

DeepFlux & TextField for Skeleton and Text Detection in the Wild

Yongchao Xu Huazhong University of Science and Technology (HUST)

Joint work with Xiang Bai, Stavros Tsogkas, Sven Dickinson, Kaleem Siddiqi

Outline



- ➤ Context
- > Flux Representation
- ➤ DeepFlux for Skeletonization in the Wild
- ➤ TextField for Irregular Scene Text Detection
- ➤ Conclusion

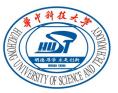
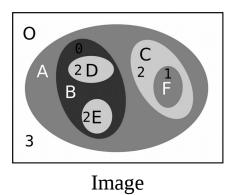
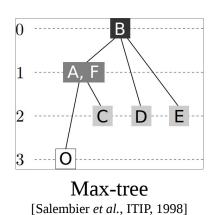
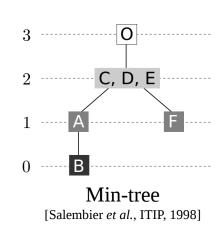
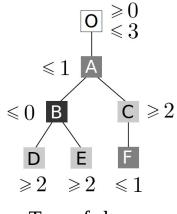


Image Representation



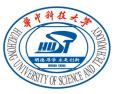




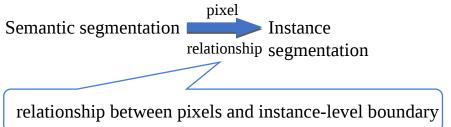


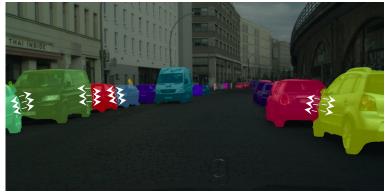
Tree of shapes
[Monasse & Guichard, ITIP, 2000]

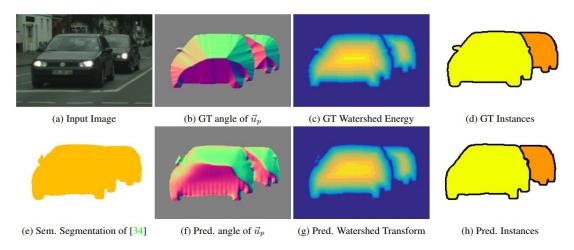
Pixel Relationship Regions Trees



Instance Segmentation







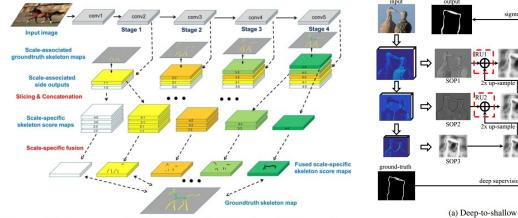
Deep Watershed Transform for Instance Segmentation [Bai et al., CVPR, 2017]

Skeleton Detection

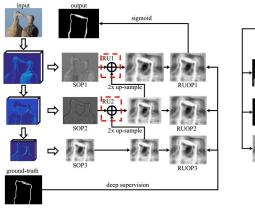
one kind of pixel relationship

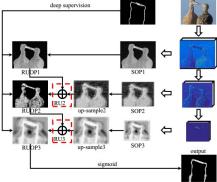
relationship between pixels and skeleton

Previous methods for skeleton detection:



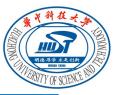
FSDS [Shen et al., CVPR, 2016]





(b) Shallow-to-deep

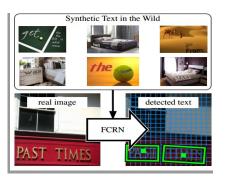
SRN [Ke et al., CVPR, 2017]



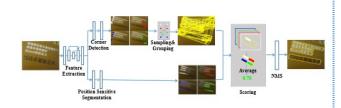
Scene Text Detection

Pixel relationship for irregular scene text

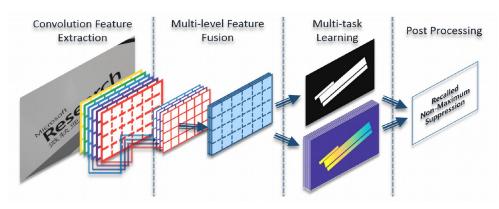
Segmentation-based method [Zhang *et al.*, CVPR, 2016]



