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An introduction to Image Segmentation

Given an image, detect the outline of objects automatically.

Chen et al., “Rethinking Atrous Convolution for Semantic Image
Segmentation”
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Image Segmentation: Application to Medical Imaging

HeLa cells
Axial adult brain

Ronneberger, Fischer, and Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation”
Xu, Géraud, and Bloch, “From neonatal to adult brain MR image

segmentation in a few seconds using 3D-like fully convolutional network and
transfer learning”
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An Introduction to Mathematical Morphology

• The theory of Mathematical Morphology considers images
as landscapes.1

• The value of the pixel at position (x, y) represents its
elevation.
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1Géraud, A Quick Tour of Mathematical Morphology.

3/32



An Introduction to Mathematical Morphology

• The theory of Mathematical Morphology considers images
as landscapes.1

• The value of the pixel at position (x, y) represents its
elevation.

255 192

128128 00

255
192128128

00

1Géraud, A Quick Tour of Mathematical Morphology.

3/32



An Introduction to Mathematical Morphology

• The theory of Mathematical Morphology considers images
as landscapes.1

• The value of the pixel at position (x, y) represents its
elevation.

255 192

128128 00

255
192128128

00

1Géraud, A Quick Tour of Mathematical Morphology.

3/32



Morphological Filters

• Mathematical Morphology defines a variety of
morphological filters (or operators).

• These filters are the composition of two operations:
• sum +

• infimum ∧ (or supremum ∨)

• They take a structuring element as parameter.
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Morphological Filters: an example

X

D =

A set X and a structuring element D

Serra and Vincent, “An overview of morphological filtering” 5/32



Morphological Filters: an example

X

X D⊕

^

D =

The dilation of X by D
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Morphological Filters: an example

X

X DΘ

^

D =

The erosion of X by D

Serra and Vincent, “An overview of morphological filtering” 5/32



Morphological Filters: with an actual image

Dilation δC

Erosion ϵC

Dilation δD

Erosion ϵD
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From Binary Dilation to Grayscale Dilation

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

0 1 0

1 1 1

0 1 0

-∞ 0 -∞

0 0 0

-∞ 0 -∞
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Grayscale Filters

Dilation δC

Erosion ϵC

Dilation δD

Erosion ϵD
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Higher Order Filters

We can combine these filters to create higher order operators:

• The opening γ = δ ◦ ϵ.
• The closing ϕ = ϵ ◦ δ.
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Higher Order Filters: an example

Opening γC

Closing ϕC

Opening γD

Closing ϕD
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Convolutional Neural Networks

CONVOLUTION POOLING

...

FULLY CONNECTED

(f ∗ g)(t) ≜
∫ ∞

−∞
f(τ)g(t− τ)dτ

Lecun et al., “Gradient-based learning applied to document recognition”
Masci, Angulo, and Schmidhuber, “A Learning Framework for Morphological

Operators using Counter-Harmonic Mean”
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A Fixed Dilation Layer

• Rather straightforward to implement with Tensorflow.2

• Tensorflow implements Grayscale Dilation3:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• We first experimented with fixed binary structuring
elements (e.g. a vertical cross, an X).

• As such, we had to apply the previously mentioned
transformation to our structuring elements.

2Abadi et al., “TensorFlow: A system for large-scale machine learning”.
3Dougherty, An introduction to morphological image processing.
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The Data

• For the purpose of these experiments, we used the MNIST
Handwritten Digits4 dataset.

• 28× 28 grayscale, 60 000 training images, 10 000 test
images.

4LeCun and Cortes, “MNIST handwritten digit database”.
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Testing a Dilation Layer on MNIST: Architecture

Conv2D 3x3x4 Dilation 3x3 Conv2D 3x3x8 Dense

28x28x1 27x27x4 27x27x4 26x26x8 128x1 10x1

Also tested with a single level of convolution + dilation.
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Testing a Dilation Layer on MNIST: Training

Trained over 40 epochs, with a batch size of 128.

0.981

0.983

0.985

0.987

0.989

0.991

400k 600k 800k 1M 1.2M 1.4M 1.6M

Accuracy on the test set amax = 0.9914

0.03

0.04

0.05

0.06

200k 600k 1M 1.4M 1.8M 2.2M

Loss on the test set lmin = 0.0325

A more classical architecture with a MaxPooling layer reaches similar
scores: amax = 0.9923, lmin = 0.0252 (~150 epochs).
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Learning a Structuring Element

• Tensorflow5 itself already implements the operations of
Grayscale Dilation and Erosion6:

(f⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)]

• Creating a grayscale dilation layer is mainly just a call to
Layer::add_weight and tf.nn.dilation2d.

Convolution Dilation Convolution Dilation

1@28x28
4@26x26 4@24x24

8@22x22 8@20x20

1x128

1x10

5Abadi et al., “TensorFlow: A system for large-scale machine learning”.
6Dougherty, An introduction to morphological image processing. 16/32
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Adding Destructive Filters to the Mix

• We experimented with adding destructive filters to the
input.

• For instance, with gaussian blur and/or gaussian noise:

• Dilation layers do not appear to outperform
similarly-shaped convolution layers.
Val. acc. of 0.9792 vs 0.9819 after ~20 epochs, resp.
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A Different Problem: Segmentation

We keep our MNIST dataset, but this time we want to classify
each input pixel into binary classes.

Source Target Input

18/32



Building A Simple Architecture

We can already get some results with very few parameters.

28×28×1 28×28×2 28×28×4

Conv2D 1×1×1
Opening/Closing 3×3 Opening/Closing 3×3

n times

Total number of parameters: 135

19/32



Comparing Results

• This architecture reached a F1-score7 of 0.8304 (precision
0.8469, recall 0.8145).

• However, a similar fully convolutional model using
approximately the same number of parameters (147 vs
135) reached a F1-Score of 0.8542 (precision 0.8400, recall
0.8690).

7Rijsbergen, Information retrieval. 20/32
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Conclusions

• These experiments showed no significant benefit in
leveraging morphological filters within the structure of
standard convolutional neural networks.

• However, the “toy” challenge we set ourselves does not
map to a real world problem.

• There is still much experimentation to be done in the field!
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PConv

• We started experimenting with PConv layers8:

PConv(f;w,P)(x) = (fP+1 ∗ w)(x)
(fP ∗ w)(x)

• These layers learn not only the filter, but also the
morphological operation:

• P < 0 is a pseudo-erosion.
• P > 0 is a pseudo-dilation.

8Masci, Angulo, and Schmidhuber, “A Learning Framework for Morphological
Operators using Counter-Harmonic Mean”.
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A first PConv result

Target

Input P = −0.6663 P = 4.2216 P = −1.2166
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Training PConv layers

• PConv layers are harder to train than our fixed-operation
layers...

• ...with a bunch of edge cases involving NaN.
• The original paper proposes alternating between learning
P and the weights w.
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What’s next?

• Move to a real problem, e.g. dHCP.9

• This will allow us to experiment with integrating
morphological filters within much more complex
architectures.

9http://www.developingconnectome.org/project/
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Thanks!

Any questions?
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Annex A: Building a Visualization Framework

• Tensorboard allows for inspecting layers’ weights
throughout the training process.

• We needed a way to inspect the output of each layer as
well.

• We built a Keras Callback that saves weights and outputs
after every batch.

• After training, these weights and outputs are transformed
into image sequences:

Init Batch 64 Batch 96 Batch 160 Batch 512
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