Olena — Quick Reference Guide

LRDE

Copyright

Copyright (C) 2009 EPITA Research and Development Laboratory (LRDE).

This document is part of Olena.

Olena is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, version 2 of the License.

Olena is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along
with Olena. If not, see <http://www.gnu.org/licenses/>.

Contents

I1.1 Requirements| o
[T.T.T To compile the user examples|
|1.1.2 To compile the documentation (Optional)|
[[13 Todevelopin Olenal

1.2 Getting Olena). o

1.3 Building Olenal

2 Foreword|

. renerality| Lo Lo

[2.2_Directory hierarchy|.
2.3 Writing and compiling a program with Olenal

[B—Sitel
4_Site sef]

5

4.1 Basicinterfacelo oo
4.2 Optional interface]

mage

[5.2 Possible image types| oL

5.3 ossible value types| oo oo

5.5.1 Image border|
[0.5.2 Generality on image extension|

5.7 Load and save images|
P.8 Create an image| oo
9.9 Access and modity values| oL
0.10 Image sizel

6 Structural elements: Window and neighborhood)|

6.1.1 Windowl
6.1.2 Neighborhood|.

6.1.4 Conversion between Neighborhoods and Windows|

[7__Sites, psites and dpoints|

7.1 eed forsitel L
[7.2 Need for psite]
7.3 From psite tosite].o o

.................................
B_Tterators

19 Memory management|

[10.4

Logical not|

10.5 Compute| e

10.5.2 Example with labeling::compute()]
10.5.3 Routines based on accumulators and *::compute()|

[10.6

orking with parts of animage|.

110.6.1 Restrict an image with a siteset|
110.6.2 Restrict an 1mage with a predicate|
|10.6.3 Restrict an image with a C function|

(11 Input / Output|
[[T1 TmageMagick]

11.2 GDOMI.o o

|12 Graphs and images|

M21

Description| L

12.2

XampPle| oL o s e s e e e e s e e e e e e e e

IL3 Useful global variables|

(14 Useful macros|

42

Iterator type macros|o

[14.2.1 Default iterator types|

14.2.2 Forward iterator types|

28
28
28
29
29
30

31
31
31
33
33

34

37

39
39
40
41
42
43
43
44
45
46
47
48
49

52
52
52

53
93
93

58

[14.2.4 Graph iterators|

115 Common Compilation Errors|

Chapter 1

Installation

1.1 Requirements

1.1.1 To compile the user examples
e a POSIX shell, like Bash
e a decent C++ compiler, like GNU C++
e a ‘make’ utility, like GNU or BSD ‘make’

1.1.2 To compile the documentation (Optional)
e a LaTeX distribution

the ‘listings’ TeX package

the utility ‘convert’ from ImageMagick

GNU Autogen

‘hevea’, a TeX to HTML conversion tool

the ‘texinfo’ utilities from GNU

1.1.3 To develop in Olena
e GNU Autotools (Autoconf 2.54, Automake 1.10)

1.2 Getting Olena

The latest version of Olena is available at the following addresses:
e http://www.lrde.epita.fr/dload/olena/olena.tar.gz
e http://www.lrde.epita.fr/dload/olena/olena.tar.bz2

http://www.lrde.epita.fr/dload/olena/olena.tar.gz
http://www.lrde.epita.fr/dload/olena/olena.tar.bz2

1.3 Building Olena

First uncompress the archive. According to the downloaded archive, the options
are different.

$ tar zxvf olena.tar.gz

Or

$ tar jxvf olena.tar.bz2
Then follow these steps:

$ mkdir olena-build

$ cd olena-build

$../olena-1.0/configure && make
$ sudo make install

Chapter 2

Foreword

2.1 Generality

The following tutorial explains the basic concepts behind Olena and how to
use the most common objects and routines. This tutorial includes many code
examples and figures. In order to make this tutorial easier to understand, we
will mainly talk about 2D images. This is not so restrictive since 1D, 3D, nD
images behave the same way.

Since examples are based on 2D images pixels are actually ”points” however
we will call them ”sites” which is the most generic name.

Here is also a list of common variable name conventions:

Object Variable name
Site p
Value v
Neighboor n
A site close to another site p | q

Olena is organized in a namespace hierarchy. Everything is declared by
Olena within the ’'mln::’ namespace, and possibly a sub-namespace such as
"min::arith::’ (arithmetic operations on images), 'min::morpho::’ (morpholog-
ical operations), etc. Usually, the namespace hierarchy is mapped to the mln
directory tree. For the sake of simplicity, we will neglect the 'mlin::’ prefix in
all the code examples.

Methods provided by objects in the library are in constant time. If you need
a specific method but you cannot find it, you may find an algorithm which can
compute the information you need.

2.2 Directory hierarchy
Olena’s tarball is structured as follow:

e milena

— doc

* benchmark: set of benchmark.
* examples: more examples.

* oldies: partialy not updated documentation. Not recommended
for new users.

* technical: technical doc.
* tutorial: code sample and tutorial.

— img: a set of sample images.
— mesh: a full example which uses Olena.
— mln: the library. Contains only headers.

tests: test suite.

e swilena: Python bindings for Olena.

2.3 Writing and compiling a program with Olena
Before writing your first program, please be aware of these hints:

e By default, Olena enables a lot of internal pre and post conditions. Usu-
ally, this is a useful feature and it should be enabled. However, it can
heavily slow down a program though so these tests can be disabled by
compiling using -DNDEBUG.

$ g++ -DNDEBUG -Ipath/to/mln my_program.cc
e If you decide to use optimization flags to compile for debugging, prefer

using -O1. It is much faster to compile and it gives good performance
results.

Chapter 3

Site

Usually, when talking about images, we think about common images composed
of a set of pixels. Since Olena is generic, we want to support many kind of
images, even images which are not composed of a set of points, such as images
having images as sites.

In order to express this genericity, we have the “site” concept. This concept
allows us to divide a pixel into two information:

e The pixel location, e.g. its coordinates (the site itself).
e The value.

Let’s say we have a 2D grid like this:

0int2d(2, 2)

On such a regular grid, in 2D, we usually use a 2D point as a site which
means we have the following equivalence:

Intersection = point2d (2D site) = center of a pixel

The site does not store any value but refers to an area where we will be able
to read its value.

Sites may have a different types, depending on the image type:

Name Description
point2d 2D point on a regular grid
point Generic point (nD) on a regular grid

algebra::vec | Algebraic vector
util::vertex | Graph vertex
util::edge Graph edge

10

Chapter 4

Site set

Site sets are used:

1. To define an image definition domain.

2. As Site container.

They do not actually store any image value. They only store site information.

Here is a list

of all the site set concepts which can be found in core/site_set:

Site set Description

p-array site array.

p-box compact domain defined on a regular grid (in 2D, a
rectangle).

p-if site set verifying a predicate.

p-queue site queue.

p-run site range.

p-runs site range set.

p-set mathematical site set.

p-vaccess | site set ordered by value.

p-edges set of graph edges associated to sites.

p-vertices | set of graph vertices associated to sites.

All site sets are iterable. More detailed explanations are available in section

Bl

4.1 Basic interface

Common basic interface:

11

Return Type | Name Arguments | Const | Comments

bool is_valid | - X Returns true if it has been
initialized. = The default
constructor does not ini-
tialize it.

bool has const P& p | X

4.2 Optional interface

Site sets may have other methods depending on their type:

Return Type | Name | Arguments | Const | Comments

size_t nsites | - - Return the number of
sites.
const Box& | bbox | - X Bounding box. Available

only on grid site sets.