Proposal-based method [Gupta *et al.*, CVPR, 2016]

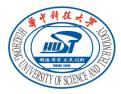


Part-based method [Lyu et al., CVPR, 2018]

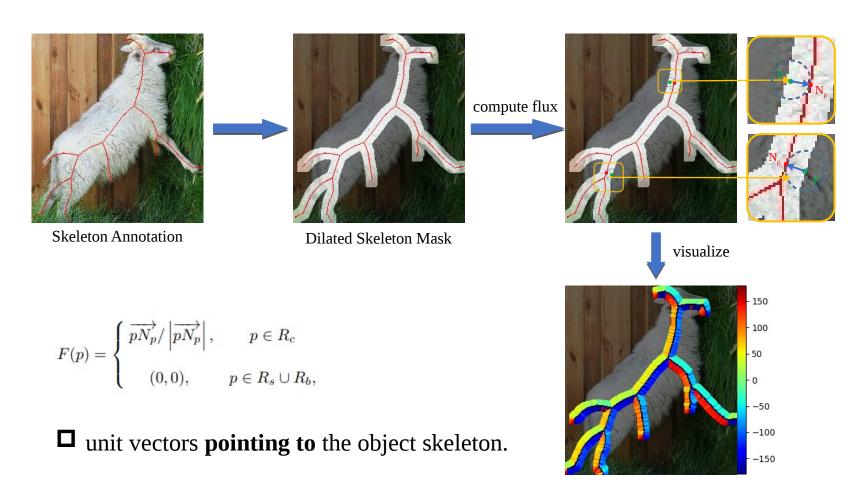


Hybrid method [He et al., ICCV, 2017]

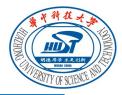
Flux Representation



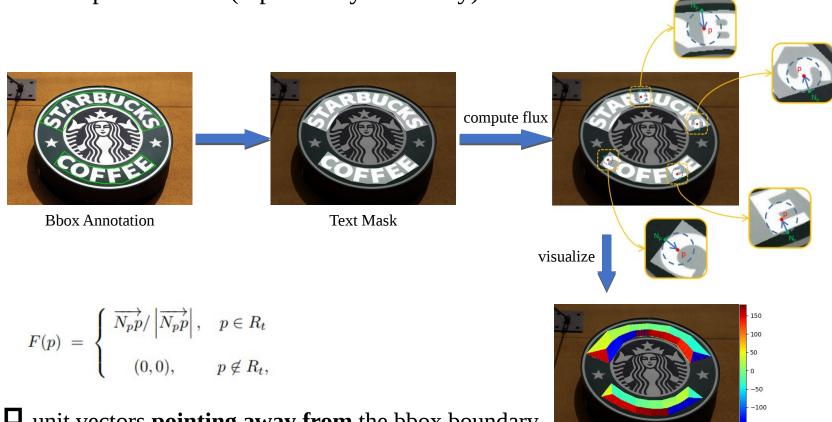
Flux Representation (attracted by skeleton)



Flux Representation

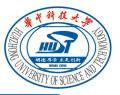


Flux Representation (repulsed by boundary)

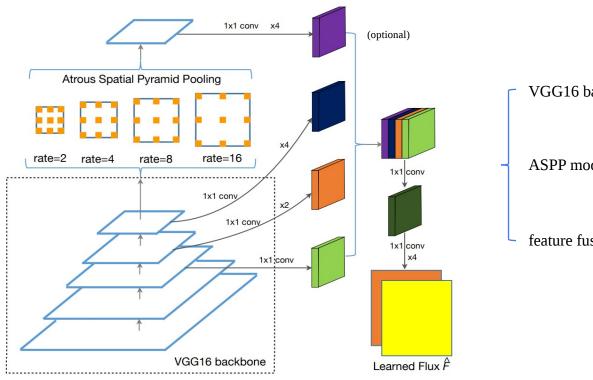


□ unit vectors **pointing away from** the bbox boundary.

