
Training	a	watershed	layer	

L.	Najman	
	

Joint	work	with	Rahul	Chakwata,	Aditya	Challa,		
Sravan	Danda	and	B.S.	Daya	Sagar	

	
30/09/2019	– MorphoNet	Meeting	

Previous	work:	
The	Maximum	Margin	Partition	

18 Chapter 1. Introduction and Overview

Maximum Margin Partition

Recall that, SVM operates by choosing the boundary which maximizes the margin be-

tween labelled points and the boundary. This is referred to the maximum margin prin-

ciple. This can be generalized to classifiers in the context edge weighted graphs as well.

Principle 1.1 (Maximum Margin Partition). Let (V, ⇢) be a set of points equipped with

a dissimilarity measure, X0 and X1 be the labelled subsets labelled 0 and 1 respectively.

A partition V = M [M is called Maximum Margin Partition if it maximizes

argmax
M

⇢̂(X0, X1,M) = argmax
M

�
inf

�
⇢(X0,M), ⇢(X1,M)

(1.2.5)

assuming that X0 ⇢ M and X1 ⇢ M .

Observe that ⇢(X0,M) measures the closest “distance” between the set of points la-

belled 0 and all the points that would have been labelled 1 after classification. This

represents the margin between the classes. Similarly ⇢(X1,M) represented the margin

between points labelled 1 and points that would be labelled 0 after classification. Max-

imizing both these quantities constitute the maximizing the margin as is the case with

SVM.

Given the notation as above, we have the following theorem.

Theorem 1.1. Given ⇢(., .), the partition obtained by morphMedian is optimal maxi-

mum margin partition.

The interesting aspect of the above theorem is the links between two seemingly dif-

ferent techniques - morphological medians and maximum margin classifiers. This allows

us to extend several of the morphological operators for supervised classification, in par-

ticular watersheds.

Observe that the behavior of classifier morphMedian above depends entirely on

the dissimilarity measure used. That is, there are no other parameters to control the

behavior.

Watersheds as classifiers

One of the most important consequences of the above theory is - it is justified to use

watersheds for classification. The watershed transform in MM has a rich history (see [61]).

1.2. Mathematical Morphology and Supervised Learning 17

In [72], the author proposes the following morphological median as a method to obtain

the median element.

M(X,Y) =

[

��0

{(X � �B) \ (Y �B)} (1.2.1)

Here B indicates the unit disk structuring element, X��B indicates dilation, and Y �B

indicates erosion. Now, defining a dilation distance as follows,

d(X,Z) = inf{� | Z ✓ X � �B} (1.2.2)

one can rephrase the morphological median as

M(X,Y) = {x|d(X,x)  d(Y
c
, x)} = IZ(X | Y c

) (1.2.3)

The RHS is also referred to as influence zone of X with respect to Y
c.

Observe that , definition in (1.2.3) can be translated to edge weighted graphs. Let

G = (V,E,W) be an edge weighted graph as before. Let X,Y be subsets of V . Using

the dissimilarity measure, ⇢, on the edge weighted graph instead of the dilation distance

as before. The dissimilarity measure is extended to sets using

⇢(X,Y) = inf
x2X,y2Y

⇢(x, y). (1.2.4)

On the other hand, consider the supervised learning problem in the context of edge

weighted graphs - Let X0, X1 be the labelled set of points labelled 0 and 1 respectively.

Let V denote the set of all points including the unlabelled as well as labelled points.

Also assume that there exists a dissimilarity measure ⇢. Now, the supervised learning

problem requires a partition of V = M [M such that X0 ⇢ M and X1 ⇢ M . It then

easy to see that morphological median in (1.2.3) provides such a partition.

In what follows, we show that the partition provided by (1.2.3) satisfies some opti-

mality properties. This partition of the set of points is referred to as morphMedian for

ease of exposition.

The	watershed	provides	a	solution	to	this	problem		

A.  Challa,	S.	Danda,	B.	S.	D.	Sagar	and	L.	Najman,		
"Watersheds	for	Semi-Supervised	Classification,”		

IEEE	Signal	Processing	Letters,	vol.	26,	no.	5,	pp.	720-724,	May	2019.	

