Milena (Olena)
User documentation 2.0a Id
|
00001 // Copyright (C) 2006, 2007, 2008, 2009, 2010 EPITA Research and 00002 // Development Laboratory (LRDE) 00003 // 00004 // This file is part of Olena. 00005 // 00006 // Olena is free software: you can redistribute it and/or modify it under 00007 // the terms of the GNU General Public License as published by the Free 00008 // Software Foundation, version 2 of the License. 00009 // 00010 // Olena is distributed in the hope that it will be useful, 00011 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00012 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00013 // General Public License for more details. 00014 // 00015 // You should have received a copy of the GNU General Public License 00016 // along with Olena. If not, see <http://www.gnu.org/licenses/>. 00017 // 00018 // As a special exception, you may use this file as part of a free 00019 // software project without restriction. Specifically, if other files 00020 // instantiate templates or use macros or inline functions from this 00021 // file, or you compile this file and link it with other files to produce 00022 // an executable, this file does not by itself cause the resulting 00023 // executable to be covered by the GNU General Public License. This 00024 // exception does not however invalidate any other reasons why the 00025 // executable file might be covered by the GNU General Public License. 00026 00027 #ifndef MLN_METAL_VEC_HH 00028 # define MLN_METAL_VEC_HH 00029 00033 00034 # include <iostream> 00035 # include <cmath> 00036 00037 # include <mln/core/concept/object.hh> 00038 # include <mln/algebra/h_vec.hh> 00039 00040 # include <mln/trait/all.hh> 00041 # include <mln/trait/value_.hh> 00042 # include <mln/fun/i2v/all_to.hh> 00043 # include <mln/debug/format.hh> 00044 00045 # include <mln/value/ops.hh> 00046 00047 00048 // FIXME: Document. 00049 00050 00051 namespace mln 00052 { 00053 00054 // Fwd decls. 00055 namespace metal { 00056 template <unsigned n, typename T> class vec; 00057 } 00058 namespace literal { 00059 struct zero_t; 00060 } 00061 template <unsigned d, typename C> class h_vec; 00062 00063 00064 00065 namespace trait 00066 { 00067 00068 template <unsigned n, typename T> 00069 struct value_< mln::metal::vec<n,T> > 00070 { 00071 typedef trait::value::nature::vectorial nature; 00072 typedef trait::value::kind::data kind; 00073 00074 enum { 00075 nbits = n * mln_nbits(T), 00076 card = n * mln_card(T) 00077 }; 00078 typedef mln_value_quant_from_(card) quant; 00079 00080 typedef metal::vec<n, mln_sum(T)> sum; 00081 }; 00082 00083 } // end of namespace mln::trait 00084 00085 00086 00087 namespace metal 00088 { 00089 00090 namespace internal 00091 { 00092 00093 template <unsigned n, typename T> 00094 class vec_base_ : public Object< vec<n,T> > 00095 { 00096 protected: 00097 T data_[n]; 00098 }; 00099 00100 template <typename T> 00101 class vec_base_ <1, T> : public Object< vec<1,T> > 00102 { 00103 public: 00104 void set(const T& val0) 00105 { 00106 data_[0] = val0; 00107 } 00108 protected: 00109 T data_[1]; 00110 }; 00111 00112 template <typename T> 00113 class vec_base_ <2, T> : public Object< vec<2,T> > 00114 { 00115 public: 00116 void set(const T& val0, const T& val1) 00117 { 00118 data_[0] = val0; 00119 data_[1] = val1; 00120 } 00121 protected: 00122 T data_[2]; 00123 }; 00124 00125 template <typename T> 00126 class vec_base_ <3, T> : public Object< vec<3,T> > 00127 { 00128 public: 00129 void set(const T& val0, const T& val1, const T& val2) 00130 { 00131 