Milena (Olena)
User documentation 2.0a Id
|
00001 // Copyright (C) 2010, 2011 EPITA Research and Development Laboratory 00002 // (LRDE) 00003 // 00004 // This file is part of Olena. 00005 // 00006 // Olena is free software: you can redistribute it and/or modify it under 00007 // the terms of the GNU General Public License as published by the Free 00008 // Software Foundation, version 2 of the License. 00009 // 00010 // Olena is distributed in the hope that it will be useful, 00011 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00012 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00013 // General Public License for more details. 00014 // 00015 // You should have received a copy of the GNU General Public License 00016 // along with Olena. If not, see <http://www.gnu.org/licenses/>. 00017 // 00018 // As a special exception, you may use this file as part of a free 00019 // software project without restriction. Specifically, if other files 00020 // instantiate templates or use macros or inline functions from this 00021 // file, or you compile this file and link it with other files to produce 00022 // an executable, this file does not by itself cause the resulting 00023 // executable to be covered by the GNU General Public License. This 00024 // exception does not however invalidate any other reasons why the 00025 // executable file might be covered by the GNU General Public License. 00026 00027 #include <mln/value/ops.hh> 00028 #include <mln/value/builtin/floatings.hh> 00029 00030 int main() 00031 { 00032 // Checking sum value type name. 00033 mln_assertion(mln_trait_value_name(mln_sum_product_(float, float)) == std::string("float")); 00034 mln_assertion(mln_trait_value_name(mln_sum_product_(double, double)) == std::string("double")); 00035 00036 // Make sure we return the minimum negative value but not the 00037 // minimum positive value. 00038 mln_assertion(mln_min(float) < 0.); 00039 mln_assertion(mln_min(double) < 0.); 00040 00041 // Make sure the sum value type does not alter precision. 00042 { 00043 float a = mln_max(float) / 3, 00044 b = mln_max(float) / 3; 00045 volatile float c = a + b; 00046 volatile mln_sum_product_(float, float) d = a + b; 00047 mln_assertion(c == d); 00048 } 00049 { 00050 double a = mln_max(double) / 3, 00051 b = mln_max(double) / 3; 00052 volatile double c = a + b; 00053 volatile mln_sum_product_(double, double) d = a + b; 00054 mln_assertion(c == d); 00055 } 00056 }