Flux Representation



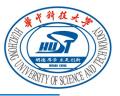
Learning Flux Representation



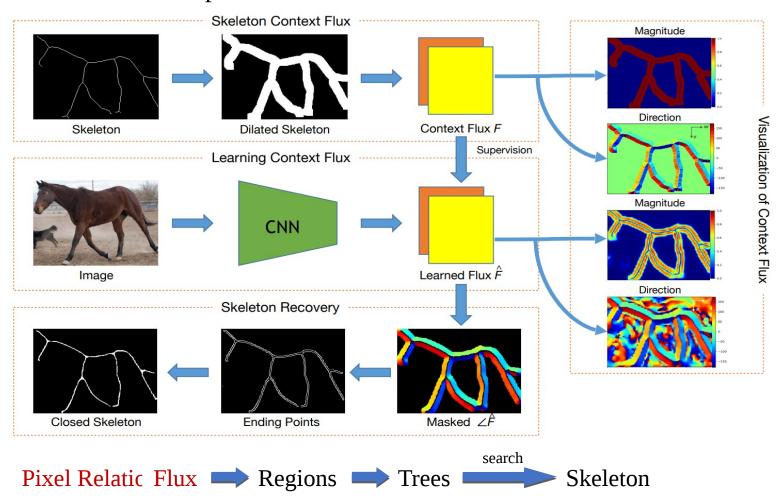
VGG16 backbone

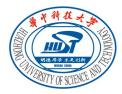
ASPP module (optional)

feature fusion



How to use Flux Representation to detect skeleton?





Binary Skeleton vs. Flux Representation

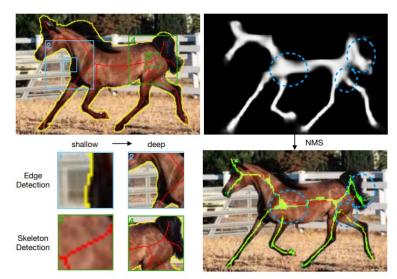
Previous CNN-based methods: skeleton detection edge detection binary pixel classification task with NMS

- poor localization
- poor connectedness

With flux

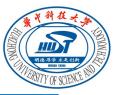
representation : skeleton detection regression task

- encode the relative position of skeleton
- **a** can accurately recover the object skeleton from the learned flux
- □ large receptive fields



(a) Previous CNN-based skeleton detections rely on NMS.

(b) Flux provides an alternative way for accurately detecting skeletons.



Qualitative Results

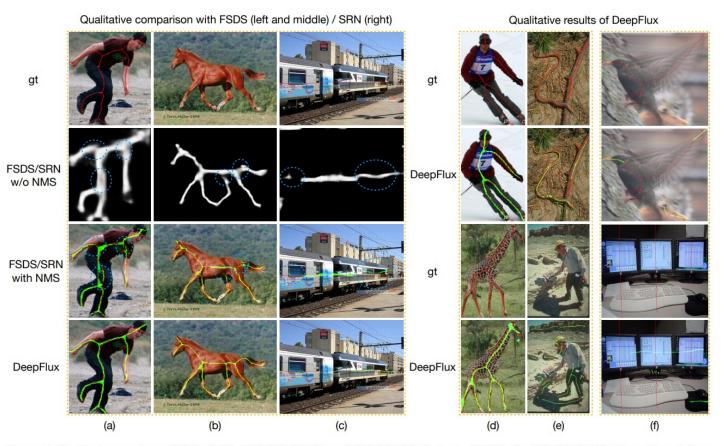
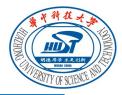


Figure 6. Qualitative results on SK-LARGE, WH-SYMMAX, and SYM-PASCAL (a-c), SK506 (d), SYMMAX300 (e), and two failure cases (f). Red: GT; Green: detected skeleton; Yellow: detected skeleton and GT overlap. DeepFlux fails to detect the skeleton on the bird body due the severe blurring. In the second failure example DeepFlux detects a symmetry axis not annotated in the ground truth.