The	distance	can	be	Euclidean	or	ultrametric	(pass	value)	

Main	theme	of	this	talk	

Replacing	the	softmax	classifier	with	a	watershed	

The	Maximum	Margin	Partition	

18 Chapter 1. Introduction and Overview

Maximum Margin Partition

Recall that, SVM operates by choosing the boundary which maximizes the margin be-

tween labelled points and the boundary. This is referred to the maximum margin prin-

ciple. This can be generalized to classifiers in the context edge weighted graphs as well.

Principle 1.1 (Maximum Margin Partition). Let (V, ⇢) be a set of points equipped with

a dissimilarity measure, X0 and X1 be the labelled subsets labelled 0 and 1 respectively.

A partition V = M [M is called Maximum Margin Partition if it maximizes

argmax
M

⇢̂(X0, X1,M) = argmax
M

�
inf

�
⇢(X0,M), ⇢(X1,M)

(1.2.5)

assuming that X0 ⇢ M and X1 ⇢ M .

Observe that ⇢(X0,M) measures the closest “distance” between the set of points la-

belled 0 and all the points that would have been labelled 1 after classification. This

represents the margin between the classes. Similarly ⇢(X1,M) represented the margin

between points labelled 1 and points that would be labelled 0 after classification. Max-

imizing both these quantities constitute the maximizing the margin as is the case with

SVM.

Given the notation as above, we have the following theorem.

Theorem 1.1. Given ⇢(., .), the partition obtained by morphMedian is optimal maxi-

mum margin partition.

The interesting aspect of the above theorem is the links between two seemingly dif-

ferent techniques - morphological medians and maximum margin classifiers. This allows

us to extend several of the morphological operators for supervised classification, in par-

ticular watersheds.

Observe that the behavior of classifier morphMedian above depends entirely on

the dissimilarity measure used. That is, there are no other parameters to control the

behavior.

Watersheds as classifiers

One of the most important consequences of the above theory is - it is justified to use

watersheds for classification. The watershed transform in MM has a rich history (see [61]).

1.2. Mathematical Morphology and Supervised Learning 17

In [72], the author proposes the following morphological median as a method to obtain

the median element.

M(X,Y) =

[

��0

{(X � �B) \ (Y �B)} (1.2.1)

Here B indicates the unit disk structuring element, X��B indicates dilation, and Y �B

indicates erosion. Now, defining a dilation distance as follows,

d(X,Z) = inf{� | Z ✓ X � �B} (1.2.2)

one can rephrase the morphological median as

M(X,Y) = {x|d(X,x)  d(Y
c
, x)} = IZ(X | Y c

) (1.2.3)

The RHS is also referred to as influence zone of X with respect to Y
c.

Observe that , definition in (1.2.3) can be translated to edge weighted graphs. Let

G = (V,E,W) be an edge weighted graph as before. Let X,Y be subsets of V . Using

the dissimilarity measure, ⇢, on the edge weighted graph instead of the dilation distance

as before. The dissimilarity measure is extended to sets using

⇢(X,Y) = inf
x2X,y2Y

⇢(x, y). (1.2.4)

On the other hand, consider the supervised learning problem in the context of edge

weighted graphs - Let X0, X1 be the labelled set of points labelled 0 and 1 respectively.

Let V denote the set of all points including the unlabelled as well as labelled points.

Also assume that there exists a dissimilarity measure ⇢. Now, the supervised learning

problem requires a partition of V = M [M such that X0 ⇢ M and X1 ⇢ M . It then

easy to see that morphological median in (1.2.3) provides such a partition.

In what follows, we show that the partition provided by (1.2.3) satisfies some opti-

mality properties. This partition of the set of points is referred to as morphMedian for

ease of exposition.

The	watershed	provides	a	solution	to	this	problem		

A.  Challa,	S.	Danda,	B.	S.	D.	Sagar	and	L.	Najman,		
"Watersheds	for	Semi-Supervised	Classification,”		

IEEE	Signal	Processing	Letters,	vol.	26,	no.	5,	pp.	720-724,	May	2019.	