The previous methods are available depending on the site set. A box will
have the bbox() method since it can be retrived in constant time: a box is it’s
own bounding box.

box2d b(2,3);

// The bbox can be retrived in constant time.
std :: cout << b.bbox() << std::endl;

// nsites can be retrieved in constant time.

std::cout << "nsites =" << b.nsites () << std::endl;
Output:
[(0.0)..(1,2)]
nsites = 6
J

A p_array does not have the bbox method since its sites do not have to be
adjacent. Maintaining such information, in order to keep getting the bbox in
constant time, would be time and memory consuming. Instead of providing
a method directly in p_array, an algorithm is available if this information is
needed. p_array and boxr both have a nsites method since the internal structure
allows a constant time retrieval.

-

p-array<point2d> arr;
arr.insert(point2d(1,0));
arr.insert(point2d(1,1));

// The bbox is computed thanks to bbox() algorithm.
box2d box = geom::bbox(arr);
std :: cout << box << std::endl;

12

// p-array provides nsites (),
// it can be retrieved in constant time.

std ::cout << "nsites =" << arr.nsites() << std::endl;
Output:
-
[(1.0)..(1.1)]
nsites = 2
=

13

Chapter 5

Image

5.1 Definition

An image is composed both of:

e A function
. { Site — Value
ima :

P — ima(p)

e A site set, also called the ”domain”.

5.2 Possible image types

Here is a short list of the main/usual image types you may want to use with
Olena:

Name Description

imageld 1D image

image2d 2D image

image3d 3D image

flat_image | Constant value image
image_if Image defined by a function

5.3 Possible value types

Every image type must take its type of value as parameter. The value type can
be one of the builtins one:

e bool

e char

14

e unsigned
o int

short

e long
e float

e double

Other data types are also available:

Value type | underlying data type

float01_8 unsigned long

float01_16 | unsigned long

float01_f float

gl8 unsigned char

gli6 unsigned short

glf float

hsi_d double

hsi_f float

mt_s8 char

int_s16 short

mit_s32 mt

nt_ud unsigned char

mt_ulb unsigned short

mt_u32 unsigned int

rgb16 min::algebra::vec<unsigned short>
rgb8 mlin::algebra::vec<unsigned char>

All these types are available in mln/value and accessible in the min::value
namespace. Most of the time, the name of the header which must be included
to use one of these data types is actually “type_name.hh”. For instance, for rgb8
the header will be rgb8.hh.

5.4 Domain

The site set contains the sites which compose the image. Sites are based on a
grid so the image depends on that grid as well. It means that a 2D images can
only be defined by sites based on a 2D grid. Likewise, an image2d will always
have its bouding box defined by a box2d.

Being defined on a grid means that the image can be defined anywhere. For
instance, defining a 2D image with a boz2d starting from point (-20, -20) to (-3,
5) is completely valid.

The following example shows that the definition domain and the site set are
exactly equivalent.

15

// Define a box2d from (-2,—-3) to (3,5).
box2d b = make::box2d(-2,-3, 3,5);

// Initialize an image with b as domain.
image2d<int> ima(b);

std::cout << "b =" << b << std::endl;
std :: cout << "domain =" << ima.domain() << std::endl;
Output:

b= [(~2,-3)..(3.5)]
domain = [(—2,-3)..(3,5)]

J
To know if a site belongs to an image domain or not, a method “has()” is

available.
-

// Create an image on a 2D box
// with 10 columns and 10 rows.
image2d<bool> ima(make:: box2d (10, 10));

mln_site_(image2d<bool>) pl1(20, 20);
min_site_(image2d<bool>) p2(3, 3);

std :: cout << "has(pl)? "
<< (ima.has(pl) ? "true” : "false”)
<< std::endl;

std ::cout << "has(p2)? "
<< (ima.has(p2) ? "true” : "false”)

<< std::endl;
L

Output:

-
has(pl)? false
has(p2)? true

Since the notion of site is independent from the image it applies on, we can
form expressions where a site passed to several images:

point2d p(9.,9);

// At (9, 9), both values change.
imal(p) = 'M';
ima2(p) = 'W';

bool b = (imal(p) = ima2(p));
?

(
std ::cout << (b ? "True "False") << std::endl;
N

Output:

(Fates]

16

5.5 Border and extension

Olena provides extension mechanisms for the image domain. In the library, both
the concept of border and of extension can be encountered. These concepts are
useful in many algorithms and can avoid costly tests while working with sites
located on image edges.

5.5.1 Image border

A border is a finite extension provided to a basic image type, such as image2d.
By default, every image is created with a border. The default width is defined
through the global variable border :: thickness defined in mlin/border/thick-
ness.hh. Since this is a variable, it can be changed as shown in the following
example.

bool vals[3][3] ={ {0, 1, 1
{1,0,0
{1, 1,0

o

b

image2d<bool> ima_def = make::image(vals);
border:: fill (ima_def, false);
debug:: println_with_border(ima_def);

std :: cout << "=——=" << std ::endl << std::endl;
border:: thickness = 0;

image2d<bool> ima_bt0 = make::image(vals);
debug:: println_with_border(ima_bt0);

Output:

It is important to note that to display the border in the ouput, we use a
special debug function, debug::printin_with_border. Indeed, the border and the

17

extension are considered as part of an image only in the algorithms. They are
ignored while saving or printing an image.
Some operations can be performed on the border. The functions are located

in min/border.

Routine Description

adjust Increase the border thickness if it is inferior to a min-
imum.

duplicate | Assign the border with the duplicate of the edges of
this image.

equalize | Equalize the border of two images so that their size
is equal and is at least a minimum size.

fill Fill the border with a given value.

find Find the border thickness of an image.

get Get the border thickness of an image.

mirror Fills border using nearer pixels with a mirroring ef-
fect.

resize Set image border to a specific size.

5.5.2 Generality on image extension

On morphed images, described in section ?7?, the border concept does not exist
and is generalized to the extension concept. A simple example of a morphed
image is a sub-image. A sub image does not have border nor extension by
default. Thanks to min/core/routine/extend.hh, an extension can be defined
through a function. This means that the extension can be infinite. Another
point is that an image can be used as extension. For instance, in the case of a
sub-image, you may be interested in extending the sub-image with the image

itself.

The extension supports the following operations. These functions are lo-
cated in min/extension.

Routine

Description

adjust

Adjust the extension given a structural element.

adjust_duplicate | Adjust the size of the extension given a structural element and

adjust_fill

duplicate
fill

duplicate the image inner boundary.

Adjust the size of the extension given a structural element and fill
it with a value.

Duplicate the values of the image inner boundary in the extension.
Fill the extension with a given value.

In order to extend an image, a routine extend is available in min/core/rou-
tine/extend.hh. The routine extended_to may also help during debug. It allows
to extend the image domain to a larger one. The values associated to the new
sites comes from the extension.