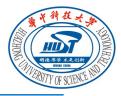
Quantitative Results

Methods	SK-LARGE	SK506	WH-SYMMAX	SYM-PASCAL	SYMMAX300
MIL [45]	0.353	0.392	0.365	0.174	0.362
HED [47]	0.497	0.541	0.732	0.369	0.427
RCF [25]	0.626	0.613	0.751	0.392	-
FSDS* [35]	0.633	0.623	0.769	0.418	0.467
LMSDS* [34]	0.649	0.621	0.779	-	-
SRN [17]	0.678	0.632	0.780	0.443	0.446
LSN [22]	0.668	0.633	0.797	0.425	0.480
Hi-Fi* [51]	0.724	0.681	0.805	0.454	-
DeepFlux (Ours)	0.732	0.695	0.840	0.502	0.491

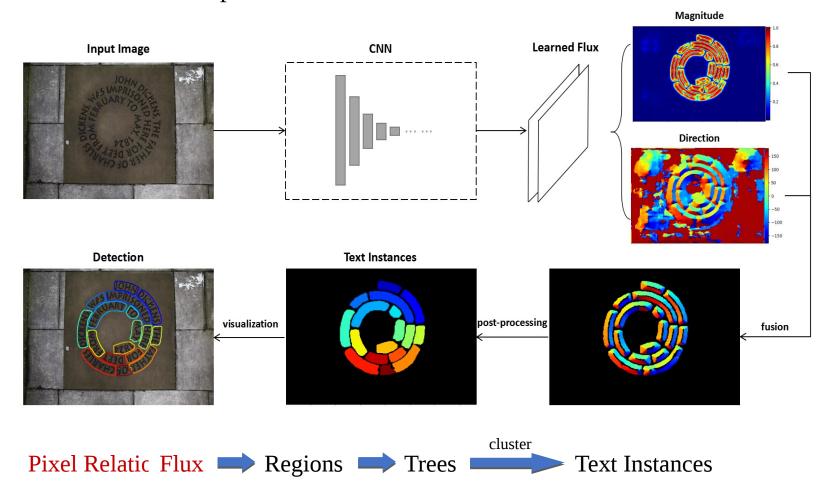
Table 1. F-measure comparison. * indicates scale supervision was also used. Results for competing methods are from the respective papers.

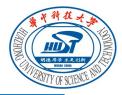
Method	F-measure	Runtime (in sec)
HED [47]	0.497	0.014
FSDS [35]	0.633	0.017
LMSDS [34]	0.649	0.017
LSN [22]	0.668	0.021
SRN [17]	0.678	0.016
Hi-Fi [51]	0.724	0.030
DeepFlux (ours)	0.732	0.019

Table 2. Runtime and performance on SK-LARGE. For DeeFlux we list the total inference (GPU) + post-processing (CPU) time.



How to use Flux Representation to detect text?





Bounding Box vs. Flux Representation

Siky 90

Horizontal box

Rotated rectangle

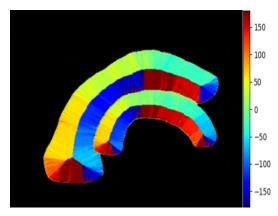
Quadrilateral

Bounding Box:

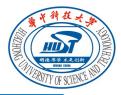
- proposal-based methods
- □ fail to accurately delimit irregular texts

Flux Representation:

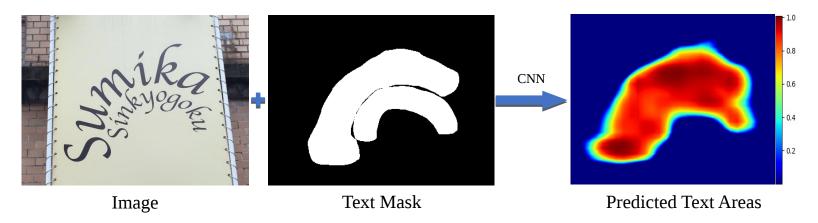
- ☐ flexible representation
- □ precisely describe irregular texts



