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In brief:

• Problem:
• Most hierarchical clustering method are defined procedurally

• Optimization of hierarchical cost functions are usually formulated as NP-Hard 
combinatorial problems

• We propose:
• A continuous method (aka gradient descend) for hierarchical clustering

optimization

• A differentiable « ultrametric layer » that transforms any dissimilarity into an 
ultrametric (aka hierachical clustering)



1. Introduction



What is an ultrametric ? (1/2)

• It is a distance that satisfies the ultrametric inequality

For every triplet (i,j,k), at 
least two of them are equal.

Ultrametric distance matrix



What is an ultrametric ? (2/2)

• Dual representation of hierarchical clusterings

Dendrogram: 
• leaves represent data
• Inner nodes represent successive merging of clusters
• The distance between two leaves is given by their lowest common ancestor



Ultrametric fitting

• Goal: Find an ultrametric that “best” represents the dissimilarity data
• Input  Undirected graph with dissimilarity edge weights

• Input  Cost function on the produced ultrametric

• Output  Ultrametric edge weights



2. Proposed approach



Optimization framework (1/4)

• Constrained optimization problem over a continuous 
domain

• U is an ultrametric on the graph G:

• This constraint is non-convex

Input dissimilarity
(edge weights)

Set of cycles of G Subset of triplets that 
satisfy the ultrametric
inequality



Optimization framework (2/4)

• Reformulation with implicit constraint

• Where         is 
• an operator from the set of edge dissimilarities to the set of ultrametric

• differentiable to allow for gradient descent

• is not an ultrametric anymore but               is one



Optimization framework (3/4)

• Does such          exists ?

• Good news: one very standard operator does it (so standard it 
has a lot of names):
• Quasi-flat zone hierarchy/Alpha-Tree 

• Sub-dominant ultrametric

• Single-linkage clustering

• Min-max distance



Optimization framework (4/4)

• Wait… QFZ is (sub-)differentiable ?

• Intuitive idea: the ultrametric associated to QFZ can be computed with 
the Floyd-Warshall algorithm:

• This is just like a sequence of max-pooling

• More efficient implementation in practice:
• Compute QFZ: O(n*log(n))

• Compute the ultrametric/saliency map associated to this hierarchy: O(n)

• At the end: this is just playing with indices => automatic differentiation



3. Cost functions



Example - Toy datasets



Closest ultrametric fitting

• Find the “closest” ultrametric to the given dissimilarity graph
• Ie. Find the ultrametric that minimizes the L-p distance to the input 

dissimilarity graph



Example - Closest ultrametric fitting



Regularized ultrametric fitting

• Regularization Push down the nodes with few descendant leaves

with



Example - Regularized ultrametric fitting
+



Triplet-based ultrametric fitting

• Triplet loss (semi-supervised)
• Push down the edges between points in 

the same class

• Push up the edges between points in 
different classes 



Example – Triplet-based ultrametric fitting
+



Dasgupta’s cost function
• Well known cost function for hierarchical clustering in the algorithmic 

community

• Problem: the cardinal of a set is not a differentiable function…

• Solution: relax the definition of the size of a node

• Replace H by a continuous approximation (sigmoid) to get a differentiable area

Where H is the Heaviside function



Example – Dasgupta’s optimization



4. Validation



Validation of the optimization method

• Problem:
• Non convex optimization

• Gradient descend method offers no global guaranty

• Do we manage to reach “good” solutions ?

• Comparison with more specific method with proven guaranties:
• “Closest Ultrametric via Cutting Plane” (Yarkony & Fowlkes, NIPS 2015), almost exact 

solution to the closest ultrametric problem on planar graphs 

• “Linkage ++” (Cohen-Addad et al., NIPS 2017),  provides a O(1) approximation of 
optimal Dasgupta’s solution with high probability



Closest Ultrametric via Cutting Plane
• Generate many planar graphs of various sizes

• Compare CUCP solutions and runtime

Not far from CUCP but 
much faster and 
scalable



Dasgupta’s cost

• Generate many blob like graphs with various sizes number of clusters

Comparable results



5. Demonstration on clustering



Clustering on real datasets



Semi-supervised classification on real data



6. Conclusion



Take-away message

• Ultrametric fitting
• General optimization framework

• Flexible choice of the cost function

• Hierarchical clustering
• First results: performance comparable to well-established methods (Ward 

linkage & SVM)

• Planning to integrate graph estimation/learning via deep learning



Thank you

• Article:  https://arxiv.org/abs/1905.10566

• Pytorch implementation available online: 
https://github.com/PerretB/ultrametric-fitting

https://arxiv.org/abs/1905.10566
https://github.com/PerretB/ultrametric-fitting


Agglomerative vs divisive approaches

• There exist two large families of algorithms to build an ultrametric.



Linkage criteria in agglomerative clustering

• Agglomerative methods are governed by the linkage criteria

Single linkage Complete linkage Average linkage



Example - Toy datasets



Example - Average-linkage clustering



Example – Single-linkage clustering