The	distance	can	be	Euclidean	or	ultrametric	(pass	value)	

Magnet	loss	
METRIC	LEARNING	WITH	ADAPTIVE	DENSITY	DISCRIMINATION		-	ICLR	2016	

Published as a conference paper at ICLR 2016

Figure 2: 2D visualizations of representations attained by training triplet loss, Magnet Loss and a softmax classifier on 10
classes of ImageNet. The different colours correspond to different classes, and the values to density estimates computed from
an application of t-SNE (van der Maaten & Hinton, 2008) on the original 1024-dimensional representations. The white dots in
the Magnet t-SNE correspond to K = 32 clusters used by Magnet to capture each class. The red arrows retrieve the examples
closest to particular clusters (which were learnt autonomously). 1. It can be seen that triplet loss and softmax result in unimodal
separation, due to enforcement of semantic similarity. For Magnet Loss, the distributions of the different classes may arbitrarily
split, adaptively embracing intra-class variation and inter-class similarity. 2. Green corresponds to manta-rays, blue to sharks,
and magenta to gazelles. Magnet Loss captures intra-class variation between (c) and (b) as manta-rays in the deep, and manta-
rays with people. It also respects inter-class similarity, allowing shared structure between (c) and (d) as fish in the deep, and
between (a) and (b) as animals with people. See Appendix A for image maps of other t-SNE projections.

In practice, however, the only available supervision is often in the form of class labels. In this case,
a ubiquitous solution is to enforce semantic similarity: examples of each class are demanded to be
tightly clustered together, far from examples of other classes (for example, Schroff et al. (2015);
Norouzi et al. (2012); Globerson & Roweis (2006); Chopra et al. (2005)). However, this collapses
intra-class variation and does not embrace shared structure between different classes. Hence, this
imposes too strong of a requirement, as each class is assumed to be captured by a single mode.

This issue is well-known, and has motivated the notion of local similarity: each example is desig-
nated only a small number of target neighbours of the same class (Weinberger & Saul, 2009; Qian
et al., 2015; Hadsell et al., 2006). In existing work, these target neighbours are determined prior to
training: they are retrieved based on distances in the original input space, and after which are never
updated again. Ironically, this is in contradiction with our fundamental assumption which motivated
us to pursue a DML approach in the first place. Namely, we want to learn a metric because we
cannot trust distances in our original input space — but on the other hand define target similarity
using this exact metric that cannot be trusted! Thus, although this approach has the good intentions
of encoding similarity into our representation, it harms intra-class variation and inter-class similarity
by enforcing unreasonable proximity relationships. Apart from its information preservation rami-
fications, achieving predefined separation requires significant effort, which results in inefficiencies
during training time.

Instead, what we ought to do is rather define similarity as function of distances of our represen-
tations — which lie in precisely the space sculpted for metric saliency. Since representations are
adjusted continuously during training, it then follows that similarity must be defined adaptively. To
that end, we must alternate between updating our representations, and refreshing our model which
designates similarity as function of these. Visualizations of representations of different DML ap-
proaches can be found in a toy example in Figure 2.

Issue #2: objective formulation Two very popular classes of DML approaches have stemmed
from Triplet Loss (Weinberger & Saul, 2009) and Contrastive Loss (Hadsell et al., 2006). The
outlined issues apply to both, but for simplicity of exposition we use triplet loss as an example.

3

Magnet	loss:	intuition	

Published as a conference paper at ICLR 2016

α
(a) Triplet: before.

α
(b) Triplet: after. (c) Magnet: before. (d) Magnet: after.

Figure 3: The intuition behind triplet loss and Magnet Loss. Triplet loss only considers a single
triplet at a time, resulting in reduced performance and training inefficiencies. In contrast, in Mag-
net Loss, at each iteration an entire local neighbourhood of nearest clusters is retrieved, and their
overlaps are penalized. Insight into representation distribution permits adaptive similarity character-
ization, local discrimination and a globally consistent optimization procedure.

During its training, triplets consisting of a seed example, a “positive” example similar to the seed and
a “negative” dissimilar example are sampled. Let us denote their representations as rm, r+m and r�m
for m = 1, . . . ,M . Triplet loss then demands that the difference of distances of the representation of
the seed to the negative and to the positive be larger than some pre-assigned margin constant ↵ 2 R:

Ltriplet (⇥) =
1

M

MX

m=1

n��rm � r�m
��2
2
�

��rm � r+m
��2
2
+ ↵

o

+
, (1)

where {·}+ is the hinge function and ⇥ the parameters of the map to representation space. The
representations are often normalized to achieve scale invariance, and negative examples are mined
in order to find margin violators (for example, Schroff et al. (2015); Norouzi et al. (2012)).