data_[0] = val0; 00132 data_[1] = val1; 00133 data_[2] = val2; 00134 } 00135 protected: 00136 T data_[3]; 00137 }; 00138 00139 template <typename T> 00140 class vec_base_ <4, T> : public Object< vec<4,T> > 00141 { 00142 public: 00143 void set(const T& val0, const T& val1, const T& val2, const T& val3) 00144 { 00145 data_[0] = val0; 00146 data_[1] = val1; 00147 data_[2] = val2; 00148 data_[3] = val3; 00149 } 00150 protected: 00151 T data_[4]; 00152 }; 00153 00154 00155 } // end of namespace mln::metal::internal 00156 00157 00158 00159 template <unsigned n, typename T> 00160 class vec : public internal::vec_base_<n, T> 00161 { 00162 typedef internal::vec_base_<n, T> super_; 00163 00164 protected: 00165 using super_::data_; 00166 00167 public: 00168 00169 typedef T equiv[n]; 00170 typedef T enc[n]; 00171 00172 typedef T coord; 00173 enum { dim = n }; 00174 00175 vec(); 00176 00178 vec(const literal::zero_t&); 00179 vec& operator=(const literal::zero_t&); 00181 00182 vec(const vec<n, T>& rhs); 00183 00184 template <typename U> 00185 vec(const vec<n, U>& rhs); 00186 00187 template <typename U> 00188 vec& operator=(const vec<n, U>& rhs); 00189 00190 00191 // Immersion of the vector into its homogeneous space. 00192 algebra::h_vec<n, T> to_h_vec() const; 00193 00194 00195 const T& operator[](unsigned i) const; 00196 00197 T& operator[](unsigned i); 00198 00199 void set_all(const T& val); 00200 00201 unsigned size() const; 00202 00203 const vec<n, T>& normalize(); 00204 00206 template <typename F> 00207 vec(const Function_v2v<F>& f); 00208 00210 static const vec<n, T> zero; 00211 00213 static const vec<n, T> origin; 00214 }; 00215 00216 } // end of namespace mln::metal 00217 00218 00219 namespace trait 00220 { 00221 00222 // For unary traits. 00223 00224 template < template <class> class Name, 00225 unsigned n, typename T > 00226 struct set_precise_unary_< Name, metal::vec<n, T> > 00227 { 00228 typedef mln_trait_unary(Name, T) V; 00229 typedef metal::vec<n, V> ret; 00230 }; 00231 00232 // For binary traits. 00233 00234 template < template <class, class> class Name, 00235 unsigned n, typename T, 00236 typename U > 00237 struct set_precise_binary_< Name, 00238 metal::vec<n, T>, metal::vec<n, U> > 00239 { 00240 typedef mln_trait_binary(Name, T, U) V; 00241 typedef metal::vec<n, V> ret; 00242 }; 00243 00244 template < unsigned n, typename T, 00245 typename U > 00246 struct set_precise_binary_< op::times, 00247 metal::vec<n, T>, metal::vec<n, U> > 00248 { 00249 typedef mln_sum_product(T,U) ret; 00250 }; 00251 00252 template < template <class, class> class Name, 00253 unsigned n, typename T, 00254 typename S > 00255 struct set_precise_binary_< Name, 00256 metal::vec<n, T>, mln::value::scalar_<S> > 00257 { 00258 typedef mln_trait_binary(Name, T, S) V; 00259 typedef metal::vec<n, V> ret; 00260 }; 00261 00262 template < template<class, class> class Name, 00263 unsigned n, typename T, 00264 typename S > 00265 struct set_binary_< Name, 00266 mln::Object, metal::vec<n, T>, 00267 mln::value::Scalar, S > 00268 { 00269 typedef mln_trait_binary(Name, T, S) V; 00270 typedef metal::vec<n, V> ret; 00271 }; 00272 00273 } // end of namespace mln::trait 00274 00275 00276 00277 namespace metal 00278 { 00279 00280 // eq 00281 00282 template <unsigned n, typename T, typename U> 00283 bool operator==(const vec<n,T>& lhs, const vec<n,U>& rhs); 00284 00285 // + 00286 00287 template <unsigned n, typename T, typename U> 00288 vec<n, mln_trait_op_plus(T,U)> 00289 operator+(const vec<n,T>& lhs, const vec<n,U>& rhs); 