18

5.5.3 Different extensions

Let’s say we have want to extract a sub domain from an image. In the following
example, ima_roi holds several small rectangles from the original image.

image2d<rgh8> lena;

io::ppm::load(lena, MLN_LIMG.DIR " /small.ppm”);

box2d bbox_enlarged = lena.domain();
bbox_enlarged.enlarge(border::thickness);

min_-VAR(ima_roi, lena | fun::p2b::big_chess<box2d>(lena.domain(), 10));

lena ima_roi (black color means the sites are not included in the domain)

Then, we may extend this sub image with one of the three following extension
type.

Extension with a value

Let’s extend with the value literal::blue.

[min_VAR(ext_with_val , extended_to(extend(ima_roi, literal ::bjue), bbox_enlarged));

Note the use of the extended_to() routine. We used a larger bbox to extend
the image domain. That is the reason why the image is surrounded by the
extension value, blue.

Extension with a function

Let’s use the following function:

namespace min

{

19

struct my_ext : public Function_v2v<my_ext>
{
typedef value::rgb8 result;
value :: rgb8 operator()(const point2d& p) const
if ((p.row() + p.col()) % 20)
return literal :: black;
return literal ::white;
}
+;
} // end of namespace min

(min_.VAR(ext_with_fun , extended_to(extend(ima_roi, my_ext()),Jbbox,enlarged));

Extension with an image

Let’s extend with the original image, lena.

L min_VAR(ext_with_ima , extend(ima.roi, lena)); J

ext_with_ima, the extended image. The actual data in the domain (light) with its extension (dark)

IMPORTANT NOTE

Many times, you may want to check if a site is part of the image before applying a
treatment. All images provide a method “has(Site)” which can return this infor-
mation. Be careful though, calling has() on the image returns “true” if

20

the given site is part of the domain OR the the extension/border. All
algorithms in Olena call that method which means that all the algorithms take
in consideration the extension/border if it exists. The default border thickness
is set to 3 as shown by the following example.

-

// Default border size is set to 0.
// Image defined on a box2d from
// (0, 0) to (2, 2)
image2d<int> imal(2, 3);
std :: cout << "imal.has(0, 0)

<< imal.has(point2d (0, 0)) << std::endl;
std :: cout << "imal.has(—3, 0)

<< imal.has(point2d(—3, 0)) << std::endl;
std :: cout << "imal.has(2, 5) : "7

<< imal.has(point2d (2, 5)) << std::endl;
std :: cout << "=———" << std::endl;
// Set default border size to 0.
border:: thickness = 0;
// Image defined on a box2d from
// (0, 0) to (2, 2)
image2d<int> ima2(2, 3);
std :: cout << "ima2.has(0, 0) : 7

<< ima2.has(point2d (0, 0)) << std::endl;
std :: cout << "ima2.has(-3, 0) : 7

<< ima2.has(point2d(—3, 0)) << std::endl;
std :: cout << "ima2.has(2, 5) : "7

<< ima2.has(point2d (2, 5)) << std::endl;

L J

Output:

imal.has(0, 0) : 1
imal.has(—3, 0) : 1
imal.has(2, 5) : 1

ima2.has(0, 0) : 1
ima2.has(—3, 0) : 0
ima2.has(2, 5) : 0

- J

Most of the time, this is the good behavior. For instance, if a rotation is
applied to an image, sites which were not previously in the domain will be part

21

of it. Thanks to the extension/border, these sites will be associated to the value
of the extension/border.

In the following example, the extension is set to a constant color yellow. It
means that whatever the new sites computed through the rotation, it will be
part of the image and a value will be available. Site which were previously in
the extension/border, will be associated to yellow in the output image.

border :: thickness = 30;

// Declare the image to be rotated.
image2d<value :: rgh8> imal_(220, 220);

data:: fill (imal_, literal ::cyan);

border:: fill (imal_, literal ::yellow);

// Set an infinite extension.

min_-VAR(imal, extend(imal_, pw::cst(literal ::yellow)));

// Declare the output image.
image2d<value :: rgh8> ima2(220, 220);
data:: fill (ima2, literal ::cyan);
border:: fill (ima2, literal ::yellow);

box2d extended_domain= imal.domain();
extended_domain.enlarge(border::thickness);

// Draw the domain bounding box

draw :: box(imal, geom::bbox(imal_), literal ::red);
// Save the image, including its border.
doc::ppmsave(imal | extended_domain, "ima2d—rot");

// Define and apply a point—wise rotation
fun::x2x::rotation <2,float> rotl (0.5, literal ::zero);
image2d<value ::rgh8 >::fwd_piter p(imal.domain());
for_all(p)

algebra ::vec<2,float> pv = p.to_site ().to_vec();
algebra ::vec<2,float> v = rotl.inv()(pv);
ima2(p) = imal(v);

draw :: box(ima2, ima2.bbox(), literal::red);

doc:: ppmsave(extended_to(ima2, extended_domain), "ima2d—rot”
L J

Output:

22

imal and its border before rotation (left) and ima2 and its border after rotation (right).

Sometimes taking the domain in consideration may not be the expected
behavior. If you do not want to use the extension/border for a specific routine,
simply restrict the image to its domain.

[my_routine(ima | ima.domain());

J

Note that:

ima.domain().has() = (ima — ima.domain()).has()

5.6 Interface

Return Type | Name Arguments Const | Comments

I::pvset domain - X

const Value& | operator() | const point& p | X Used for reading.

Value& operator() | const point& p | - Used for writing.

bool has const Point& p | X

bool has_data - X Returns true if the domain
is defined.

site_id id - X Return the Id of the un-
derlying shared data.

I::vset destination | - X Value set of all the possi-
ble site values in this Im-
age.

site_set bbox - - Returns the bounding box
of the domain.

site_set bbox_large | - - Returns the bouding box
of the domain and the ex-
tended domain.

5.7 Load and save images

Currently, Olena supports the following input image formats:

e PBM
e PFM

23

e PGM
e PNM
e PPM

This support is provided through two headers for each type, save.hh and

load.hh. They are located in min/io/<image-format> /.
Once the right header is included, the image can be loaded:

|

image2d<bool> ima;

io::pbm::load(ima, MLN.DOCDIR " /img/small.pbm");

Note that each format is associated to specific image value types:

hline Format | Value type

PBM bool

PFM float, double, float01_*

PGM unsigned, long, int, int_u*, gl*
PNM See PGM, PBM and PPM
PPM rgh*

[io::pbm::save(ima, MLN.DOCDIR "/figures/ima_save.pbm”);

5.8 Create an image

Loading an image is not mandatory, an image can b
There are two possibilites to do so:

e created from scratch.

// Build an empty image;
image2d<value::int_u8> imgla;

// Build an image with 2 rows

// and 3 columns sites
image2d<value::int_u8> imglb(box2d (2, 3));
image2d<value ::int_u8> imglc(2, 3);

J

an "empty image” because it is a placeholder for the result of some processing,

imgla has no data and its definition domain is still unset. We do not know
yet the number of sites it contains. However, it is really useful to have such

or another image. Trying to access the site value from an empty image leads

to an error at run-time. imglb is defined on a domain but does not have data yet.

An image can also be created and initialized at the same time:

bool vals[6][5] = {
{0, 1, 1, 0, 0},
{0, 1, 1, 0, 0},
{0, 0, 0, 0, 0},

24

{1, 1, 0, 1, 0},

{1, o, 1, 1, 1},

{1, o, 0, 0, O}
+;

image2d<bool> ima = make::image(vals);

It constructs the following image:

Sometimes, you may want to initialize an image from another one:

image2d<value::int_u8> img2a(2, 3);
image2d<value ::int_u8> img2b;

initialize (img2b, img2a);
data:: fill (img2b, img2a);

1mg2b is declared without specifying a domain. Its border size is set to the
default one, e.g 0. By using initialize(), img2b is initialized with the same
domain and border/extension as img2a. The data is not copied though. Other
routines like data::fill() can be called in order to do so (See also [10.1]).