Objectives formulated in this spirit exhibit a short-sightedness. Namely, penalizing individual pairs
or triplets of examples does not employ sufficient contextual insight of neighbourhood structure, and
as such different triplet terms are not necessarily consistent. This hinders both the convergence rate
as well as performance of these approaches. Moreover, the cubic growth of the number of triplets
renders operation on these computationally inefficient.

In contrast to this, it is desirable to instead inform the algorithm of the distributions of the differ-
ent classes in representation space and their overlaps, and rather manipulate these in a way that is
globally consistent. We elaborate on this in the section below.

3 MAGNET LOSS FOR DISTANCE METRIC LEARNING

We proceed to design a model to mitigate the identified difficulties. Let us for a moment neglect
practical considerations, and envision our ideal DML approach. To start, as concluded at the start of
Section 2, we are interested to characterize similarity adaptively as function of current representation
structure. We would then utilize this knowledge to pursue local separation as opposed to global:
we seek to separate between distributions of different classes in representation space, but do not
mind if they are interleaved. As such, let us assume that we have knowledge of the representation
distribution of each class at any time during training. Our DML algorithm, then, would discover
regions of local overlap between different classes, and penalize these to achieve discrimination.

Such an approach would liberate us from the unimodality assumption and unreasonable prior tar-
get neighbourhood assignments — resulting in a more expressive representation which maintains
significantly more information. Moreover, employing a loss informed of distributions rather than
individual examples would allow for a more coherent training procedure, where the distance metric
is adjusted in a way that is globally consistent.

To that end, a natural approach would be to employ clustering techniques to capture these distribu-
tions in representation space. Namely, for each class, we will maintain an index of clusters, which we
will update continuously throughout training. Our objective, then, would jointly manipulate entire
clusters — as opposed to individual examples — in the pursuit of local discrimination. This intuition

4

Published as a conference paper at ICLR 2016

of cluster attraction and repulsion motivates us to name it Magnet Loss. A caricature illustrating the
intuition behind this approach can be found in Figure 3.

In addition to its advantages from a modeling perspective, a clustering-based approach also facili-
tates computation by enabling efficient hard negative mining. That is, we may perform approximate
nearest neighbour retrieval in a two-step process, where we first retrieve nearest clusters, after which
we retrieve examples from these clusters.

Finally, as discussed, throughout training we are interested in a more complete characterization
of neighbourhood structure. At each iteration, we sample entire local neighbourhoods rather than
collections of independent examples (or triplets) as per usual, which significantly improves training
efficiency. We elaborate on this in Section 3.2.

3.1 MODEL FORMULATION

We proceed to quantify the modeling objectives outlined above. Let us assume we have a training
set consisting of N input-label pairs D = {xn, yn}Nn=1 belonging to C classes. We consider a
parametrized map f(·;⇥) which hashes our inputs to representation space, and denote their rep-
resentations as rn = f(xn;⇥), n = 1, . . . , N . In this work, we select this transformation as
GoogLeNet (Szegedy et al., 2015; Ioffe & Szegedy, 2015), which has been demonstrated to be a
powerful CNN architecture; in Section 4 we elaborate on this choice.

We assume that, for each class c, we have K cluster assignments Ic
1, . . . , Ic

K obtained via an ap-
plication of the K-means algorithm. Note that K may vary across classes, but for simplicity of
exposition we fix it as uniform. In Section 3.2, we discuss how to maintain this index. To that end,
we assume that these assignments have been chosen to minimize intra-cluster distances. Namely,
for each class c, we have

Ic
1, . . . , Ic

K = arg min
Ic
1 ,...,I

c
K

KX

k=1

X

r2Ic
k

kr� µc
kk

2
2 , (2)

µc
k =

1

|Ick|
X

r2Ic
k

r . (3)

We further define C(r) as the class of representation r, and µ(r) as its assigned cluster center.