Flux direction visualization



Text Mask vs. Flux Representation

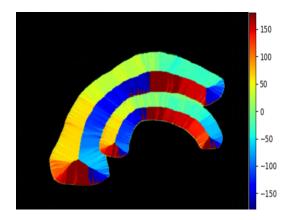


Text Mask:

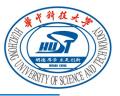
- □ segmentation-based methods
- hard to extract text instances from the predicted text areas

Flux Representation:

- □ instance-level representation
- easy to separate adjacent text instances

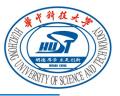


Flux direction visualization



Qualitative Results

Fig. 7: Some qualitative detection results on SCUT-CTW500 in (a), Total-Text in (b), IC15 in (c), and MSRA-TD500 in (d). The arbitrary-shaped texts are correctly detected with accurate text instance boundaries.



Quantitative Results

TABLE I: Quantitative results of different methods evaluated on SCUT-CTW1500. * indicates the result obtained from [47].

Methods	recall	precision	f-measure
SegLink * [34]	0.400	0.423	0.408
CTPN * [33]	0.538	0.604	0.569
EAST * [25]	0.491	0.787	0.604
DMPNet * [23]	0.560	0.699	0.622
CTD [47]	0.652	0.743	0.695
CTD+TLOC [47]	0.698	0.774	0.734
TextField (Ours)	0.798	0.830	0.814

TABLE III: Comparison of methods on ICDAR2015 Incidental Scene Text. † means that the base net of the model is not VGG16. Note that only single scale test result is depicted.

Methods	recall	precision	f-measure	FPS
Zhang <i>et al</i> . [37]	0.430	0.708	0.536	0.48
CTPN [33]	0.516	0.742	0.609	7.1
Yao et al. [38]	0.587	0.723	0.648	1.61
DMPNet [23]	0.682	0.732	0.706	-
SegLink [34]	0.768	0.731	0.750	-
MCN [36]	0.800	0.720	0.760	-
EAST [25]	0.728	0.805	0.764	6.52
SSTD [26]	0.730	0.800	0.770	7.7
RRPN [29]	0.730	0.820	0.770	_
WordSup [28]	0.770	0.793	0.782	2
ITN [32]	0.741	0.857	0.795	-
EAST † [25]	0.735	0.836	0.782	13.2
Lyu et al. [35]	0.707	0.941	0.807	3.6
He et al. † [27]	0.800	0.820	0.810	1.1
TextBoxes++ [30]	0.767	0.872	0.817	11.6
RRD [31]	0.790	0.856	0.822	6.5
TextField (Ours)	0.805	0.843	0.824	5.2

TABLE II: Quantitative results of different methods evaluated on Total-Text.

Methods	recall	precision	f-measure
Ch'ng et al. [41]	0.400	0.330	0.360
Liao <i>et al</i> . [24]	0.455	0.621	0.525
TextField (Ours)	0.799	0.812	0.806

TABLE IV: Comparison of methods on MSRA-TD500. † stands for the base net of the model is not VGG16.

Methods	recall	precision	f-measure
He et al. [61]	0.610	0.760	0.690
EAST [25]	0.616	0.817	0.702
ITN [32]	0.656	0.803	0.722
Zhang <i>et al</i> . [37]	0.670	0.830	0.740
RRPN [29]	0.680	0.820	0.740
He et al. † [27]	0.700	0.770	0.740
Yao et al. [38]	0.753	0.765	0.759
EAST † [25]	0.674	0.873	0.761
Wu et al. [39]	0.780	0.770	0.770
SegLink [34]	0.700	0.860	0.770
RRD [31]	0.730	0.870	0.790
Lyu et al. [35]	0.762	0.876	0.815
MCN [36]	0.790	0.880	0.830
TextField (Ours)	0.759	0.874	0.813

Conclusion

- Flux representation encodes pixel relationship
- Accurately detect skeleton in the wild
- Efficiently detect irregular texts in natural images
- More applications and better use of direction information

URLs for DeepFlux and TextField:

DeepFlux: https://arxiv.org/abs/1811.12608

TextField: https://arxiv.org/abs/1812.01393