5.9 Access and modify values

2

There are several ways to access/modify an image “ima’:
e opt:at(ima, z, y, ...)
e ima(Site)

Most of the time, images can be modified and these two methods can be
used both to read a value and modify it. Both methods are equivalent.

ra

box2d b(2,3);
image2d<value::int_-u8> ima(b);

// On image2d, Site <=> point2d
point2d p(1, 2);

// Associate '9’ as value for the site/point2d (1,2).

25

// The value is returned by reference and can be changed.
opt::at(ima, 1,2) = 9;

std :: cout << "opt::at(ima, 1,2) =" << opt::at(ima, 1,2)
<< std::endl;
std::cout << "ima(p) =" << ima(p) << std::endl;

std :: cout << "—" << std::endl;

// Associate '2’ as value for the site/point2d (1,2).
// The value is returned by reference

// and can be changed as well.

ima(p) = 2;

std ::cout << "opt::at(ima, 1,2) =" << opt::at(ima, 1,2)
<< std::endl;
std::cout << "ima(p) =" << ima(p) << std::endl;

Output:

opt::at(ima, 1,2) =9
ima(p) = 9

opt::at(ima, 1,2) =2
ima(p) = 2

Usually, you will want to use the functional way, “ima(Site)”, more partic-
ularly while iterating over all the sites through an iterator. This use case will
be detailed further in section

5.10 Image size

Most typical image types owns special methods to retrieve the image size.
Image type ‘ Methods
imageld length()
image2d ncols(), nrows()
image3d ncols(), nrows(), nslis()
If you need a more generic way to get the size, you can use the routines
provided in min/geom in the following files:

e ncols.hh
e nrows.hh

o nslis.hh

image2d<int> ima(make:: box2d (0,0, 10,12));

std :: cout << "nrows =" << ima.nrows()
< o

26

<< "ncols =" << ima.ncols ()
<< std::endl;

Output:

[nrows = 11 — ncols = 13

27

Chapter 6

Structural elements:
Window and neighborhood

In Olena, there are both the window and neighborhood concept. A window can
be defined on any site around a central site which may also be included. A neigh-
borhood is more restrictive and must not include the central site. Therefore
these two concepts are really similar and are detailed together in this section.

By default, structural elements are centered. The central site is located at
the origin of the grid: “literal :: origin”. With image2d, the central site is (0,0).
Centered structural elements must have an odd size.

6.1 Define an element

6.1.1 Window

Generic Predefined windows

Name ‘ Description ‘ Representation

win_c4p | 4-connectivity

win_c8p | 8-connectivity

1D Predefined windows

Name ‘ Description ‘ Representation
segment1d ‘ 1D segment

28

2D Predefined windows

Name Description Representation
backdiag2d | Back diagonal -
diag2d 2D diagonal -
disk2d 2D disk -
hline2d 2D horizontal line | -

octagon2d | 2D octogon -
rectangle2d | 2D rectangle -
vline2d 2D vertical line -

3D Predefined windows

Name ‘ Description ‘ Representation
cube3d 3D Cube -
cuboid3d | Cuboid -

These predefined windows can be passed directly to a function. The headers
are located in min/core/alias/window*.hh.

6.1.2 Neighborhood
Predefined neighborhood:

Name | Description | Representation
c4 4-connectivity
c8 8-connectivity

These predefined neighborhood can be passed directly to a function. The
headers are located in min/core/alias/neigh*.hh.
Use case example:

label_8 nlabels;
image2d<label_8> Ibl = labeling ::blobs(ima, c4(), nlabels);

6.1.3 Custom structural elements
Windows

There are several ways to define a new window. The first and the most common
way is to declare a window variable and insert dpoints:

window2d win;

win.insert(—1, —1);
win.insert(—1, 0);
win.insert(—1, 1);

29

This code creates the following window where “X” is the central point from
which the window is computed:

® —
o X
® —
J
Another way to define the same window is to provide a bool array:
bool b[9] = {1, 0, 0,
1, 0, O,
1, 0, 0 };
bool b2[3][3] ={ { 1, 0, 0 },
{1, 0, 0 },
{1,003} }
window2d win = convert ::to<window2d>(b);
window2d win2 = convert ::to<window2d>(b2);
- J
Note that despite the different ways of defining these windows,
“varwin” == “win2”. The boolean array must always have an odd size.

While creating a windows thanks to a bool array /matrix, the window’s center
is the central site of the array/matrix.

6.1.4 Conversion between Neighborhoods and Windows

Windows are not convertible to a Neighborhood. Neighborhood are convertible
to a window though.

A neighborhood has a method “win()” which returns the definition window.
Be ware that this window is not centered, thus does not include the central
point.

30

Chapter 7

Sites, psites and dpoints

7.1 Need for site

As we have seen before, an image is usually defined on a grid. It has associated
data and a site set which defines the domain of the image on that grid. Usually,
we need to access a value by its coordinates. With default images it can be done
easily, at no cost.

Example with an image2d:

c 0123
r
et

0 | Ix| [|
R

L]
et

- J

The site z is the point (0, 1). The image values are stored in a multi-
dimensional array. The point coordinates can be used directly. The site (0, 1)
is the point (0, 1) and the data is stored at row 0 and column 1.

Here we have:

I::site == I::psite == point2d

where, roughly, point2d = { row, column }.

7.2 Need for psite

Sometimes, accessing a value in constant-time complexity, O(1), is not possible
with a site object.

Let’s have a small example. Define a function returning a value for a given
point:

31

unsigned my_values(const mln:: point2d& p)

if (p.row() = 0)
return 8;
return 9;

}

So, for each point having (0, x) as coordinate, this function will return 8,
otherwise it will be 9.
Then, define a p_array with few point2d:

p-array<point2d> arr;
arr.append(point2d (3, 6)
arr.append(point2d (3, 7)
arr.append(point2d (3, 8)
arr.append(point2d (4, 8)
arr.append(point2d (4, 9)

— N —

Now, create a point-wise image from this function and this p_array:

[min_VAR(ima, my_values | arr); J

1ma is actually that image:

c 6789
r
e
3| Ix| |
i
4 |1
e

However, in memory, since it is based on a p_array, sites are stored in a
vector.
The site x is the point (3, 7) which corresponds to the cell 1 in the p_array.

arr[] =012 3 4
B

RN
R e R

Obviously, we cannot check in constant time whether the site z, point2d
here, is part of that image or not: knowing the point coordinates is not enough.
That’s why we need a different mechanism in order to access this information:
the psites.

Here we have:

I::site == point2d but I::psite == pseudo_site<point2d>

where, roughly, pseudo_site<point2d> = { i_in_p_array, p_array _ptr }.

Psites contains all the needed information to access the values in constant-
time.

32

7.3 From psite to site

In the last example there was an image of type I such as I::site != I::psite. In
that case, an object of type I::psite is actually convertible towards an object of
type I::site. Furthermore, a psite shall behave as if it was a site.