We proceed to define our objective as follows:

L (⇥) =
1

N

NX

n=1

8
<

:� log
e�

1
2�2 krn�µ(rn)k2

2�↵

P
c 6=C(rn)

PK
k=1 e

� 1
2�2 krn�µc

kk2

2

9
=

;
+

(4)

where {·}+ is the hinge function, ↵ 2 R is a scalar, and �2 = 1
N�1

P
r2D kr� µ(r)k22 is the vari-

ance of all examples away from their respective centers. We note that cluster centers sufficiently far
from a particular example vanish from its term in the objective. This allows accurately approximat-
ing each term with a small number of nearest clusters.

A feature of this objective not usually available in standard distance metric learning approach is
variance standardization. This renders the objective invariant to the characteristic lengthscale of the
problem, and allows the model to gauge its confidence of prediction by comparison of intra- and
inter-cluster distances. With this in mind, ↵ is then the desired cluster separation gap, measured
in units of variance. In our formulation, we may thus interpret ↵ as a modulator of the probability
assigned to an example of a particular class under the distribution of another.

We remark that during model design, an alternative objective we considered is the cluster-based
analogue of NCA (see Section 3.4): this objective seems to be a natural approach with a clear
probabilistic interpretation. However, we found empirically that this objective does not generalize
as well, since it only vanishes in the limit of extreme discrimination margins.

5

Modifying	magnet	loss	algorithm	

•  First	possibility	
– Replace	k-Means	with	iterated	watershed	

•  Sampriti	Soor,	Aditya	Challa,	Sravan	Danda,	B	Daya	Sagar,	Laurent	Najman.	Iterated	
Watersheds,	A	Connected	Variation	of	K-Means	for	Clustering	GIS	Data.	IEEE	Transactions	on	
Emerging	Topics	in	Computing,	Institute	of	Electrical	and	Electronics	Engineers,	In	press,	
⟨10.1109/TETC.2019.2910147⟩	

•  Second	possibility	
– Replace	k-means	with	filtered	watershed	

•  No	longer	needs	the	“k”	parameter	

Replacing	KNN	with		
iterated	watershed		
in	magnet	loss	Rahul Chakwate, IIT Madras, India Internship Report

Table 3: Results

SSL 6 into 2 class classification
Without L2 norm With L2 norm
Train Val Train Val
99.91 98.33 99 97.66
99.75 99.33 99.75 99.33
99.58 97 98.66 97.33
99.08 97 99.66 98.66
99 98 99.83 97.33
99.91 98.66 100 99.33
99.52875 97.91375 99.48333333 98.27333333 Average

Observations:

With L2 normalization of the final layer of the network, the validation accuracy increases by a small margin and
the overfitting decreases.

6.4 Magnet loss with variable cluster complete watershed for 6 distinct classes

The number of clusters in a class is fixed in the original magnet loss algorithm as well as in the iterated watershed
algorithm. But here, in the complete watershed implementation the number of clusters is set adaptively while training.

Table 4: Results

SSL 6 classes split Variable WS
Train Val
99.33 92
99.83 92.33
99.41 92
99.66 92.67
99.41 92.67
99.66 91.33
99.5 92
98.66 91.67
99.08 91.67
98.83 91.67
99.337 92.001 Average
0.3757082201 0.4450081148 Stdev

Page 5

•  Watershed	performs	better	that	the	original	magnet	loss	
•  We	can	also	show	that	we	can	take	advantage	of	a	variable		

	 	number	of	cluster	implementation	(filtered	watershed)	
	

Watershed	layer	with	a	MST	

•  Using	a	MST	/	ultrametric	is	possible	

•  Unstable	in	practice	

•  Needs	a	regularization	term	
– See	B.	Perret	and	G.	Chierchia	2019	NeurIPS	paper	

Watershed	layer		
by	probabilistic	inference	

2: Using IFT with Xl as seeds, compute the following -
3: (a) Pl denotes the closest parent labelled l for each point.
4: (b) PVl denotes the distance to the closest parent labelled l for each point.
5: end for

6: For each point x compute the probabilities belonging to a class l using

P (x 2 class l) =
exp(�⇢(x,Xl))P
i exp(�⇢(x,Xi))

(5)

7: return Probabilities

Now, using the above one can incorporate the watershed classifier into the deep learning
pipeline. The last watershed later takes in a representation of the points and returns the
probabilistic classification using the ground truth. Now, finally one can use any of the cost
functions to evaluate the output. For completely supervised classification, we use

Cost = �
X

i,j

yi,jlog(Pi,j) (6)

where yi,j indicates if point i belongs to class j. Accordingly, Pi,j denotes the probability
that point i belongs to class j.

