/

25/32

http://www.developingconnectome.org/project/


References

Abadi, Martin et al. “TensorFlow: A system for large-scale
machine learning”. In: 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 2016,
pp. 265–283. url: https://www.usenix.org/system/
files/conference/osdi16/osdi16-abadi.pdf.

Chen, Liang-Chieh et al. “Rethinking Atrous Convolution for
Semantic Image Segmentation”. In: CoRR abs/1706.05587
(2017). arXiv: 1706.05587. url:
http://arxiv.org/abs/1706.05587.

26/32

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587


Dougherty, E.R. An introduction to morphological image
processing. Tutorial texts in optical engineering. SPIE Optical
Engineering Press, 1992. url: https:
//books.google.fr/books?id=1kvxAAAAMAAJ.

Géraud, Thierry. A Quick Tour of Mathematical Morphology.
Huazhong University of Science & Technology and Wuhan
University. Sept. 2017.

LeCun, Yann and Corinna Cortes. “MNIST handwritten digit
database”. In: (2010). url:
http://yann.lecun.com/exdb/mnist/.

Lecun, Y. et al. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (Nov. 1998),
pp. 2278–2324. issn: 0018-9219. doi: 10.1109/5.726791.

27/32

https://books.google.fr/books?id=1kvxAAAAMAAJ
https://books.google.fr/books?id=1kvxAAAAMAAJ
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/5.726791


Masci, Jonathan, Jesús Angulo, and Jürgen Schmidhuber. “A
Learning Framework for Morphological Operators using
Counter-Harmonic Mean”. In: CoRR abs/1212.2546 (2012).
arXiv: 1212.2546. url:
http://arxiv.org/abs/1212.2546.

– .“A Learning Framework for Morphological Operators using
Counter-Harmonic Mean”. In: CoRR abs/1212.2546 (2012).
arXiv: 1212.2546. url:
http://arxiv.org/abs/1212.2546.

Rijsbergen, C. J. van. Information retrieval. 2nd ed. London:
Butterworths, 1979. url:
http://www.dcs.gla.ac.uk/Keith/Preface.html.

28/32

http://arxiv.org/abs/1212.2546
http://arxiv.org/abs/1212.2546
http://arxiv.org/abs/1212.2546
http://arxiv.org/abs/1212.2546
http://www.dcs.gla.ac.uk/Keith/Preface.html


Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. “U-Net:
Convolutional Networks for Biomedical Image
Segmentation”. In: CoRR abs/1505.04597 (2015). arXiv:
1505.04597. url:
http://arxiv.org/abs/1505.04597.

Serra, Jean and Luc Vincent. “An overview of morphological
filtering”. In: Circuits, Systems and Signal Processing 11.1
(Mar. 1992), pp. 47–108. issn: 1531-5878. doi:
10.1007/BF01189221. url:
https://doi.org/10.1007/BF01189221.

29/32

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1007/BF01189221
https://doi.org/10.1007/BF01189221


Xu, Yongchao, Thierry Géraud, and Isabelle Bloch. “From
neonatal to adult brain MR image segmentation in a few
seconds using 3D-like fully convolutional network and
transfer learning”. In: 2017 IEEE International Conference on
Image Processing (ICIP). Beijing, France: IEEE, Sept. 2017. doi:
10.1109/ICIP.2017.8297117. url:
https://hal.univ-reims.fr/hal-01735727.

30/32

https://doi.org/10.1109/ICIP.2017.8297117
https://hal.univ-reims.fr/hal-01735727


Thanks!

Any questions?

31/32



Annex A: Building a Visualization Framework

• Tensorboard allows for inspecting layers’ weights
throughout the training process.

• We needed a way to inspect the output of each layer as
well.

• We built a Keras Callback that saves weights and outputs
after every batch.

• After training, these weights and outputs are transformed
into image sequences:

Init Batch 64 Batch 96 Batch 160 Batch 512

32/32



Annex A: Building a Visualization Framework

• Tensorboard allows for inspecting layers’ weights
throughout the training process.

• We needed a way to inspect the output of each layer as
well.

• We built a Keras Callback that saves weights and outputs
after every batch.

• After training, these weights and outputs are transformed
into image sequences:

Init Batch 64 Batch 96 Batch 160 Batch 512

32/32



Annex A: Building a Visualization Framework

• Tensorboard allows for inspecting layers’ weights
throughout the training process.

• We needed a way to inspect the output of each layer as
well.

• We built a Keras Callback that saves weights and outputs
after every batch.

• After training, these weights and outputs are transformed
into image sequences:

Init Batch 64 Batch 96 Batch 160 Batch 512

32/32



Annex A: Building a Visualization Framework

• Tensorboard allows for inspecting layers’ weights
throughout the training process.

• We needed a way to inspect the output of each layer as
well.

• We built a Keras Callback that saves weights and outputs
after every batch.

• After training, these weights and outputs are transformed
into image sequences:

Init Batch 64 Batch 96 Batch 160 Batch 512

32/32


