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Representation Learning and Part-Based representation
01 - Introduction

Representation Learning:
○ Learning an underlying structure/process explaining the        input images                                                       (of   

pixels), that can somehow be represented as a set of latent features                                                   in a space of 
dimension 

○ If the data points live on a manifold of lesser dimension than the original space: 

Sparse coding and dictionary learning:
○ The input images is assumed to be well represented as a weighted linear combination of a few elements from a 

dictionary, called the atom images,                                             :

Part-based representation:
○ Introduced by Lee and Seung in their 1999 work about NMF: atom images representing localized features 

corresponding with intuitive notions of the parts of the input image family. 4



“Sparse mathematical morphology using non-negative matrix factorization” , Angulo, Velasco-Forero 
2017: Exploring how image sparse representations can be useful to efficiently calculate approximations to 
morphological operators, applied to a whole set of images.

Sparse Max-Approximation to gray-level dilation:

Sparse Max-Approximation to erosion, opening, closing...

Max-Approximation to Morphological Operators
01 - Introduction
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Sparse modeling Max-Approximation to dilatation

Morphological 
processing 



Motivation for Non-Negative and Sparse representation
01 - Introduction
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Objectives and Motivations
01 - Introduction

Using Neural Networks to learn a non-negative and sparse part-based representation:
○ No need to re-train the model to encode new, previously unseen, images, unlike NMF.
○ Ability to approximate the application of various morphological operators (dilations, erosions, openings, 

closings, morphological gradient, black top-hat, etc.) to an unlimited number of images by applying these 
operators only to the     atom images.

The most intuitive and common way to perform representation learning in the Deep Learning paradigm 
is to use Auto-Encoders.
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Evaluation and Data of the Proposed Models
01 - Introduction

The Fashion-MNIST database of images:

Evaluation criteria of the learned representation of a test set of images not used to train the model 
(except for the NMF):
○ Approximation error of the representation: mean-squared error between the original input images and their 

approximation by the learned representation
○ Max-approximation error to the dilation by a disk of radius 1: mean-squared error between the 

max-approximation to the dilation and the dilation of the original input images
○ Sparsity of the encoding, measured using the metric introduced by Hoyer (2004)
○ Classification Accuracy of a linear Support-Vector Machine, taking as input the encoding of the images. 
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02 - Non-Negative Matrix 
Factorization
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General Presentation
02 - Non-Negative Matrix Factorization
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“Learning the parts of objects by non-negative matrix factorization”, Lee and Seung, 1999:
○ Matrix factorization algorithm:

                                   
with                            the data matrix containing the        images of       pixels, as row vectors

                        the dictionary matrix, containing the      atom images as row vectors
                        the encoding matrix, containing the representation of each of the images as row vectors

○ Proven to  actually recover the parts of the images if the data set of images is a separable factorial 
articulation family:
● Each image actually generated by a linear combination of positive atom images associated with 

non-negative weight
● All atom images have separated supports.
● All different combinations of parts are exhaustively sampled in the data set of images.



Addition of sparsity constraints (Hoyer 2004)
02 - Non-Negative Matrix Factorization

“Non-negative matrix factorization with sparseness constraints”, Hoyer, 2004:
○ Enforcing sparsity of the encoding and/or of the atoms of the NMF representation: most coefficients taking 

values close to zero, while only a few take significantly non-zero values.

Sparsity measure of vector                 : 

After each update of       and         in the NMF algorithm, the encodings and atoms are projected on the space verifying:
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Results - Sh = 0.6
02 - Non-Negative Matrix Factorization
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Original images and reconstruction - Reconstruction error: 0.0109

Histogram of the encodings - Sparsity metric: 0.650
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Atom images of the 
representation



Results - Max-Approximation to dilation
02 - Non-Negative Matrix Factorization
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Dilation of the original images by a disk of radius 1

Max-approximation to the dilation by a disk of radius 1 - Max-approximation error: 0.107

Dilation Max-Approximation

Computation Time on 10000 
images (in s) 1.039 0.075



03 - Part-based Representation using 
Asymmetric Auto-Encoders 
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Auto-encoder loss function, minimized during training: 

Shallow Auto-Encoders 
03 - Part-based Representation using Asymmetric Auto-Encoders 
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where                           is the reconstruction error (MSE)

ReconstructionInput image Encoder Latent 
representation

Max-approximation

Decoder

The rows of           are the atom images of the 
learned representation !

“Dilated” Decoder



An Asymmetric Auto-Encoder
03 - Part-based Representation using Asymmetric Auto-Encoders 

Motivations:
○ Designed for a representation learning task on MNIST data set.
○ Simple architecture.
○ Use of convolutional layers, well adapted to computer vision tasks.
○ Use of widely adopted state of the art techniques in deep learning: batch-normalization, leakyRELU, etc. 
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ReconstructionInput image infoGAN
Latent 

representation

Max-approximation

Decoder

“Dilated” Decoder“InfoGAN: Interpretable Representation Learning by Information 
Maximizing Generative Adversarial Nets”, Chen et al. 2016
○ Two 2D convolutional layers 
○ Two fully connected layers 



Enforcing the Sparsity of the Encoding
03 - Part-based Representation using Asymmetric Auto-Encoders 

Regularization of the auto-encoder:

Various choices for the sparsity-regularization function:
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Sparsity constraint

Penalizes a deviation of the expected activation of each hidden unit from a (low) fixed level 



Enforcing Non-Negativity of the Atoms of the Dictionary
03 - Part-based Representation using Asymmetric Auto-Encoders

Re-Projection on the positive orthant:
● Non-Parametric constraint
● Ensured non-negativity
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Re-projectionAfter each iteration of the 
optimization algorithm (e.g.: 

Stochastic Gradient Descent):



04 - Results and Conclusion
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Sparse-NMF (Hoyer 2004) (Sh=0.6)  - Reconstruction error: 0.0109

Reconstructions
04 - Results and Conclusion
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NNSAE (Lemme et al. 2011) - Reconstruction error: 0.0514

Sparse, Non-Negative Asymmetric AE (p=0.05, beta=0.005) - Reconstruction error: 0.0125

Original Images



Encodings
04 - Results and Conclusion
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Sparse-NMF (Hoyer 2004) (Sh=0.6)  - Sparsity: 0.650

Sparse, Non-Negative Asymmetric AE (p=0.05, beta=0.005) -  Sparsity 0.615

NNSAE (Lemme et al. 2011) - Sparsity: 0.220



Sparse-NMF (Hoyer 2004) (Sh=0.6)  - 
Hoyer Sparsity : 0.762

Atoms
04 - Results and Conclusion
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Sparse, Non-Negative Asymmetric 
AE (p=0.05, beta=0.005) -
Sparsity: 0.4703

NNSAE (Lemme et al. 2011) - 
Sparsity: 0.892 



Max-Approximations to dilation
04 - Results and Conclusion
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Dilation of Original Images

Sparse-NMF (Hoyer 2004) (Sh=0.6) - Max-Approximation error: 0.107

Sparse, Non-Negative Asymmetric AE (p=0.05, beta=0.005)  -  Max-Approximation error: 0.123

NNSAE (Lemme et al. 2011)  - Max-Approximation error: 1.123



Perspectives and other works
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○ Morphological pre-processing using Additive Morphological Decomposition

○ Replacing the linear decoder with a Max-Plus Dense Layer

04 - Results and Conclusion