For semi-supervised one can use the following cost instead.

Cost = �
X

i2labelled,j
yi,jlog(Pi,j) +

X

i2unlabelled,j
Pi,jlog(Pi,j) (7)

4. Experiments

Here, we list all the experiments performed till now and the inference obtained from this.

4.1 Experiment 1

Figure 1: Results using simple siamese with contrastive loss

We have considered 3 concentric circles with 2 classes - the innermost and the outermost
circle belong to the same class, the middle circle belongs to the di↵erent class. We have run
both simple siamese + contrastive loss and also the siamese + watershed layer. The results
are shown in figures 1 and 2.

3

2: Using IFT with Xl as seeds, compute the following -
3: (a) Pl denotes the closest parent labelled l for each point.
4: (b) PVl denotes the distance to the closest parent labelled l for each point.
5: end for

6: For each point x compute the probabilities belonging to a class l using

P (x 2 class l) =
exp(�⇢(x,Xl))P
i exp(�⇢(x,Xi))

(5)

7: return Probabilities

Now, using the above one can incorporate the watershed classifier into the deep learning
pipeline. The last watershed later takes in a representation of the points and returns the
probabilistic classification using the ground truth. Now, finally one can use any of the cost
functions to evaluate the output. For completely supervised classification, we use

Cost = �
X

i,j

yi,jlog(Pi,j) (6)

where yi,j indicates if point i belongs to class j. Accordingly, Pi,j denotes the probability
that point i belongs to class j.

For semi-supervised one can use the following cost instead.

Cost = �
X

i2labelled,j
yi,jlog(Pi,j) +

X

i2unlabelled,j
Pi,jlog(Pi,j) (7)

4. Experiments

Here, we list all the experiments performed till now and the inference obtained from this.

4.1 Experiment 1

Figure 1: Results using simple siamese with contrastive loss

We have considered 3 concentric circles with 2 classes - the innermost and the outermost
circle belong to the same class, the middle circle belongs to the di↵erent class. We have run
both simple siamese + contrastive loss and also the siamese + watershed layer. The results
are shown in figures 1 and 2.

3

2: Using IFT with Xl as seeds, compute the following -
3: (a) Pl denotes the closest parent labelled l for each point.
4: (b) PVl denotes the distance to the closest parent labelled l for each point.
5: end for

6: For each point x compute the probabilities belonging to a class l using

P (x 2 class l) =
exp(�⇢(x,Xl))P
i exp(�⇢(x,Xi))

(5)

7: return Probabilities

Now, using the above one can incorporate the watershed classifier into the deep learning
pipeline. The last watershed later takes in a representation of the points and returns the
probabilistic classification using the ground truth. Now, finally one can use any of the cost
functions to evaluate the output. For completely supervised classification, we use

Cost = �
X

i,j

yi,jlog(Pi,j) (6)

where yi,j indicates if point i belongs to class j. Accordingly, Pi,j denotes the probability
that point i belongs to class j.

For semi-supervised one can use the following cost instead.

Cost = �
X

i2labelled,j
yi,jlog(Pi,j) +

X

i2unlabelled,j
Pi,jlog(Pi,j) (7)

4. Experiments

Here, we list all the experiments performed till now and the inference obtained from this.

4.1 Experiment 1

Figure 1: Results using simple siamese with contrastive loss

We have considered 3 concentric circles with 2 classes - the innermost and the outermost
circle belong to the same class, the middle circle belongs to the di↵erent class. We have run
both simple siamese + contrastive loss and also the siamese + watershed layer. The results
are shown in figures 1 and 2.