Design note: it seems impossible to offer through the interface of some psite
what is expected from its corresponding site. For instance, when a site has
a given feature, say a method ”m”, then this method has to appear in the
psite interface. However, thanks to inheritance, we fetch an interface and an
implementation that delegates to the site.

For instance, in the last example, I::psite has a method row() because I::site,
point2d, provides such a method.

How it works: a psite inherits from internal::site_impl<site> which is spe-
cialized for every site type; for instance, internal::site_impl<point2d> owns the
method “coord row() const” which is defined as “return exact(this)->to_site().row()”.

7.4 Dpoint

Dpoints are relative sites. They are usually used in window and neighborhood
definitions. Since the central site is not constant, windows and neighborhoods
must be recomputed and dpoints help in doing that.

dpoint2d dp(—1,0);
point2d p(1,1);

std :: cout << p + dp << std::endl;

Output:

(2 J

33

Chapter 8

Iterators

Each container object in Olena like site sets or images have iterators. The
iteration mechanism for images is directly derived from the mechanism for site
sets.

There are usually three kinds:

e fwd_iter, depends on the container,
e bkd_iter, iterates like forward but to the opposite way,

e iter, usually the same as fwd_iter. It is guaranteed to iterate all over the
elements.

Every iterable object have these three kinds of iterator. There are all bidirec-
tional containers. Whatever the iterator used, the basic iterator has the only
property of browsing every site once.

The iterator type name depends on the data pointed by it:

Data type | Iterator Names

Site fwd_piter, bkd_piter, piter
Value fwd_viter, bkd_viter, viter
Neighboors | fwd_niter, bkd_niter, niter

As you may have noticed, according to the data type, the word “iter” is
prefixed by the usual name variable used for that data type. Sites variables are
usually called “p” so the proper iterator is “typepiter”. (See the foreword)

An iterator has the following interface:

34

Return Type | Name Arguments | Const | Comments

void start - -

void next - -

bool is_valid | - - Return false if created

with the default construc-
tor and not associated to
a proper container.

Example of different forward iterations:

e box2d: from top to bottom then from left to right.

e p_array<point2d>: from left to right.

A for_all() macro is available to iterate over all the sites:

box2d b(3, 2);
min_piter_(box2d) p(b);

for_all(p)

std :: cout << p; //prints every site coordinates.

Output:

[(0,0)(0,1)(1,0)(1,1)(2,0)(2,1)

J

Note that when you declare an iterator, prefer using the “mln_*iter” macros.
They resolve the iterator type automatically from the given container type
passed as parameter. These macros can be used with any container like im-

ages or site sets.

Here follow an example with the implemantions of the most basic routines
which use the for_all() loop: data::fill() and data::paste().

template <typename |>
void fill (1& ima, mlin_value(l) v)
{
min_piter(l) p(ima.domain());
for_all(p)
ima(p) = v;

template <typename |, typename J>
void paste(const 1& data, J& dest)

min_piter(l) p(data.domain());
for_all(p)
dest(p) = data(p);

}

-

35

Important note: macros for iterators exist in two versions: “min_*iter” and
“mlin_*iter””. The difference is that the first version must be used in templated
function whereas the second one must be used in non templated functions.

If you want a list of all the macros available in Olena, please refert to section

el

36

Chapter 9

Memory management

In the Olena library, all image types behave like image2d:

e An "empty” image is actually a mathematical variable.

— just think in a mathemetical way when dealing with images;

e No dynamic memory allocation/deallocation is required. the user never
has to use "new / delete” (the C++ equivalent for the C ”malloc / free”)
so she does not have to manipulate pointers or to directly access memory.

— Olena prevents the user from making mistakes;

e Image data/values can be shared between several variables and the mem-
ory used for image data is handled by the library.

— Memory management is automatic.

Exemple with image2d

Images do not actually store the data in the class. Images store a pointer to
an allocated space which can be shared with other objects. Once an image is
assigned to another one, the two images share the same data so they have the
same ID and point to the same memory space. Therefore, assigning an image
to another one is NOT a costly operation. The new variable behaves like some
mathematical variable. Put differently it is just a name to designate an image:

image2d<int> imal(box2d (2, 3));
image2d<int> ima2;
point2d p(1,2);

ima2 = imal; // imal.id() = ima2.id()
// and both point to the same memory area.

ima2(p) = 2; // imal is modified as well.

37

// prints "2 — 2"

std ::cout << ima2(p) << " — " << imal(p) << std::endl;
// prints "true”
std ::cout << (ima2.id_-() = imal.id_()) << std::endl;

If a deep copy of the image is needed, a duplicate() routine is available:

-
image2d<int> imal(5, 5);
image2d<int> ima3 = duplicate(imal); // Makes a deep copy.
point2d p(2, 2);
ima3(p) = 3;
std ::cout << ima3(p) << " — " << imal(p) << std::endl;
std :: cout << (ima3.id_() = imal.id_()) << std::endl;

L

Output:

3-0

0

38

Chapter 10

Basic routines

Routine name

Description

duplicate()

data::fill()

data::paste()

labeling::blobs()

logical::not_() logical::not_inplace()
*::compute()

creates a deep copy of an object. Any shared data is
duplicated.

fill an object with a value.

paste object data to another object.

find and label the different components of an image.
Point-wise ”logical not”

compute an accumulator on specific elements.

10.1 Fill

First, create an image:

(image2d<char> imga(5, 5);

J

Memory has been allocated so data can be stored but site values have not
been initialized yet. So we fill imga with the value ’a’:

[data:: fill (imga, 'a’);

J

The fill() algorithm is located in the sub-namespace ”min::data” since this

algorithm deals with the site values.

The full name of this routine is min::data::fill(). To access to a particular
algorithm, the proper file shall be included. The file names of algorithms strictly
map their C++ name; so min::data::fill is defined in the file min/data/fill.hh.

Note

Most algorithms in Olena are constructed following the classical scheme: ”out-
put algo(input)”, where the input image is only read. However some few al-
gorithms take an input image in order to modify it. To enforce this particular
feature, the user shall explicitly state that the image is provided so that its data

39

is modified ”read/write”. The algorithm call shall be data::fill(ima.rw(), val).

When forgetting the rw() call, it does not compile.

[data:: fill ((imga | box2d(1,2)).rw(), 'a’);

J

10.2 Paste

We then define below a second image to play with. As you can see this image
has data for the sites (5, 5) to (14, 14) (so it has 100 sites).

image2d<unsigned char> imgb(make:: box2d (5,5, 7,8));
// Initialize imga with the same domain as imgb.
image2d<unsigned char> imga(imgb.domain());

// Initialize the image values.
data:: fill (imgb, 'b");

// Paste the content of imgb in imga.
data:: paste(imgb, imga);

debug:: println(imga);

Output:

-
98 98 98 98
98 98 98 98
98 98 98 98

Note

With this simple example we can see that images defined on different domains

be accessed and printed. The following code:

(or set of sites) can interoperate. The set of sites of an image is defined and can

ra

image2d<int> imal(5, 5);
image2d<int> ima2(10, 10);

std :: cout <<
<<
std :: cout <<
<<

"imal.domain ()

std :: endl;
"ima2.domain ()
std :: endl;

<< imal.domain ()

" << ima2.domain ()

Gives:

image2d<int> imal(5, 5);
image2d<int> ima2(10, 10);

std :: cout <<

"imal.domain ()

40

<< imal.domain ()

<< std::endl;
std :: cout << "ima2.domain() =
<< std::endl;

"

<< ima2.domain ()

The notion of site sets plays an important role in Olena. Many tests are
performed at run-time to ensure that the program is correct.

