Milena (Olena)
User documentation 2.0a Id
|
00001 // Copyright (C) 2007, 2008, 2009 EPITA Research and Development Laboratory (LRDE) 00002 // 00003 // This file is part of Olena. 00004 // 00005 // Olena is free software: you can redistribute it and/or modify it under 00006 // the terms of the GNU General Public License as published by the Free 00007 // Software Foundation, version 2 of the License. 00008 // 00009 // Olena is distributed in the hope that it will be useful, 00010 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00011 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00012 // General Public License for more details. 00013 // 00014 // You should have received a copy of the GNU General Public License 00015 // along with Olena. If not, see <http://www.gnu.org/licenses/>. 00016 // 00017 // As a special exception, you may use this file as part of a free 00018 // software project without restriction. Specifically, if other files 00019 // instantiate templates or use macros or inline functions from this 00020 // file, or you compile this file and link it with other files to produce 00021 // an executable, this file does not by itself cause the resulting 00022 // executable to be covered by the GNU General Public License. This 00023 // exception does not however invalidate any other reasons why the 00024 // executable file might be covered by the GNU General Public License. 00025 00026 #ifndef MLN_NORM_L2_HH 00027 # define MLN_NORM_L2_HH 00028 00034 00035 # include <mln/math/sqr.hh> 00036 # include <mln/math/sqrt.hh> 00037 # include <mln/algebra/vec.hh> 00038 # include <mln/value/ops.hh> 00039 00040 00041 namespace mln 00042 { 00043 00044 // Forward declaration. 00045 namespace algebra 00046 { 00047 template <unsigned n, typename T> class vec; 00048 } 00049 00050 00051 namespace norm 00052 { 00053 00056 template <unsigned n, typename C> 00057 mln_sum_product(C,C) l2(const C (&vec)[n]); 00058 00059 template <unsigned n, typename C> 00060 mln_sum_product(C,C) l2(const algebra::vec<n,C>& vec); 00062 00065 template <unsigned n, typename C> 00066 mln_sum_product(C,C) sqr_l2(const C (&vec)[n]); 00067 00068 template <unsigned n, typename C> 00069 mln_sum_product(C,C) sqr_l2(const algebra::vec<n,C>& vec); 00071 00074 template <unsigned n, typename C> 00075 mln_sum_product(C,C) l2_distance(const C (&vec1)[n], const C (&vec2)[n]); 00076 00077 template <unsigned n, typename C> 00078 mln_sum_product(C,C) l2_distance(const algebra::vec<n,C>& vec1, 00079 const algebra::vec<n,C>& vec2); 00081 00082 00083 # ifndef MLN_INCLUDE_ONLY 00084 00085 namespace impl 00086 { 00087 00088 template <unsigned n, typename C, typename V> 00089 inline 00090 mln_sum_product(C,C) 00091 l2_(const V& vec) 00092 { 00093 typedef mln_sum_product(C,C) M; 00094 M m = 0; 00095 for (unsigned i = 0; i < n; ++i) 00096 { 00097 M sqr_v_i = static_cast<M>(mln::math::sqr(vec[i])); 00098 m = static_cast<M>(m + sqr_v_i); 00099 } 00100 return mln::math::sqrt(m); 00101 } 00102 00103 template <unsigned n, typename C, typename V> 00104 inline 00105 mln_sum_product(C,C) 00106 sqr_l2_(const V& vec) 00107 { 00108 mln_sum_product(C,C) m = 0; 00109 for (unsigned i = 0; i < n; ++i) 00110 m += mln::math::sqr(vec[i]); 00111 return m; 00112 } 00113 00114 template <unsigned n, typename C, typename V> 00115 inline 00116 mln_sum_product(C,C) 00117 l2_distance_(const V& vec1, const V& vec2) 00118 { 00119 typedef mln_sum_product(C,C) D; 00120 D d = 0; 00121 for (unsigned i = 0; i < n; ++i) 00122 { 00123 D sqr_v1_v2 = static_cast<D>(mln::math::sqr(vec1[i] - vec2[i])); 00124 d = static_cast<D>(d + sqr_v1_v2); 00125 } 00126 return mln::math::sqrt(d); 00127 } 00128 00129 } // end of namespace mln::norm::impl 00130 00131 00132 /*----------. 00133 | Facades. | 00134 `----------*/ 00135 00136 template <unsigned n, typename C> 00137 inline 00138 mln_sum_product(C,C) 00139 l2(const C (&vec)[n]) 00140 { 00141 return impl::l2_<n, C>(vec); 00142 } 00143 00144 template <unsigned n, typename C> 00145 inline 00146 mln_sum_product(C,C) 00147 l2(const algebra::vec<n,C>& vec) 00148 { 00149 return impl::l2_<n, C>(vec); 00150 } 00151 00152 00153 template <unsigned n, typename C> 00154 inline 00155 mln_sum_product(C,C) 00156 sqr_l2(const C (&vec)[n]) 00157 { 00158 return impl::sqr_l2_<n, C>(vec); 00159 } 00160 00161 template <unsigned n, typename C> 00162 inline 00163 mln_sum_product(C,C) 00164 sqr_l2(const algebra::vec<n,C>& vec) 00165 { 00166 return impl::sqr_l2_<n, C>(vec); 00167 } 00168 00169 00170 template <unsigned n, typename C> 00171 inline 00172 mln_sum_product(C,C) 00173 l2_distance(const C (&vec1)[n], const C (&vec2)[n]) 00174 { 00175 return impl::l2_distance_<n, C>(vec1, vec2); 00176 } 00177 00178 template <unsigned n, typename C> 00179 inline 00180 mln_sum_product(C,C) 00181 l2_distance(const algebra::vec<n,C>& vec1, const algebra::vec<n,C>& vec2) 00182 { 00183 return impl::l2_distance_<n, C>(vec1, vec2); 00184 } 00185 00186 # endif // ! MLN_INCLUDE_ONLY 00187 00188 } // end of namespace mln::norm 00189 00190 } // end of namespace mln 00191 00192 00193 #endif // ! MLN_NORM_L2_HH