3

Fully	supervised	classification	

Semi-supervised	classification	

Siamese	network	example	

2: Using IFT with Xl as seeds, compute the following -
3: (a) Pl denotes the closest parent labelled l for each point.
4: (b) PVl denotes the distance to the closest parent labelled l for each point.
5: end for

6: For each point x compute the probabilities belonging to a class l using

P (x 2 class l) =
exp(�⇢(x,Xl))P
i exp(�⇢(x,Xi))

(5)

7: return Probabilities

Now, using the above one can incorporate the watershed classifier into the deep learning
pipeline. The last watershed later takes in a representation of the points and returns the
probabilistic classification using the ground truth. Now, finally one can use any of the cost
functions to evaluate the output. For completely supervised classification, we use

Cost = �
X

i,j

yi,jlog(Pi,j) (6)

where yi,j indicates if point i belongs to class j. Accordingly, Pi,j denotes the probability
that point i belongs to class j.

For semi-supervised one can use the following cost instead.

Cost = �
X

i2labelled,j
yi,jlog(Pi,j) +

X

i2unlabelled,j
Pi,jlog(Pi,j) (7)

4. Experiments

Here, we list all the experiments performed till now and the inference obtained from this.

4.1 Experiment 1

Figure 1: Results using simple siamese with contrastive loss

We have considered 3 concentric circles with 2 classes - the innermost and the outermost
circle belong to the same class, the middle circle belongs to the di↵erent class. We have run
both simple siamese + contrastive loss and also the siamese + watershed layer. The results
are shown in figures 1 and 2.

3

Contrastive	loss	(no	watershed	here)	

Watershed	example	

Figure 2: Results using simple siamese with Watershed Layer

The most important thing to note here is - Watershed layer preserves the structure of
the dataset while the contrastive loss removes it. This is similar to the property which
has been tried by authors in Rippel et al. (2016), who proposed magnet loss. We expect
watershed layer to share the same property.

4.2 Experiment 2 - MNIST

In the next experiment we compare the watershed layer with magnet loss on MNIST dataset.
The aim of this experiment is to obtain a “good” embedding of the MNIST dataset.

Results of the PCA and TSNE projections of the embeddings of magnet loss and water-
shed layer have been shown in figures 3 and 4. Observe that even PCA in watershed layer
clearly distinguishes between the classes while PCA for magnet loss embedding is does not.
However, the TSNE embedding of magnet loss and watershed di↵er. It is di�cult to say
which is better since TSNE does not preserve the exact distances. So, further experiments
are needed to decide.

However, another way to validate the embedding is to consider the K-NN accuracy on
the embedding. It is reasonable to assume that “good” embeddings would result in higher
KNN accuracy. Hence, we can use KNN accuracy to evaluate the embeddings. This is
shown in figure 5. Clearly, Watershed layer obtains better accuracy than magnet loss.

4.3 Experiment 3

Now, another test of the embedding is to verify whether the approach can preserve intra-
class structure. To check this, we conduct the following experiment - Combine 5 classes
of MNIST into class 0 and others into class 1. Then, using the coarse labels we train
both the magnet loss and the watershed layer and observe the embeddings. To compare
the embeddings, we use the KNN accuracies as before, but on the finer class labels. This
should tell us how well do these methods preserve the intra-class structure.

Figure 6 shows the TSNE mappings of the embeddings and figure 7 shows the KNN
accuracies.

4

Watershed	preserves	the	structure	of	the	data	while	contrastive	loss	removes	it	

MNIST	Dataset:	KNN	accuracy	

Figure 5: KNN-Accuracy, MNIST dataset, MagnetLoss vs Watershed. X-axis shows the
number of neighbors and Y-axis shows the k-nn accuracy.

(a) (b)

Figure 6: Hierarchy Preserving (a) Magnet Loss (b) Watershed Layer

Oren Rippel, Manohar Paluri, Piotr Dollár, and Lubomir D. Bourdev. Metric learning
with adaptive density discrimination. In Yoshua Bengio and Yann LeCun, editors, 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/

abs/1511.05939.

6

Preserving	the	hierarchical	structure	

Figure 7: KNN-Accuracy, MNIST dataset, MagnetLoss vs Watershed. X-axis shows the
number of neighbors and Y-axis shows the k-nn accuracy.

7

MNIST	is	splited	in	two	classes	[0-4],	[5-9]	
KNN	accuracy	for	the	original	10	classes	

Perspectives	
•  Batch	mode	
•  Compactness	properties	of	the	clusters	
•  Hierarchical	properties	
–  Practically	
–  Theoretically	

•  Regularization	term	
–  Connected	filters	

•  Using	watershed	for	regression	
–  First	results	quite	promising	

