Introd 000	uction Image formation in digital holography 000	Aberrations compensation	What about cataracts ? 00000	Perspectives 00
			EPITA	

Deep neural networks for aberration compensation in digital holographic imaging of the retina

Julie Rivet 1,2

¹EPITA LRDE ²Institut Langevin, ESPCI Paris, PSL Research University, CNRS

December 12, 2018

Introduction	Image formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
000	000		00000	00
Table of c	contents			

- 2 Image formation in digital holography
- 3 Aberrations compensation
- 4 What about cataracts ?

Introduction	Image formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
000				

- 2 Image formation in digital holography
- 3 Aberrations compensation
- 4 What about cataracts ?
- 5 Perspectives

 Introduction oo
 Image formation in digital holography coo
 Aberrations compensation coocco
 What about cataracts ? coocco
 Perspectives co

 Real-time retina imaging:
 context

> Study of the retina: information about some diseases. Improvement of imaging techniques in the 20th century with **holography**.

Optic nerve

Introduc	tion	Image for	mation in	digital ho	lography	Aberrations	compensation	What abou	t cataracts ?	Perspe	ctives
000		000				000000		00000		00	
D.	1.1.1		. •								

Real-time retina imaging: issues

Goal: Real-time digital holography of the retina.

Problems:

- \rightarrow Handle physiological movements.
 - \rightarrow spoil visualization and data encoding.
- \rightarrow Distorsion of the light path through the cornea.

 \rightarrow aberrations.

Introduction	mage formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
000	000			

- 2 Image formation in digital holography
- 3 Aberrations compensation
- 4 What about cataracts ?
- 5 Perspectives

Introduction 000	Image formation	in digital holography	Aberrations compensation	What about cata	aracts ? Perspective
Image	formatio	n			
Laser diode 785 nm Laser diode 785 nm Laser Laser diode 785 nm Laser diode 785 nm Laser diode	Single mode optical f bers Coupler Unear polarizer ye	Waveplate Linear polarizer	retina plane $E(x, y, 0)$	$\begin{array}{c} \begin{array}{c} \text{pupil and} \\ \text{aberrations} \\ \text{plane} \end{array} & \begin{array}{c} \text{equivalent len} \\ \text{of the} \\ \text{imaging syster} \end{array} \\ \\ \hline \\ \hline \\ \\ \end{array} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$	s image sensor plane z defocus distance $E_{a}(x, y, 0) = E_{a}(x, y, z)$
non-aberrate in the ret F(r, a)	the doptical field tinal plane $*$	avp(id)	rnel Fourier transform of	the aberrator $=$	aberrated optical field in the detection plane F(x, y, z)
E(x, y,	, z = 0)	$\exp(i\phi_p)$	$\mathcal{F}\{\exp(i)\}$	φ_a)}	E(x, y, z)

Introdu	

Image formation in digital holography $\circ \circ \bullet$

Aberrations compensation

What about cataracts ?

Perspectives

Aberrations in the eye

Introduction	Image formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
		00000		

- 2 Image formation in digital holography
- 3 Aberrations compensation
- 4 What about cataracts ?

Introduction	Image formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
000	000	00000	00000	00
Bibliog	raphy			

What we are working on:

Ronneberger, Fischer, and Brox, "U-net: Convolutional networks for biomedical image segmentation," *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241, Springer, 2015.

Related topics:

Li, Shuai, et al. "Imaging through glass diffusers using densely connected convolutional networks." *Optica* 5.7 (2018): 803-813.

Li, Yunzhe, Yujia Xue, and Lei Tian. "Deep speckle correlation: a deep learning approach towards scalable imaging through scattering media." *arXiv preprint arXiv:1806.04139* (2018).

Huang, Gao, et al. "Densely connected convolutional networks." *Conference on Computer Vision and Pattern Recognition*. Vol. 1. No. 2. 2017.

Aberrations correction with deep learning

U-net [1]

Image segmentation with U-net.

[1] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical image computing and computer-assisted intervention, pp. 234-241, Springer, 2015.

Aberrations compensation 000000

What about cataracts ? $_{\rm OOOOO}$

Perspectives 00

Aberrations correction with Deep learning

One aberration (defocus), one amplitude.

Aberrations compensation 000000

What about cataracts ? 00000

Perspectives

Aberrations correction with Deep learning

Influence of Fourier support, $|F\{\phi_a\}|$:

What about cataracts ? 00000

Perspectives

Aberrations correction with Deep learning

Aberrations of amplitude 1, for 1 to 70 Zernike modes.

Introduction	Image formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
			00000	

- 2 Image formation in digital holography
- 3 Aberrations compensation
- 4 What about cataracts ?

Introduction 000	Image formation in digital holography 000	Aberrations compensation	What about cataracts ?	Perspectives

Introduction 000	Image formation in digital holography 000	Aberrations compensation	What about cataracts ?	Perspectives
Going	further with catarac	cts		

Cataract: adding a random phase to the image \rightarrow degrees of freedom N increased.

Introduction 000	Image formation in digital holography 000	Aberrations compensation	What about cataracts ?	Perspectives 00				
Going further with cataracts								

Cataract: adding a random phase to the image \rightarrow bigger Fourier support.

Random phase, $std = \pi/3$

Gaussian filter, std = 0.4

Introduction Image formation in digital holography 000 000

Aberrations compensation

What about cataracts ?

Perspectives

Going further with cataracts...

Tries with cataract.

Introduction	Image formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
				••

- \rightarrow Go on testing limits.
- \rightarrow Test new networks.
- \rightarrow Compare to other aberrations correction methods.
- \rightarrow Highlight on structures (vessels) with mathematical morphology.

Introduction	Image formation in digital holography	Aberrations compensation	What about cataracts ?	Perspectives
				00

Perspectives

- \rightarrow Go on testing limits.
- \rightarrow Test new networks.
- \rightarrow Compare to other aberrations correction methods.
- \rightarrow Highlight on structures (vessels) with mathematical morphology.

Thank you !