00290 00291 // - 00292 00293 template <unsigned n, typename T, typename U> 00294 vec<n, mln_trait_op_minus(T,U)> 00295 operator-(const vec<n,T>& lhs, const vec<n,U>& rhs); 00296 00297 // vec * vec 00298 00299 template <unsigned n, typename T, typename U> 00300 mln_sum_product(T,U) 00301 operator*(const vec<n,T>& lhs, const vec<n,U>& rhs); 00302 00303 // vec * s 00304 00305 template <unsigned n, typename T, typename S> 00306 vec<n, mln_trait_op_times(T, S)> 00307 operator*(const vec<n,T>& lhs, const mln::value::scalar_<S>& s); 00308 00309 // vec / s 00310 00311 template <unsigned n, typename T, typename S> 00312 vec<n, mln_trait_op_div(T, S)> 00313 operator/(const vec<n,T>& lhs, const mln::value::scalar_<S>& s); 00314 00315 // << 00316 00317 template <unsigned n, typename T> 00318 std::ostream& 00319 operator<<(std::ostream& ostr, const vec<n,T>& v); 00320 00321 // vprod // FIXME: Generalize... 00322 00323 template <typename T, typename U> 00324 vec<3, mln_trait_op_times(T,U)> // FIXME: Sum of product... 00325 vprod(const vec<3, T>& lhs, const vec<3, U>& rhs); 00326 00327 00328 # ifndef MLN_INCLUDE_ONLY 00329 00330 template <unsigned n, typename T> 00331 inline 00332 vec<n,T>::vec() 00333 { 00334 } 00335 00336 template <unsigned n, typename T> 00337 inline 00338 vec<n,T>::vec(const literal::zero_t&) 00339 { 00340 this->set_all(0); 00341 } 00342 00343 template <unsigned n, typename T> 00344 inline 00345 vec<n,T>& 00346 vec<n,T>::operator=(const literal::zero_t&) 00347 { 00348 this->set_all(0); 00349 return *this; 00350 } 00351 00352 template <unsigned n, typename T> 00353 inline 00354 vec<n,T>::vec(const vec<n,T>& rhs) 00355 : super_() 00356 { 00357 for (unsigned i = 0; i < n; ++i) 00358 data_[i] = rhs[i]; 00359 } 00360 00361 template <unsigned n, typename T> 00362 template <typename U> 00363 inline 00364 vec<n,T>::vec(const vec<n, U>& rhs) 00365 : super_() 00366 { 00367 for (unsigned i = 0; i < n; ++i) 00368 data_[i] = rhs[i]; 00369 } 00370 00371 template <unsigned n, typename T> 00372 template <typename U> 00373 inline 00374 vec<n,T>& vec<n,T>::operator=(const vec<n, U>& rhs) 00375 { 00376 for (unsigned i = 0; i < n; ++i) 00377 data_[i] = rhs[i]; 00378 return *this; 00379 } 00380 00381 template <unsigned n, typename T> 00382 inline 00383 const T& vec<n,T>::operator[](unsigned i) const 00384 { 00385 mln_precondition(i < dim); 00386 return data_[i]; 00387 } 00388 00389 template <unsigned n, typename T> 00390 inline 00391 T& vec<n,T>::operator[](unsigned i) 00392 { 00393 mln_precondition(i < dim); 00394 return data_[i]; 00395 } 00396 00397 template <unsigned n, typename T> 00398 inline 00399 void vec<n,T>::set_all(const T& val) 00400 { 00401 for (unsigned i = 0; i < n; ++i) 00402 data_[i] = val; 00403 } 00404 00405 template <unsigned n, typename T> 00406 inline 00407 unsigned vec<n,T>::size() const 00408 { 00409 return n; 00410 } 00411 00412 template <unsigned n, typename T> 00413 inline 00414 const vec<n, T>& vec<n, T>::normalize() 00415 { 00416 float n_l2 = 0; 00417 for (unsigned i = 0; i < n; ++i) 00418 n_l2 += data_[i] * data_[i]; 00419 n_l2 = sqrt(n_l2); 00420 for (unsigned i = 0; i < n; ++i) 00421 data_[i] = T(data_[i] / n_l2); 00422 return *this; 00423 } 00424 00425 template <unsigned n, typename T> 00426 template <typename F> 00427 inline 00428 vec<n, T>::vec(const Function_v2v<F>& f_) 00429 { 00430 mlc_converts_to(mln_result(F), T)::check(); 00431 const F& f = exact(f_); 00432 for (unsigned i = 0; i < n; ++i) 00433 data_[i] = f(i); 00434 } 00435 00436 00437 template <unsigned n, typename T> 00438 const vec<n, T> vec<n, T>::zero = all_to(0); 00439 00440 template <unsigned n, typename T> 00441 const vec<n, T> vec<n, T>::origin = all_to(0); 00442 00443 00444 // Operators. 