For instance, the algorithm data::paste() tests that the set of sites of imgb
(whose values are to be pasted) is a subset of the destination image.

10.3 Blobs

labeling::blobs() is used to label an image. It returns a new image with the
component id as value for each site. The background has 0 as id therefore the
component ids start from 1.

Consider the following image:

bool vals[6][5] = {
{0, 1, 1, 0, 0},
{0, 1, 1, 0, 0},
{0, 0, 0, 0, 0},
{1, 1, 0, 1, 0},
{1, 0, 1, 1, 1},
{1, o, 0, 0, O}
s
image2d<bool> ima = make::image(vals);
L J
Output:

Then label this image thanks to labeling::blobs():

label_8 nlabels;
image2d<label 8> Ibl = labeling ::blobs(ima, c4(), nlabels);

Output:

41

Note that this routine returns the number of components in its third param-
eter. This parameter must be of the same type as the returned image value.

10.4 Logical not

Header mln/logical /not.hh
Full namespace | mln::logical
Routine(s) not_(), not_inplace()

This small routine only works on binary images. It performs a point-wise
”logical not” and therefore "negates” the image. There are two versions of that
algorithm: a version which returns a new image and another which works in
place. Example:

Make a binary image:

bool vals[5][5] = {
{1, 0, 1, 0, 0},
{0, 1, 0, 1, 0},
{1, 0, 1, 0, 0},
{0, 1, 0, 1, 0},
{0, 1, 0, 1, 0}
s

image2d<bool> ima = make::image(vals);

-

Return the result in a new image:

[image2d<bool> ima_neg = logical ::not_(ima);

42

ima (left) and imayeg (right) after having called logical::not_().

Or, work in place:

[logical ::not_inplace(ima); J

Then, tma looks like:

10.5 Compute

There are several flavour of the compute routine, depending on what the kind
of elements it computes.

labeling::compute() | compute an accumulator for each component in a
labeled image.
data::compute() compute an accumulator on the values of an image.

10.5.1 Accumulators

An accumulator is a special object accumulating data while iterating all over the
image values or sites. Hereby follows a list of accumulators available in Olena.

Accumulators on sites

Name Description

bbox Bounding boxes
count_adjacent_vertices | Count adjacent vertices
count Count the number of sites
height

volume

43

Accumulators on values
Name Description
histo Histogram
max Max value
max_h Max value (Hexa)
mean Mean value
median_alt Median
median_h Median (Hexa)
min Min value
min_h Min value (Hexa)
min_max Min and Max value
rank_bool
rank
rank_high_quant
sum Sum the values

Special accumulators

Name ‘ Description

pair
tuple

accumulator.

e min::accu::*, this version require the site or value type as parameter. For
instance, for the bbox accumulator, the type would be accu::bboximlin_psite(I);,
where [is the type of the image on which it will be computed.

e min::accu::meta::*, this is usually the easiest version to use. The type
of site or value do not need to be specified and will be deduced at com-
For the bbox accumulator, the accumulator type would be

pile time.

Pair of accumulators
n-uplets of accumulators
Each accumulator can be used in *::compute(). It exists two versions of each

accu::meta::bboz.

Note that when

an accumulator is passed to *::compute(), it must be in-

stanciated.You cannot write:

[data ::compute(accu c:meta::stat ::max, ima);

Instead, you must write:

[data::compute(accu:: meta::stat::max(), ima);

10.5.2 Example with labeling::compute()

In this example we will try to retrieve the bounding box of each component in

an image.

Consider the following image:

44

bool vals[6][5] = {
{0, 1, 1, 0, 0},
{0, 1, 1, 0, 0},
{0, 0, 0, 0, 0},
{1, 1, 0, 1, 0},
{1, 0, 1, 1, 1},
{1, 0, 0, 0, 0}
b
image2d<bool> ima = make::image(vals);
L J
Then label this image thanks to labeling::blobs():
label_8 nlabels;
image2d<label_8> Ibl = labeling::blobs(ima, c4(), nlabels);

Output:
Then, use labeling::compute() with the bbox accumulator:
util ::array<box2d> boxes =
labeling :: compute(accu:: meta::shape::bbox(),
Ibl,
nlabels);

labeling::compute() holds an accumulator for each component, which means
it returns an array of accumulator results. In this case, it returns an array of
box2d.

Important note: since labeling::blobs() labels the component from 1 and
set the background to 0, we will want to iterate from 1 to nlabels included.

for (unsigned i = 1; i <= nlabels; ++i)
std :: cout << boxes[i] << std::endl;
Output:
(1(0.1)..(1,2)]
((3.,0)..(5,1)]
\[(3 2)..(4,4)])

10.5.3 Routines based on accumulators and *::compute()

In order to make the code cleaner, small routines are available for the most used
accumulators.

45

Currently there are the following routines:

Name Description

nsites Return the number of sites of an image or a site set.

mean Return the mean of the values of an image.

min_max | Return the min and max values of the values of an
image.

sum Return the sum of the values of an image.

These routines can be found in mlin/geom and in min/estim. For example,
with geom::nsites() simply write:

[unsigned nsites = geom:: nsites(ima); J

10.6 Working with parts of an image

Sometimes it may be interesting to work only on some parts of the image or to
extract only a sub set of that image. Olena enables that through the operator

7|7

Three kinds of that operator exist:

Prototype Comments

Image | Sub Domain Create a new image.

Image | Function_p2b Do not create a new image but create a morpher.
Function_p2v | Sub Domain | Do not create a new image but create a morpher.

A Sub Domain can be a site set, an image or any value returned by this
operator. For a given site, Function_p2v returns a value and Function_p2b re-
turns a boolean. These functions are actually a sort of predicate. A common
Function_p2v is pw::value(Image). It returns the point to value function used
in the given image. C functions can also be used as predicate by passing the
function pointer.

You can easily get a Function_p2b by comparing the value returned by a
Function_p2v to another Value. The following sample codes illustrate this fea-

ture.

In order to use C functions as predicate, they must have one of the following
prototype if you work on 2D images:

p
//function_p2b
bool my_function_p2b(mln:: point2d p);

//function_p2v

//V is the value type used in the image.
template <typename V>

V my_function_p2v(mlin:: point2d p);

-

J

Of course, you just need to change the point type if you use another image type.
For instance, you would use point3d with 3D images. The returned value type

46

V for Function_p2v depends on the image value type. With image2d<int>, V
would be int.

In this section, all along the examples, the image ¢ma will refer to the fol-
lowing declaration:

-

bool vals[6][5] = {
{0, 1, 1, 0, 0},
{0, 1, 1, 0, 0},
{0, 0, 0, 0, O},
{1, 1, 0, 1, 0},
{1, 0o, 1, 1, 1},
{1, 0, 0, 0, 0}
i
image2d<bool> ima = make::image(vals);
Output:

10.6.1 Restrict an image with a site set

A simple example is to fill only a part of an image with a specific value:

r

p-array<point2d> arr;

// We add two points in the array.
arr.append(point2d (0, 1));
arr.append(point2d (4, 0));

// We restrict the image to the sites
// contained in arr and fill these ones
// with 0.

