Milena (Olena)
User documentation 2.0a Id
|
00001 // Copyright (C) 2008, 2009, 2010 EPITA Research and Development 00002 // Laboratory (LRDE) 00003 // 00004 // This file is part of Olena. 00005 // 00006 // Olena is free software: you can redistribute it and/or modify it under 00007 // the terms of the GNU General Public License as published by the Free 00008 // Software Foundation, version 2 of the License. 00009 // 00010 // Olena is distributed in the hope that it will be useful, 00011 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00012 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00013 // General Public License for more details. 00014 // 00015 // You should have received a copy of the GNU General Public License 00016 // along with Olena. If not, see <http://www.gnu.org/licenses/>. 00017 // 00018 // As a special exception, you may use this file as part of a free 00019 // software project without restriction. Specifically, if other files 00020 // instantiate templates or use macros or inline functions from this 00021 // file, or you compile this file and link it with other files to produce 00022 // an executable, this file does not by itself cause the resulting 00023 // executable to be covered by the GNU General Public License. This 00024 // exception does not however invalidate any other reasons why the 00025 // executable file might be covered by the GNU General Public License. 00026 00027 /* FIXME: We should factor as much things as possible between 00028 tests/morpho/lena_line_graph_image_wst1.cc and 00029 tests/morpho/lena_line_graph_image_wst2.cc, starting from conversion 00030 routines. */ 00031 00048 #include <map> 00049 #include <vector> 00050 00051 #include <mln/util/ord.hh> 00052 00053 #include <mln/core/image/image2d.hh> 00054 #include <mln/core/alias/point2d.hh> 00055 #include <mln/core/alias/window2d.hh> 00056 #include <mln/core/alias/neighb2d.hh> 00057 00058 #include <mln/convert/to_window.hh> 00059 00061 #include <mln/core/image/edge_image.hh> 00062 #include <mln/core/var.hh> 00063 #include <mln/fun/i2v/array.hh> 00064 #include <mln/util/graph.hh> 00065 00066 #include <mln/morpho/gradient.hh> 00067 #include <mln/morpho/closing/area.hh> 00068 #include <mln/morpho/meyer_wst.hh> 00069 00070 #include <mln/value/int_u8.hh> 00071 #include <mln/value/rgb8.hh> 00072 #include <mln/literal/black.hh> 00073 #include <mln/literal/colors.hh> 00074 00075 #include <mln/io/pgm/load.hh> 00076 #include <mln/io/ppm/save.hh> 00077 00078 #include <mln/math/max.hh> 00079 #include <mln/math/abs.hh> 00080 00081 #include <mln/util/site_pair.hh> 00082 00083 #include "tests/data.hh" 00084 00085 00086 00087 int main() 00088 { 00089 using namespace mln; 00090 using value::int_u8; 00091 using value::rgb8; 00092 00093 /*--------. 00094 | Input. | 00095 `--------*/ 00096 00097 typedef int_u8 input_val_t; 00098 image2d<input_val_t> input; 00099 io::pgm::load(input, MLN_IMG_DIR "/tiny.pgm"); 00100 00101 // In this test, the gradient is directly computed on the input 00102 // image, not on the edges of the line graph image. 00103 image2d<input_val_t> gradient = 00104 morpho::gradient (input, convert::to_window(c4())); 00105 00106 // Simplify the input image. 00107 image2d<input_val_t> work(input.domain()); 00108 work = morpho::closing::area(gradient, c4(), 10); 00109 00110 /*-------------. 00111 | Line graph. | 00112 `-------------*/ 00113 00114 // FIXME: Inlined conversion, to be reifed into a routine. 00115 00116 util::graph g; 00117 00118 // Points. 00119 image2d<unsigned> equiv_vertex; 00120 initialize(equiv_vertex, work); 00121 00122 // Vertices. 00123 mln_fwd_piter_(image2d<input_val_t>) p(work.domain()); 00124 for_all(p) 00125 equiv_vertex(p) = g.add_vertex(); 00126 00127 // Edges. 00128 window2d next_c4_win; 00129 next_c4_win.insert(0, 1).insert(1, 0); 00130 typedef fun::i2v::array<int> edge_values_t; 00131 typedef fun::i2v::array< util::site_pair<point2d> > edge_sites_t; 00132 edge_values_t edge_values; 00133 edge_sites_t edge_sites; 00134 mln_fwd_qiter_(window2d) q(next_c4_win, p); 00135 for_all (p) 00136 for_all(q) 00137 if (work.domain().has(q)) 00138 { 00139 g.add_edge(equiv_vertex(p), equiv_vertex(q)); 00140 edge_values.append(math::max(work(p), work(q))); 00141 edge_sites.append(util::site_pair<point2d>(p, q)); 00142 } 00143 00144 // Line graph point set. 00145 typedef edge_image<util::site_pair<point2d>,int,util::graph> lg_ima_t; 00146 lg_ima_t lg_ima(g, edge_sites, edge_values); 00147 00148 /*------. 