00445 00446 00447 template <unsigned n, typename T, typename U> 00448 inline 00449 bool operator==(const vec<n,T>& lhs, const vec<n,U>& rhs) 00450 { 00451 for (unsigned i = 0; i < n; ++i) 00452 if (lhs[i] != rhs[i]) 00453 return false; 00454 return true; 00455 } 00456 00457 00458 template <unsigned n, typename T, typename U> 00459 inline 00460 vec<n, mln_trait_op_plus(T,U)> 00461 operator+(const vec<n,T>& lhs, const vec<n,U>& rhs) 00462 { 00463 vec<n, mln_trait_op_plus(T,U)> tmp; 00464 for (unsigned i = 0; i < n; ++i) 00465 tmp[i] = lhs[i] + rhs[i]; 00466 return tmp; 00467 } 00468 00469 template <unsigned n, typename T, typename U> 00470 inline 00471 vec<n, mln_trait_op_minus(T,U)> 00472 operator-(const vec<n,T>& lhs, const vec<n,U>& rhs) 00473 { 00474 vec<n, mln_trait_op_minus(T,U)> tmp; 00475 for (unsigned i = 0; i < n; ++i) 00476 tmp[i] = lhs[i] - rhs[i]; 00477 return tmp; 00478 } 00479 00480 template <unsigned n, typename T, typename U> 00481 inline 00482 mln_sum_product(T,U) 00483 operator*(const vec<n,T>& lhs, const vec<n,U>& rhs) 00484 { 00485 mln_sum_product(T,U) tmp(literal::zero); 00486 for (unsigned i = 0; i < n; ++i) 00487 tmp += lhs[i] * rhs[i]; 00488 return tmp; 00489 } 00490 00491 template <unsigned n, typename T, typename S> 00492 inline 00493 vec<n, mln_trait_op_times(T, S)> 00494 operator*(const vec<n,T>& lhs, const mln::value::scalar_<S>& s) 00495 { 00496 // FIXME: We made a choice here but is it correct? 00497 // FIXME: We "un-scalar" s so that the scalar status do not propagate. 00498 00499 // Think of the case: vec<mat> v * scalar(vec w) s 00500 // It gives: for all i, v[i] * w so the i-th mat * vec w -> vec 00501 // The result is a vec<vec> 00502 00503 // If we really want to propage the "scalar" status then 00504 // we shall allow for scalar(scalar(..)) !!! => FIXME 00505 00506 vec<n, mln_trait_op_times(T, S)> tmp; 00507 for (unsigned i = 0; i < n; ++i) 00508 tmp[i] = lhs[i] * s.to_equiv(); 00509 return tmp; 00510 } 00511 00512 template <unsigned n, typename T, typename S> 00513 inline 00514 vec<n, mln_trait_op_div(T, S)> 00515 operator/(const vec<n,T>& lhs, const mln::value::scalar_<S>& s) 00516 { 00517 mln_precondition(value::equiv(s) != literal::zero); 00518 vec<n, mln_trait_op_div(T, S)> tmp; 00519 for (unsigned i = 0; i < n; ++i) 00520 tmp[i] = lhs[i] / s.to_equiv(); 00521 return tmp; 00522 } 00523 00524 00525 template <unsigned n, typename T> 00526 inline 00527 std::ostream& 00528 operator<<(std::ostream& ostr, const vec<n,T>& v) 00529 { 00530 ostr << '('; 00531 for (unsigned i = 0; i < n; ++i) 00532 ostr << debug::format(v[i]) << (i == n - 1 ? ")" : ", "); 00533 return ostr; 00534 } 00535 00536 // vprod 00537 00538 template <typename T, typename U> 00539 inline 00540 vec<3, mln_trait_op_times(T,U)> // FIXME: typename binary_arith_trait<T, U>::ret> 00541 vprod(const vec<3, T>& lhs, const vec<3, U>& rhs) 00542 { 00543 vec<3, mln_trait_op_times(T,U)> tmp; // FIXME: Likewise. 00544 tmp[0] = lhs[1] * rhs[2] - lhs[2] * rhs[1]; 00545 tmp[1] = lhs[2] * rhs[0] - lhs[0] * rhs[2]; 00546 tmp[2] = lhs[0] * rhs[1] - lhs[1] * rhs[0]; 00547 return tmp; 00548 } 00549 00550 # endif // MLN_INCLUDE_ONLY 00551 00552 } // end of namespace mln::metal 00553 00554 } // end of namespace mln 00555 00556 00557 # include <mln/make/vec.hh> 00558 00559 00560 #endif // ! MLN_METAL_VEC_HH