// We must call "rw()” here.
data:: fill ((ima | arr).rw(), 0);

debug:: println ((ima | arr));
min_VAR(ima2, ima | arr);

// We do not need to call "rw()” here.
data:: fill (ima2, 0);

Output:

47

10.6.2 Restrict an image with a predicate

In the following example, we aim at extracting a component from an image and
create a new image with it.
First, find and label the components.

label_8 nlabels;
image2d<label_8> Ibl = labeling ::blobs(ima, c4(), nlabels);

Output:

Then, restrict the image to the sites being part of component 2.

[mIin_VAR(Ibl_2 , Ibl | (pw::value(lbl) = pw::cst(2u)));

[bl_2 is a new image. [bl_2 looks like:

48

Finally, create a new color image, fill it with black and fill the sites part of
component 2 with red.

image2d<rgh8> ima2;
initialize (ima2, ima);

data:: fill (ima2, literal ::black);
data:: fill ((ima2 | Ibl_2.domain()).rw(), literal ::red);
Output:

The previous example can be written more quickly:

label_8 nlabels;
image2d<label_8> lab = labeling ::blobs(ima, c4(), nlabels);

image2d<rgh8> ima2;
initialize (ima2, ima);
data:: fill (ima2, literal ::black);

data:: fill ((ima2 (pw::value(lab) = pw::cst(2u))).rw(), Ilit

10.6.3 Restrict an image with a C function

In this example, the image is restricted to its odd lines. A new image is created
in which odd lines are in red and others in black.
Here is the simple C function used as predicate:

eral ::

-
bool row_oddity (mln:: point2d p)

{
}

return p.row() % 2;

Restrict the image with it:

- J

image2d<rgb8> ima2;
initialize (ima2, ima);
data:: fill (ima2, literal ::black);

data:: fill ((ima2 | row_oddity).rw(), literal::red);

49

red);

Output:

Important note
When writing:

[ima | sub.D J

sub-D must be included in ima.domain().
Let’s have an image, imab, like this:

010
111

Extract a sub image from imab with sites having their value set to 1.

[mIn_VAR(imabl, ima | (pw::value(ima) = pw::cst(lu))); J

Then, tmabl looks like:

i J

Now, if we want to extract a sub image it may fail, depending on the site
set used:

-
box2d b1(1,0, 1, 2);
min_VAR(imac, imabl | bl);

// Print:
// 11 1

debug:: prinln (imac);

box2d b2(0,0, 1, 1);

// Will fail at runtime.

// ima.domain (). has((0,0)) is false.
min_VAR(imad, imabl b2);

debug:: prinln(imad);

If you do not want this constraint, you may want to use an alternative
operator:

50

(ima / sub_D

o1

Chapter 11

Input / Output

Olena offers a builtin support for PNM (PBM, PGM & PPM), PFM and dump

file formats.
You can extend the range of supported files by installing third-parties li-
braries such as:

e ImageMagick: support for usual images (PNG, TIFF, JPEG, ...)
e GDCM: support for DICOM medical images

11.1 ImageMagick

http://www.imagemagick.org

You have to install ImageMagick with Magick++ support. You will be able to
load every file recognized as an image by ImageMagick.

Olena only support binary and 8 bits images through ImageMagick.

During the compilation, you will have to specify the ImageMagick flags and
libraries.

To do so, just add the following line to your compilation:

‘Magick++-config --cppflags --cxxflags --1ldflags --1libs‘

Magick++-config will automatically fill the dependencies depending of your
installation.

11.2 GDCM

http://apps.sourceforge.net /mediawiki/gdcm
GDCM is a library for manipulating DICOM files. DICOM files are used in
medical imaging.

92

http://www.imagemagick.org
http://apps.sourceforge.net/mediawiki/gdcm

Chapter 12

Graphs and images

12.1 Description
Olena enables the possibility of using graphs with images. Graphs can help you

to handle directly parts of an image and represent their relationship. Specific
data can be associated to each vertex and/or edges.

12.2 Example

First, create a graph which looks like the following:

A ODNN RO
=
A——— N

First we need to add vertices:

util :: graph g;
for (unsigned i = 0; i < 5; ++i)
g.add_vertex (); // Add vertex i’

Finally, populate the graph with edges:
g.add_edge(0, 1); // Associated to edge 0.
g.add_edge(l, 2); // Associated to edge 1.
g.add_edge (1, 3); // Associated to edge 2.
g.add_edge(3, 4); // Associated to edge 3.
g.add_edge(4, 2); // Associated to edge 4.

93

Now there is a graph topology and we want to associate elements of this
graph to a site in the image. The idea is to use specific site sets such as p_vertices
and p_edges. Let’s associate the vertices with sites. To do so we need a function
which maps a vertex id to a site, e.g. a point2d here.

(typedef fun::i2v::array<point2d> F;
F f(5); // We need to map 5 vertices.
f(0) = point2d (0, 0);
f(1l) = point2d (2, 2);
f(2) = point2d (0, 4);
f(3) = point2d (4, 3);
f(4) = point2d (4, 4);
Then declare a p_vertices:
typedef p_vertices<util ::graph, F> pv_t;
| Pyt pv(g, f);]

Thanks to the p_vertices there is now a mapping between vertices and sites.
We may want to map data to it. The idea is to provide a function which returns
the associated data according to the site given as parameter. Combining this
function and the p_vertices, we get an image which can be used with algorithms
and for_all loops.

template <typename S>
struct viota_t public miIn:: Function_v2v< viota_t<S> >

{

typedef unsigned result;

viota_t (unsigned size)
{
v_.resize(size);
for (unsigned i = 0;
v_[i] =10 + i;

i < size; ++i)

unsigned
operator ()(const mln_psite(S)& p) const

{
return v_[p.v().id ()];

}

protected:
std :: vector<result> v_;

x};

// Constructs an image
viota_t<pv_t> viota(pv.nsites ());
min_VAR(graph_vertices_ima , viota |

PV);

o4

//Prints each vertex and its associated data.
min_piter_(graph_vertices_.ima_t) p(graph_vertices_ima.domain
for_all(p)
std ::cout << "graph_vertices_ima (" << p << ") =
<< graph_vertices_ima(p) << std::endl;

L J
Output:

graph_vertices_ima ((0,0)) = 10

graph_vertices_ima ((2,2)) = 11

graph_vertices_ima ((0,4)) = 12

graph_vertices_ima ((4,3)) = 13

graph_vertices_ima ((4,4)) = 14

Note that like any image in Olena, graph images share their data. Therefore,
while constructing a graph image from a graph and a function, the graph is not
copied and this is NOT a costly operation.

Of course, creating a graph image is not necessary and you can work directly
with the graph and container/function mapping sites and data.

// Function which maps sites to data.
viota_t viota(g.v_nmax());

// lterator on vertices.
min_vertex_iter_(util ::graph) v(g);

// Prints each vertex and its associated value.
for_all(v)
std ::cout << v <<

n .oon

<< viota(v) << std::endl;

- J
Output:
-
0 10
1 11
2 12
3 13
4 : 14
- J

Graphs have iterators like any other site sets and also provide specific iter-
ators in order to iterate over graphs in a more intuitive way.
Iteration over the adjacent edges of all the vertices:

// lterator on vertices.
mln_vertex_iter_(util ::graph) v(g);

// lterator on v's edges.
mln_vertex_nbh_edge_iter_(util ::graph) e(v);

// Prints the graph
// List all edges for each vertex.