00149 | WST. | 00150 `------*/ 00151 00152 typedef lg_ima_t::nbh_t nbh_t; 00153 nbh_t nbh; 00154 00155 // Perform a Watershed Transform. 00156 int_u8 nbasins; 00157 typedef edge_image<util::site_pair<point2d>,int_u8,util::graph> wshed_t; 00158 wshed_t wshed = morpho::meyer_wst(lg_ima, nbh, nbasins); 00159 mln_assertion(nbasins == 5u); 00160 00161 /*---------. 00162 | Output. | 00163 `---------*/ 00164 00165 // FIXME: Inlined conversion, to be reifed into a routine. 00166 00167 // Save the result in gray levels (data) + color (wshed). 00168 00169 // Data. 00170 typedef rgb8 output_val_t; 00171 typedef image2d<output_val_t> output_t; 00172 point2d output_pmin = input.domain().pmin(); 00173 point2d output_pmax(input.domain().pmax()[0] * 2, 00174 input.domain().pmax()[1] * 2); 00175 output_t output(box2d(output_pmin, output_pmax)); 00176 data::fill(output, literal::black); 00177 // Reuse the piter on INPUT. 00178 for_all(p) 00179 { 00180 // Equivalent of P in OUTPUT. 00181 point2d q(p[0] * 2, p[1] * 2); 00182 input_val_t v = input(p); 00183 /* FIXME: Use a conversion function from input_val_t to 00184 output_val_t instead of an explicit construction. */ 00185 output(q) = output_val_t(v, v, v); 00186 } 00187 // Interpolate missing points in OUTPUT. 00188 mln_piter_(output_t) p_out(output.domain()); 00189 for_all(p_out) 00190 { 00191 // Process points on even rows and odd columns 00192 if (p_out[0] % 2 == 0 && p_out[1] % 2 == 1) 00193 output(p_out) = (output(p_out + left) + output(p_out + right)) / 2; 00194 // Process points on odd rows and even columns 00195 if (p_out[0] % 2 == 1 && p_out[1] % 2 == 0) 00196 output(p_out) = (output(p_out + up) + output(p_out + down)) / 2; 00197 // Process points on odd rows and odd columns 00198 if (p_out[0] % 2 == 1 && p_out[1] % 2 == 1) 00199 output(p_out) = 00200 (output(p_out + dpoint2d(-1, -1)) + 00201 output(p_out + dpoint2d(-1, +1)) + 00202 output(p_out + dpoint2d(+1, -1)) + 00203 output(p_out + dpoint2d(+1, +1))) / 4; 00204 } 00205 // Draw the watershed. 00206 /* FIXME: We should draw the watershed on another image and 00207 superimpose it on OUTPUT instead of drawing it directly into 00208 OUTPUT. */ 00209 mln_piter_(wshed_t) pw(wshed.domain()); 00210 for_all(pw) 00211 { 00212 if (wshed(pw) == 0u) 00213 { 00214 mln_psite_(lg_ima_t) pp(pw); 00215 // Equivalent of the line (edge) PP in OUTPUT. 00216 int row1 = pp.first()[0] * 2; 00217 int col1 = pp.first()[1] * 2; 00218 int row2 = pp.second()[0] * 2; 00219 int col2 = pp.second()[1] * 2; 00220 point2d q((row1 + row2) / 2, (col1 + col2) / 2); 00221 // Print the watershed in red. 00222 output(q) = literal::red; 00223 } 00224 } 00225 // Fill the holes, so that the watershed looks connected. 00226 /* FIXME: This approach is bad: it creates thick lines of watershed. 00227 We should probably solve this when we ``paint'' the watershed 00228 over the ``doubled'' image. 00229 00230 A better approach is probably to iterate over the set of vertices, 00231 and ``connect'' edges according to patterns (vertically or 00232 horizontally connected egdes member of the watershed, etc.). */ 00233 // Reuse the piter on OUTPUT. 00234 for_all (p_out) 00235 // Only handle points on odd rows and columns. 00236 if (p_out[0] % 2 == 1 && p_out[1] % 2 == 1) 00237 { 00238 // Count the number of adjacent watershed points. If there are 00239 // two or more, consider, create a watershed point. 00240 /* FIXME: Iterating over a c4 window would be more elegant, of 00241 course. */ 00242 unsigned nwsheds = 00243 (output.has(p_out + up ) && output(p_out + up ) == literal::red) + 00244 (output.has(p_out + down ) && output(p_out + down ) == literal::red) + 00245 (output.has(p_out + left ) && output(p_out + right) == literal::red) + 00246 (output.has(p_out + right) && output(p_out + left ) == literal::red); 00247 if (nwsheds >= 2) 00248 output(p_out) = literal::red; 00249 } 00250 io::ppm::save(output, "lena_line_graph_image_wst1-out.ppm"); 00251 }