99

for_all(v)
{
std :: cout << v <<
for_all(e)
std :: cout << e <<
std :: cout << std ::endl;

}

1

Output:

r

A WONBRO

Iteration over the adjacent edges of all the edges:

// lterator on edges.
mlin_edge_iter_(util ::graph) e(g);

// lterator on edges adjacent to e.
mln_edge_nbh_edge_iter_(util :: graph) ne(e);

// Prints the graph
// List all adjacent edges for each edge.
for_all(e)

{

for_all(ne)
std ::
std :: cout << std::

cout << ne <<

std ::cout << e << "

endl;

1

1

-

}

Output:

(
(
(
(
(

Iteration over the adjacent vertices of all the vertices:

// lterator on vertices.
mln_vertex_iter_(util ::graph) v(g);

// lterator on vertices adjacent to v.
mln_vertex_nbh_vertex_iter_(util ::graph) nv(v);

// Prints the graph

96

// List all adjacent edges for each edge.
for_all(v)
{
std::cout << v << " "
for_all(nv)
std::cout << nv << " "
std :: cout << std::endl;

L

Output:

P WODNHO
W= o
NS AN

o7

Chapter 13

Useful global variables

Name

Description

Possible values

literal::zero

literal::one

literal::origin
border::thickness

trace::quiet

Generic zero value. Can be used with various types
such as algebra::vec, dpoint. . .

Generic one value. Can be used with various types
such as algebra::vec, dpoint. . .

Generic value for the origin point on a grid.
Set the default border thickness of images

Enable trace printing

98

1.a.

n.a.
[0 — UINT_MAX]

true/false

Chapter 14

Useful macros

14.1 Variable declaration macros

Name

Arguments

Description

mln_VAR(N, V)

mln_const_VAR(N, V)

N : name of the variable.

V : value to assign to N.

N : name of the variable.

V : value to assign to N.

99

Declare a variable N of type N_t and
assign the value V.

Declare a const variable N of type N_t
and assign the value V.

14.2 TIterator type macros

14.2.1 Default iterator types

Name

Arguments

Description

mln_eiter(T)

mln_niter(T)

mln_piter(T)

mln_qgiter(T)

mln_viter(T)

mln_pixter(I)

mln_qgixter (I, W)

mln_nixter(I, N)

T : iterable container type

T : iterable container/Im-
age type

T : iterable container/im-
age type

T : iterable container/im-
age type

T : iterable value con-
tainer type

I: image
I : image type,

W : window Type

I : image type,

N : neighborhood type

60

Type of the element iterator of T

Type of the neighborhood iterator of T
Type of the site iterator

Type of the window neighbors iterator
of T

Type of the value iterator of T

Type of the pixel iterator of I

Type of the pixel iterator of a window
on an image of type I.

Type of the pixel iterator of a neighbor-
hood on an image of type I.

14.2.2 Forward iterator types

Name

Arguments

Description

mln_fwd_eiter(T)

mln_fwd_niter(T)

mln_fwd_piter(T)

mln_fwd_giter(T)

mln_fwd_viter(T)

mln_fwd_pixter(I)

mln_fwd_gixter(I, W)

mln_fwd_nixter(I, N)

T : iterable container type

T : iterable container/Im-
age type

T : iterable container/im-
age type

T : iterable container/im-
age type

T : iterable value con-
tainer type

I : image
I : image type,

W : window Type

I : image type,

N : neighborhood type

61

Type of the element forward iterator of
T

Type of the neighborhood forward iter-
ator of T

Type of the site forward iterator
Type of the window neighbors forward
iterator of T

Type of the value forward iterator of T

Type of the pixel forward iterator of I

Type of the pixel forward iterator of a
window on an image of type L.

Type of the pixel forward iterator of a
neighborhood on an image of type I.

14.2.3 Backward

Name

iterators

Arguments

Description

mln_bkd_eiter(T)

mln_bkd_niter(T)

mln_bkd_piter(T)

mln_bkd_giter(T)

mln_bkd_viter(T)

mln_bkd_pixter(I)

mln_bkd_gixter(I, W)

mln_bkd_nixter(I, N)

T : iterable container type

T : iterable container/Im-
age type

T : iterable container/im-
age type

T : iterable container/im-
age type

T : iterable value con-
tainer type

I: image

I : image type,

W : window Type

I : image type,

N : neighborhood type

62

Type of the element backward iterator
of T

Type of the neighborhood backward it-
erator of T

Type of the site backward iterator
Type of the window neighbors back-
ward iterator of T

Type of the value backward iterator of
T

Type of the pixel backward iterator of
I

Type of the pixel backward iterator of
a window on an image of type I.

Type of the pixel backward iterator of
a neighborhood on an image of type I.

14.2.4 Graph iterators

Name Arguments Description

mln_vertex_iter(G) G : graph type Iterator on vertices.

mln_edge_iter(G) G : graph type Iterator on edges.

mln_vertex_nbh_edge_iter(G) G : graph type Iterator on the edges adjacent to a ver-
tex.

mln_vertex nbh_vertex_iter(G) | G : graph type Iterator on the vertices adjacent to a
vertex.

mln_edge_nbh_edge_iter(G) G : graph type Iterator on the edges adjacent to an

63

edge.

Chapter 15

Common Compilation
Errors

In this section, the most common compilation errors are gathered and explained.

e error: ’check’ is not a member of ’mln::metal::not_equal<bool,
bool>
error: ’check’ is not a member of 'mln::metal::converts_to<mln::value:: rgb<8u>,
unsigned int>’

The routine does not support a given image with such a value type or
an automatic conversion from the image value type to the expected value
type is not available.

e error: using ’typename’ outside of template

Macros like min_site or min_domain can only be used in templated func-

tions. In order to use them in a non-templated function, a ‘.’ must be
appended to the macro name. For instance : min_site. and min_domain._.

64

	Installation
	Requirements
	To compile the user examples
	To compile the documentation (Optional)
	To develop in Olena

	Getting Olena
	Building Olena

	Foreword
	Generality
	Directory hierarchy
	Writing and compiling a program with Olena

	Site
	Site set
	Basic interface
	Optional interface

	Image
	Definition
	Possible image types
	Possible value types
	Domain
	Border and extension
	Image border
	Generality on image extension
	Different extensions

	Interface
	Load and save images
	Create an image
	Access and modify values
	Image size

	Structural elements: Window and neighborhood
	Define an element
	Window
	Neighborhood
	Custom structural elements
	Conversion between Neighborhoods and Windows

	Sites, psites and dpoints
	Need for site
	Need for psite
	From psite to site
	Dpoint

	Iterators
	Memory management
	Basic routines
	Fill
	Paste
	Blobs
	Logical not
	Compute
	Accumulators
	Example with labeling::compute()
	Routines based on accumulators and *::compute()

	Working with parts of an image
	Restrict an image with a site set
	Restrict an image with a predicate
	Restrict an image with a C function

	Input / Output
	ImageMagick
	GDCM

	Graphs and images
	Description
	Example

	Useful global variables
	Useful macros
	Variable declaration macros
	Iterator type macros
	Default iterator types
	Forward iterator types
	Backward iterators
	Graph iterators

	Common Compilation Errors

